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Abstract

In this paper, we show how to generate a sharp
panorama from a set of motion-blurred video frames. Our
technique is based on joint global motion estimation and
multi-frame deblurring. It also automatically computes the
duty cycle of the video, namely the percentage of time be-
tween frames that is actually exposure time. The duty cycle
is necessary for allowing the blur kernels to be accurately
extracted and then removed. We demonstrate our technique
on a number of videos.

1. Introduction
A convenient way to generate a panorama is to take a

video while panning and then stitch the frames using a com-
mercial tool such as AutoStitch, Hugin, Autodesk Stitcher,
or Microsoft Image Composite Editor. However if there is
significant camera motion, the frames in the video can be
very blurry. Stitching these frames will result in a blurry
panorama, as shown in Figure 1 (b). In this paper, we de-
scribe a new technique that is capable of generate sharp
panoramas such as that shown in (c).

Our framework assumes that the scene is static and ade-
quately far away from the camera. Hence the apparent mo-
tion and motion blur in the video are mainly due to camera
rotation. This allows us to parameterize the image motion
as a homography [18]. Moreover, we assume that the cam-
era motion is piecewise linear (i.e., the velocity is constant
between successive frames). This is a reasonable approxi-
mation for videos due to their high capture rate.

We pose the problem of generating a sharp panorama
from a sequence of blurry input photos as that of estimating
the camera motion, its duty cycle, and the sharpened im-
ages, where the motion and the duty cycle give us the blur
kernel for sharpening. In our approach, all these are esti-
mated jointly by minimizing an energy function in a multi-
image deconvolution framework, which we shall describe

1This work was supported in part by NSF grant IIS 0713185.

Figure 1. Stitching example. First row: (a) Input frames (only
first and last frames shown). Second row: (b) Result of directly
stitching the input frames. Third row: (c) Result of our technique.

in detail in later sections. Note that the blur kernel in our
model, though parameterized by global motion, is in fact
spatially varying, which is a necessary consequence of the
modeling of camera rotation.

The main contributions of this paper are: (1) the ability
to estimate camera duty cycles from blurred videos, and (2)
the formulation as a single joint optimization of duty cy-
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Blur kernel# images Single-image Multi-image
Spatially constant [17] [2]

Multi. piecewise-const. [8] [7], [5], [15]
Spatially varying [6] [4], Ours

Table 1. Categorization of deblurring techniques, illustrated with
some of the representative works. Not a complete taxonomy

cle, motion and latent deblurred images in a manner that is
computationally tractable.

2. Related Work
Image and video deblurring has been studied extensively

in the context of computer vision, graphics, and signal pro-
cessing. Table 1 lists representative deblurring techniques
in our brief survey, which is not meant to be exhaustive.

Multi-image techniques. Jin et al. [7] address the prob-
lem of simultaneous tracking and deblurring in motion
blurred image sequences. They use the observation that mo-
tion blur operations are commutative to match blur across
frames for tracking. However, the blur kernels estimated in
this way are only relative, namely they satisfy the proposed
blur constraint but are not necessarily the actual kernels that
produced the input images. Moreover, the work assumes
that the blur kernel can be modeled as a 1D Gaussian, which
is not typical of real-world motion blur.

Cho et al.’s work [5] uses segmentation masks to simul-
taneously estimate multiple (parametric) motion blurs over
the whole image as well as handle occlusion. It can be re-
garded as an extension of the previous technique [7], since it
uses a similar blur constraint and also assumes that the blur
kernel is a 1D Gaussian. While capable of estimating mul-
tiple motions and blurs, it shares most of the assumptions of
[7] and hence has similar limitations.

Bascle et al. [4] jointly perform deblurring and super-
resolution on image sequences using a generative back-
projection technique. The technique assumes that the 1D
motion that produces blur is completely determined by
affine motion between images. This, however, is only true
when the camera duty cycle, i.e., the relative exposure time,
is known a priori, and their work does not address the issue
of estimating duty cycles.

The work that has the most similar goal to ours is that
of Onogi and Saito [15]; they also deblur video frames for
panorama generation. In their case, they perform feature
tracking with the assumption that there are only foreground
and background global motions. Like Bascle et al., they de-
rive the blur directly from the estimated motions, implicitly
assuming known duty cycle, and invert each frame indepen-
dently using the Wiener filter. In contrast, our approach is
jointly estimate motion and duty cycle, and performs multi-

image deblurring.

Single-image techniques. Many single-image deblurring
techniques have been proposed, and here, we mention only
a small number of representative methods. One of the more
recent techniques is that of Shan et al. [17], where the blur is
due to camera shake and assumed to be spatially invariant.
While impressive results were reported, it appears that their
system parameters are highly data-dependent, which limits
its practicality.

Levin [9] removes motion blur from a single image by
predicting derivative distributions as a function of the blur
kernel width, assuming the motion blur is caused by con-
stant velocity motion. Joshi et al. [8] model spatially-
varying motion blur by dividing the image into non-
overlapping sub-windows and estimating a blur kernel for
each window. The method uses hypotheses of sharp edges
instead of motion cues for blur estimation.

Dai and Wu [6] derive a local motion blur constraint sim-
ilar to the optical flow constraint. Their constraint is based
on matte extraction and is capable of recovering spatially-
variant motion blur. However, it is sensitive to matting er-
rors.

Techniques with specialized capture process. There are
also techniques for deblurring that either use specialized
hardware or assume a highly controlled capture process.
For instance, Tai et al. [19] use simultaneously captured
high-resolution video at low frame rate and low-resolution
video at high frame rate. Yuan et al. [21] use a blurred long-
exposure image and a noisy short-exposure image of the
same scene. Tico and Vehvilainen [20] address the problem
of motion blur by taking many short exposure (and hence
high noise) images so that they are relatively free from blur.
However, it does not actually model blur and hence is not
applicable to inputs that has a contain substantial amount of
blur.

Agrawal et al. [2] uses multi-image deconvolution to ad-
dress the problem of zeros in the frequency domain of blur
kernels. This is done by jointly deblurring a sequence of
images that are taken with different and known exposure
times. The method also requires that the scene consists of
a single moving object at constant velocity and static back-
ground. While such requirements are not uncommon in the
deblurring literature [16, 5], they are not typically met in
most real-world videos.

In contrast, our inputs are videos from readily available
off-the-shelf digital equipment.



Figure 2. Overview of our method

3. Overview
We solve the deblurring problem by jointly estimating

motion, duty cycles, and latent (sharp) images. 1 This is
performed by minimizing an energy function corresponding
to multi-image deconvolution. We will describe the energy
function in the following section.

The energy minimization is carried out using gradient
descent. This is viable under our model since we can com-
pute the derivative of the energy function with respect to
motion, duty cycles, as well as latent images. We initial-
ize motion by computing global parametric optical flow
between successive video frames using the Lucas-Kanade
method [13]. Duty cycles are set to an initial guess, which
needs not be accurate. Subsequently, we alternate between
updating latent images while holding motion and duty cy-
cles constant (i.e., performing deconvolution) and updating
motion and duty cycles while holding the latent images con-
stant. See Figure 2 for illustration. The updates are de-
scribed in Section 4 and 5 respectively. Although in theory
all three sets of variables can be optimized simultaneously,
the alternating scheme has a much smaller and hence man-
ageable memory footprint and is effective in practice.

4. Multi-image Deconvolution
Let I1, · · · , In be the sequence of observed images with

motion blur and L1, · · · , Ln be the corresponding underly-
ing latent images without motion blur. 2 If we regard each
image as a m-dimensional vector, where m is the number
of pixels, then the spatially varying motion blur can be rep-
resented as sparse m-by-m matrices B1, · · · , Bn, namely

Ii = BiLi +Ni (1)

for each image i ∈ {1, · · · , n}, where Ni is the noise. Re-
call thatBi is parameterized by motion (i.e., homographies)
and duty cycles under our model. Similarly, let Ai,j denote
the warping to frame i from frame j, which is determined
also by the relative motion, i.e.,

Li = Ai,jLj . (2)

1In our framework, motion and duty cycles parameterize blur kernels
(which will be described in the next section).

2Assume images have been converted into linear (luminance) space.

Hence
Ii = BiAi,jLj +Ni. (3)

Assuming Gaussian noise, the maximum-likelihood esti-
mate for frame j is then obtained by minimizing the energy
function

EML(Lj) =

j+∑
i=j−

∣∣∣∣D−1i (BiAi,jLj − Ii)
∣∣∣∣2, (4)

where j− = max(j − r, 1), j+ = min(j + r, n), Di is a
diagonal matrix whose entries are the standard deviations of
noise at each pixel in the i-th image, and r is the number of
nearby observations to include in each temporal direction.
In our work, r is typically in the range of 1 to 3. Note that if
r = 0, the problem reduces to single image deconvolution.
Because of noise in the observation Ii as well as empirical
errors in the recovered warpingAi,j and blurBi, a common
approach is to introducing an image prior onL that typically
regularizes its gradients (e.g. [10]). Hence the maximum
a posteriori estimate corresponds to the minimum of the
energy function

EMAP(Lj) =

j+∑
i=j−

∣∣∣∣D−1i (BiAi,jLj − Ii)
∣∣∣∣2+ρ(Lj), (5)

where ρ(·) is the functional form of the prior. The overall
energy function can be minimized with respect the latent
images Lj using gradient-based MAP-deconvolution tech-
niques (e.g. [10]).

5. Motion and Duty Cycle Estimation
In this section, we describe how to refine motion

and duty cycles given the latent images. Again, let
I = (I1, · · · , In) be the blurred video frames and L =
(L1, · · · , Ln) be the underlying sharp frames that we want
to recover. Let H = (H1, · · · , Hn) be the warps to each
frame from some reference frame. Let τ = (τ1, · · · , τn)
denote the duty cycles of each frame. We denote θ =
(H, τ ) for notational convenience. Hence both Ai,j and
Bi (defined in the previous section) are functions of H and
τ , and we will subsequently write them as Aθ

i,j and Bθ
i to

reflect this. Since the correct warps and duty cycles should
result in a deblurred output with lower energy than incorrect
ones, it is desirable to minimize Equation (5) over the whole
sequence with respect to these variables as well. Hence we
aim to minimize the following energy function

E(L,θ) =

n∑
j=1

j+∑
i=j−

∣∣∣∣D−1i (Bθ
i A

θ
i,jLj − Ii)

∣∣∣∣2 + ρ(Lj).

(6)
The minimization of Equation (6) with respect to L amounts
to MAP-deconvolution, which we already addressed in the



previous section; therefore the rest of this section will de-
scribe how to minimize it with respect to θ.

5.1. Pure Translation

We start with pure translation for simplicity of presenta-
tion. In this case, the warps H can be represented by the cor-
responding 2-component vectors h = (h1, · · · ,hn). Thus
we let θ = (h, τ ) for pure translation. Since the image
prior ρ(Lj) does not depend on θ, it can be ignored as far
as the optimization of θ is concerned. Also for conciseness
we omit the noise matrices D−1 from the subsequent no-
tation, since it is simply a weighting factor on each pixel.
Furthermore, we will write E(L,θ) as simply E(θ) since
minimization is with respect to θ. Hence

E(θ) =

n∑
j=1

j+∑
i=j−

∣∣∣∣Bθ
i A

θ
i,jLj − Ii

∣∣∣∣2 (7)

Let
Lθ
i,j = Aθ

i,jLj (8)

and
Iθi,j = Bθ

i L
θ
i,j = Bθ

i A
θ
i,jLj , (9)

i.e., Lθ
i,j is the sharp frame i obtained by warping Lj , and

Iθi,j is the blurred version of Lθ
i,j . Therefore

E(θ) =

n∑
j=1

j+∑
i=j−

∑
p∈pixels of Ii

δIi,j,p(θ) (10)

where
δIi,j,p(θ) = (Iθi,j(p)− Ii(p))2. (11)

Here we use p to denote the 2-component vector represent-
ing a pixel’s location (xp, yp)

T in the image. Thus it suf-
fices to find the derivative of δIi,j,p(θ), which in turn de-
pends on the derivative of Iθi,j(p) (with respect to θ). Recall
that in our model the blur kernel is determined by the rela-
tive warps to the two adjacent frames due the assumption of
piecewise linear motion, i.e.,

Iθi,j(p) =

∫ τi

t=−τi
Lθ
i,j(p+ t(hi+sign(t) − hi))dt, (12)

where sign(t) is 1 if t is positive and -1 otherwise. Thus
it can be approximated by a sequence of sampled points on
the motion path for each point,

Iθi,j(p) =
1

2s+ 1

s∑
k=−s

Lθ
i,j(p+ (13)

|k|
2s+ 1

τi(hi+sign(k) − hi))

=
1

2s+ 1

s∑
k=−s

Lj(p+

|k|
2s+ 1

τi(hi+sign(k) − hi) + (hi − hj))

where constant s is the number of samples in each temporal
direction (independent of the duty cycles) used to approxi-
mate the blur kernel. In our case s = 50. The derivative of
Iθi,j(p) is

d

dθ
Iθi,j(p) = ∇Lj(pθ

i,j,k) ·
1

2s+ 1

s∑
k=−s

d

dθ
pθ
i,j,k, (14)

where

pθ
i,j,k = p+

|k|
2s+ 1

τi(hi+sign(k) − hi) + (hi − hj) (15)

and ∇Lj is the image gradient of Lj . In the case of i = n
and k > 0, hi − hi+1 is replaced with hi−1 − hi as an
approximation (since hn+1 does not exist). The case of
i = 1 and k < 0 is handled similarly.

5.2. Full Homography

The case for a homography is analogous. Recall that
H = (H1, · · · , Hn) defines the warps to each frame from
some reference frame, and the relative warp to frame i from
frame j is thus Hi,j = H−1j Hi. Let p now denote the
homogeneous coordinates of a pixel, i.e., p = (xp, yp, 1)

T .
Thus to extend the relationship between the energy function
and θ from translation to general homography, we only need
to rewrite Eqn (14) and (15), so that

Iθi,j(p) =
1

2s+ 1

s∑
k=−s

Lθ
i,j(p

θ
i,j,k) (16)

with

pθ
i,j,k = φ(Hi,j

[
p+

|k|
2s+ 1

τi
(
φ(Hi+sign(k),i · p)− p

)]
)

(17)
where φ(·) is the projection of points in homogeneous co-
ordinates onto the image plane z = 1, i.e.,

φ((x, y, z)T ) = (
x

z
,
y

z
, 1)T . (18)

Equation 17 uses the approximation that every pixel is
moving at constant velocity in between successive frames.
The approximation is reasonable for videos since one can
expect the perspective change between successive frames
to be small. We make the further approximation that
φ(Hi+sign(k),i · p) ≈ Hi+sign(k),i · p, which is valid since
the perspective change inHi+sign(k),i is small. Hence Equa-
tion (17) simplifies to

pθ
i,j,k = φ(H−1j

[
Hi +

|k|
2s+ 1

τi
(
Hi+sign(k) −Hi

)]
p).

(19)
The derivatives with respect to warps and duty cycles can be
obtained using standard matrix calculus with the chain rule.
Hence, the energy function can be minimized via gradient-
based optimization methods (L-BFGS [14] in our case).



Sparsity prior + IRLS SLRF prior + L-BFGS

Figure 3. Sample output from deblurring using the sparsity prior
[10] optimized by IRLS and the SLRF prior [11] optimized by
L-BFGS, with otherwise identical parameters. The latter is notice-
ably sharper and yet has less ringing artifacts.

6. Experiments

We evaluate our model on both synthetic and real
videos. For energy minimization, we use limited-memory
BFGS (L-BFGS) of [14]. Compared with iterative re-
weighted least square (IRLS), L-BFGS does not have the
re-weighting step and requires only the value and the deriva-
tive of the energy function. In our experiments we found it
to be converge slightly faster than IRLS and reach compara-
ble energy levels. As is outlined in Section 4, an image prior
is used to regularize the output. In particular we use the
recently proposed sparse long-range random field (SLRF)
[11], which we found to produce noticeably sharper images
and fewer ringing artifacts than the sparsity prior [10] (Fig-
ure 3). 3 The noise levels of the input videos are automati-
cally estimated using the method of Liu et al. [12].

6.1. Synthetic Videos

For quantitative evaluation, we generated synthetic
blurred videos with ground truth information. This is
done by moving a virtual video camera in front of a high-
resolution image, which serves as the scene to be recorded.
Motion blur is generated by temporally averaging consec-
utive frames. Since the virtual camera can have an arbi-
trarily high frame rate, we have dense enough samples to
accurately approximate the motion blur kernel. We output
the middle frame of the samples (of successive frames) that
are used to produce the blurred frame as the corresponding
“true” sharp frame.

Figure 4 shows a sample frame from deblurring a se-
quence with synthesized motion blur. The goal is to com-
pare multi-image deconvolution against single-image de-
convolution. In this particular experiment, motion from an
initial motion estimation and the known duty cycle value
were used. Hence no iterative refinement was performed.
We also did not use any image prior in this case since
the purpose here is to compare multi-image deconvolution
against the single-image counterpart, the two of which dif-

3All the figures are best viewed electronically with zooming-in.

Ground truth Blurred

Single-image deconvolution Multi-image deconvolution

Figure 4. Sample output frame from synthetic video sequence. The
camera undergoes translational motion. The result of multi-image
deconvolution is sharper and has fewer ringing artifacts than that
of single-image deconvolution.

fer only in the data term (i.e., the part of the energy func-
tion excluding the image prior). For this experiment, 7
blurred frames are used for reconstructing each deblurred
frame for multi-image deconvolution (the temporal radius
r = 3). The results show that the image restored using
multi-image deconvolution exhibits noticeably fewer ring-
ing artifacts, demonstrating the advantage of using multiple
observations.

In Figure 5, the top-left image shows a blurred frame of a
synthetic video where the camera undergoes in-plane rota-

Blurry frame Result of Shan et al. [17]

Result of Joshi et al. [8] Our result

Figure 5. Sample output frame from synthetic video sequence. The
amera undergoes in-plane rotation. Our model is capable of han-
dling such challenging scenarios by modeling spatially varying
blur and utilizing motion motion cues from the video.



tion about its center. As can be seen from the image, the blur
is highly non-uniform. The amount of blur is lower near the
center and higher near the border of the image, and the di-
rection of blur also changes with location. The bottom-right
image shows the corresponding frame of the deblurred out-
put using our method, which is sharp and clean. In contrast,
models using piece-wise constant blur kernels can not pro-
duce satisfactory results on such sequences (e.g. top-right,
the result of Shan et al. [17], and bottom-left, the result of
Joshi et al. [8]). This demonstrates the importance of being
able to model spatially varying motion blur.

Figure 6 shows the errors of motion, duty cycles,
and restored frames, over the whole 11-frame video se-
quence, plotted against the number of iterations com-
pleted. The plots correspond to four different sequences
with combinations of two types of camera motions (transla-
tion/perspective rotation) and two duty cycle values values
(approximately half/full). A temporal radius of 1 is used in
these experiments. Motion errors are expressed as average
end-point errors [3] of warps between successive frames;
restoration errors are in the range between 0 and 255. In all
these experiments, the duty cycles are initialized to 1 for the
entire sequence. As can be observed from the figures, the
duty cycles converge to the correct values even when the
initial value is quite far away from the true values. In the
case where the initialization is close to the ground truth, the
estimated values remain close to the true values over the it-
erations. The experiments show that the estimation of duty
cycles is quite robust. Finding the correct duty cycles is es-
sential for determining the blur kernel size and subsequently
achieving good deblur performance. This is reflected in the
plots, where the restoration error is highly correlated with
the duty cycle error. Figure 7 shows a sample frame of the
deblur output using the initial incorrect duty cycles and one
using the refined duty cycles (after the last iterations). The
difference is emphatic.

One may notice that the decrease in motion error is far
less than the decrease in duty cycle and restoration errors,
and that the sequences with perspective rotation have higher
motion error than the translation sequences. This is likely
due to the approximations in handling homographies, as de-
scribed in Section 5. This, however, does not pose a prob-
lem, since the motion estimation is still adequately accurate
for reliable restoration.

6.2. Real Videos

Real-world video sequences are simply collected using
the video mode of a point-and-shoot camera. We used a
Canon SD1100, a Canon A540, and a FlipHD for this pur-
pose. For the SD1100 and the A540, we performed gamma
correction using the camera response functions (CRF) from
the web [1] that were obtained by calibrating on a set of
benchmark scenes and taking the average. We were not

Figure 6. Errors of motion, duty cycles, and restoration (i.e., deblur
output) on synthetic video sequences, plotted against the number
iterations completed. For the last two, the camera rotation is out-
of-plane, hence perspective change

able to find the CRF for the FlipHD, and thus simply used
a gamma value of 1.8. The step is necessary for real videos
since the CRF can be highly non-linear [1]. For all exper-
iments, initial duty cycle was set to one of 1/4, 1/2, or 1,
depending on if the sequence appears to have a mild, mod-
erate, or high degree of blur, and a temporal radius of r = 1
is used.



Input video Result of Shan et al. [17]

Result of Joshi et al. [8] Our result

Figure 8. Stitched Panoramas. The input video was taken by a Canon SD1100. Gamma correction is performed for all three methods.

Initial output (iteration 0) Final output (last iteration)

Figure 7. Comparison of sample frames from the initial and the
final deblurred output on the synthetic sequence with rotational
camera motion and a true duty cycle value of 0.495 (the last plot
in Figure 6). The initial duty cycle value is 1.

Figure 8 shows the panorama stitched from a blurry
video and the those stitched from the deblurred outputs of
Shan et al. [17], Joshi et al. [8], and our method respec-
tively, using Microsoft Composite Image Editor (ICE). Our
method produces far more pleasant result than the compet-
ing methods. Figure 9 displays addition sample frames of
the deblurred outputs on real videos, showing the enhance-
ment over the inputs.

Our method may fail to produce satisfactory results in
certain scenarios, which typically involve hash lighting or
moving objects (Figure 10). Nonetheless, such scenes are
not suited for producing panoramas in the first place.

7. Discussion and Future Work

In this paper, we have shown how to generate sharp,
high-quality panoramas from blury input videos. Our tech-
nique is based on joint global motion estimation and multi-
frame deblurring. It also automatically computes the duty
cycle of the video (i.e., percentage of time between frames
that is actually exposure time). This is a strong step for-
ward in increasing the ease with which users can capture
panorama. Video cameras and video modes on still cam-
eras and phones have become more prevalent, thus there
will be increased need for users to generate panoramas from
videos; however, many of these video devices have limited
capture quality due to the need for lightweight, low cost
components. As a result, dealing with blurred videos will
also become quite necessary.

Our results suggest several areas for future work. While
we have assumed the scene is static, a logical next step is to
allow for some amount of local scene motion. In this case,
we would down-weight areas that are not consistent with
the global motion – this would also us to potentially remove
moving objects or, alternatively, keep a moving object intact
by reinserting a view of it at one selected time.

Another area of future work is to use our method for
video stabilization. If moving objects are successfully han-
dled, i.e., don’t introduce artifacts, then we could resample



Figure 9. Sample results on real video sequences. Left column:
frames of input video; right column: frames of deblurred out-
put. Row 1 and 2: Canon SD1100; Row 3: Canon A540; Row
4: FlipHD.

Figure 10. Failure cases on real videos. Left image: high satura-
tion and contrast. Right image: moving object, where the person
near the low-left corner was crossing in front of the camera.

a smooth version of our recovered input path to generate a
stabilized video, where the static areas are deblurred.

Lastly, there are situations where our method may fail to
produce satisfactory result. Such scenarios usually involve
high degrees of saturation and contrast, which are typically
also difficult for all other deblurring methods. Many cam-
eras perform some post-processing that may be dependent
on the scene radiance distribution. While using the average
CRF over a few benchmark scenes provides a good approx-
imation in most cases, it can break down in harsh lighting

conditions. How to adaptively estimate the CRF in these
situations is interesting direction for future work.
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