
Highway Dimension, Shortest Paths, and Provably Efficient Algorithms

Ittai Abraham∗, Amos Fiat†, Andrew V. Goldberg‡, Renato F. Werneck§

Abstract

Computing driving directions has motivated many
shortest path heuristics that answer queries on continen-
tal scale networks, with tens of millions of intersections,
literally instantly, and with very low storage overhead.
In this paper we complement the experimental evidence
with the first rigorous proofs of efficiency for many of
the heuristics suggested over the past decade. We in-
troduce the notion of highway dimension and show how
low highway dimension gives a unified explanation for
several seemingly different algorithms.

1 Introduction

Gaius Octavius Thurinus (aka Augustus Caesar) was
put in charge of Roman roads (viae) in 20 BC. Formally,
all viae began at the Temple of Saturn in Rome.
Milestones along the roads gave distances along the
road and to the Forum in Rome. According to the
Cosmographia Julius Honorius, Consuls Julius Caesar
and Mark Anthony sent out four scholars to map the
world: Nicodemus, Didymus, Thodotus, and Polycletes.
This task took them 32 years, one month, and twenty
days. It is not clear how the Romans computed shortest
paths.

Although the raw data about geography and roads
may be more readily available today, computing shortest
paths is still not trivial. Dijkstra’s algorithm [6] allows
us to compute point-to-point shortest path queries on
any road network in essentially linear time. Unfortu-
nately, this is impractical for large road networks, such
as those of North America or Europe, where one would
like to answer queries while examining only a small frac-
tion of the graph.

Motivated by computing driving directions, sev-
eral heuristics have been proposed in the preprocess-
ing/query framework. In a preprocessing stage, these
heuristics compute some auxiliary data, such as addi-
tional edges (shortcuts) and labels or values associated
with vertices or edges. The auxiliary data is then used

∗Microsoft Research Silicon Valley, ittaia@microsoft.com
†Tel-Aviv University, fiat@tau.ac.il. Part of the work done

while the author was visiting Microsoft Research.
‡Microsoft Research Silicon Valley, goldberg@microsoft.com
§Microsoft Research Silicon Valley, renatow@microsoft.com

to accelerate an arbitrary number of s–t shortest path
queries, typically by pruning or directing Dijkstra’s al-
gorithm.

Heuristics within this framework are based on a
wide variety of ideas, such as arc flags [17, 14, 3], A∗

search with landmarks [9], highway hierarchies [19, 20],
reach [13, 10, 11], transit nodes [1, 2], and contraction
hierarchies [8]. In experiments using real-world data,
queries answered with these heuristics are an amazing
improvement over plain Dijkstra: visiting a few hun-
dred vertices is enough to answer a random query on
road networks with tens of millions of intersections. All
methods are exact: they are guaranteed to find the ac-
tual shortest path, not an approximation. Moreover,
preprocessing is practical (as fast as a few minutes for
some algorithms) and produces auxiliary data struc-
tures that require only slightly more memory than the
road network alone.

Unfortunately, these excellent practical results are
purely experimental, with no provably good time guar-
antees. In fact, it is not hard to construct inputs for
which these heuristics fail to achieve any meaningful
speedup. No analysis of the heuristics on any non-trivial
graph classes has been known. Furthermore, there was
no theoretical understanding of which properties of road
networks make the heuristics perform well; previous
work in this direction has been experimental only [4].

The lack of theoretical understanding of the practi-
cal shortest path algorithms suggests the following nat-
ural questions, which are the subject of this paper. Can
one prove sublinear query bounds for these heuristics on
a non-trivial class of networks? For what graphs does
the preprocessing/query framework lead to algorithms
with provably good performance? Specifically, what
properties of road networks imply provably good per-
formance for the (de facto excellent) heuristics above?
Finally, is there a plausible explanation as to why real
road networks actually satisfy such conditions?

To address these questions, we define the notion
of highway dimension. Intuitively, a graph has small
highway dimension if for every r > 0, there is a sparse
set of vertices Sr such that every shortest path of length
greater than r includes a vertex from Sr. A set is sparse
if every ball of radius O(r) contains a small number of
elements of Sr.



We show that low highway dimension gives provable
guarantees of efficiency for the following algorithms
(sometimes with small modifications): reach (RE),
contraction hierarchies (CH), highway hierarchies (HH),
transit node (TN), and SHARC [3] (which is based on
arc flags). More precisely, given a connected, simple
graph with n vertices, m edges, highway dimension ℎ,
maximum degree Δ, and diameter D, we can prove the
following:

∙ Preprocessing takes time polynomial in m (and n),
ℎ and logD.

∙ The auxiliary data it produces has size linear in m
and polynomial in log n, ℎ and logD.

∙ The s–t query returns an implicit representation of
the shortest s–t path (including the path length)
in time polynomial in Δ, ℎ, log n, and logD. (The
dependence on log n can be dropped if superpoly-
nomial preprocessing is allowed.) If needed, the ac-
tual list of edges on the path can then be retrieved
in time proportional to the list size.

Our motivation for the definition of highway dimen-
sion were the experiments performed by Bast et al. [1, 2],
who exploited a very intuitive observation: when driv-
ing on a shortest path from a compact region of a road
network to points that are “far away,” one must pass
through one of a very small number of access nodes.

For the US road network, the preprocessing algo-
rithm of Bast et al. [1, 2] finds a set of approximately
10,000 transit nodes that “cover” 99% of all shortest
paths, omitting only those shortest paths whose end-
points are very close to each other. Additionally, for a
vertex v, removing about 10 of these transit nodes from
the road network would increase the length of all suffi-
ciently long shortest paths emanating from v. Further-
more, a variant of the algorithm uses multiple layers of
transit nodes to handle local queries efficiently; the av-
erage number of access nodes in the more “local” layers
is just as small. This strongly indicates that real road
networks exhibit small highway dimension, at least in
some average sense.

One can view this road network model as being
somewhat analogous to small-world models for social
networks [16, 18]. Although real social networks do
not look exactly like small-world graphs, the latter give
insight into and allow complexity analysis of various
routing algorithms. Similarly, while real road networks
may have anomalies that do not agree with small
highway dimension, highway dimension gives insight
into and allows rigorous analysis of many shortest path
algorithms that actually work astonishingly well in
practice.

To complement the experimental evidence, we seek
to explain why it is reasonable to assume that real road
networks have low highway dimension. Consider the fol-
lowing scenario: Legionnaire veterans are sent to form
new coloniae (e.g. Berytus—now Beirut). Such new
cities should be connected by roads to the existing road
network. Roman roads were either long and fast pri-
mary roads (viae), shorter and slower secondary roads
(viae rusticae), or even shorter and even slower dirt
roads (viae terrenae). Thus, there are two different met-
rics involved, distance and time. Roman road planning
seeks travel-time efficient roads, without excessive ex-
penditure. A natural approach is to ensure that one
does not need to follow dirt roads for too long before
transferring to a better (faster) road. Moreover, one
does not seek to add too many expensive roads to the
network. A natural greedy approach is to connect the
new colonia via primary roads only if it is sufficiently
far from any entry point into such roads. Given that
Rome is colonizing the known world (constant doubling
dimension), this implies that the time metric has con-
stant highway dimension.

Motivated by the (somewhat tongue in cheek) dis-
cussion above, we suggest what could be a plausible
generative model for road networks, and show that the
networks it produces have low highway dimension (see
Section 6). This provides a possible explanation for
the emergence of low highway dimension networks. Our
model captures the incremental manner in which roads
are added over time, the fact that the underlying geo-
metric structure on which roads are built has low dou-
bling dimension, and the observation that long high-
ways are typically faster to drive on than shorter roads.
These results also allow one to generate synthetic net-
works with low highway dimension.

The notion of highway dimension may be interesting
on its own. Conceivably, better algorithms for other
problems can be developed and analyzed under the
small highway dimension assumption.

For simplicity and clarity of exposition, in most
of this paper we deal with undirected graphs. In
Section 3.1, we comment on how to extend our results
to directed graphs.

This paper is organized as follows. Section 2 estab-
lishes some basic notation, definitions, and background.
Section 3 formally introduces the notion of highway di-
mension. Section 4 describes our preprocessing algo-
rithm. In Section 5, we prove that various shortest-path
heuristics are space- and time-efficient on networks of
low highway dimension. Section 6 presents our genera-
tive highway model. In Section 7 we conclude with some
final remarks.



2 Definitions and Dijkstra’s Algorithm

The input to the preprocessing stage of a shortest path
algorithm is an undirected graph G = (V,E) with
length ℓ(e) > 0 for every edge e. For simplicity, we
assume that all shortest paths are unique and that G
is connected. We also normalize the graph so that the
minimum length of an edge is one.

Let P (u, v) denote the shortest path from u to v,
and let ∣P (u, v)∣ be its length (the sum of its edge
lengths). We assume that every edge e ∈ E is the
shortest path between its endpoints (otherwise we can
delete e from G). Given a non-negative r, let Bu,r =
{v ∈ V, ∣P (u, v)∣ ≤ r} be the ball of radius r centered
at u. Let D = max ∣P (u, v)∣ be the diameter of the
network, and let Δ be the maximum degree of a vertex
in G.

Dijkstra’s algorithm is an efficient implementation
of the scanning method for graphs with non-negative
edge lengths (see e.g. [21]). For every vertex v, it
maintains the length d(v) of the shortest path from the
source s to v found so far, as well as the predecessor
p(v) of v on the path. Initially d(s) = 0, d(v) = ∞ for
all other vertices, and p(v) = null for all v.

Dijkstra’s algorithm maintains a priority queue of
unscanned vertices with finite d values, the values
serving as keys. At each step, the algorithm extracts the
minimum valued vertex, v, from the queue and scans it.
I.e., the algorithm looks at all edges (v, w) ∈ E and, if
d(v) + ℓ(v, w) < d(w), sets d(w) = d(v) + ℓ(v, w) and
p(v) = w. The algorithm terminates when the target t
is extracted, without scanning t.

The bidirectional version of Dijkstra’s algorithm is
similar, but it runs a forward search from s and a reverse
search from t. When an edge (v, w) is scanned by the
forward search and w has already been scanned by the
reverse search, the concatenation of paths s–v and w–t is
a new path P from s to t (the same holds in the reverse
search). The algorithm keeps track of the shortest such
path found during the execution; when the searches
meet, this path will be optimum.

3 Highway Dimension

To explain and give some justification to the observa-
tions of Bast et al. [1, 2] mentioned above, we propose
the notion of highway dimension:

Definition 1. [Highway dimension] Given an edge-
weighted graph G = (V,E), the highway dimension of G
is the smallest integer ℎ such that

∀ r ∈ ℛ+,∀u ∈ V,∃S ⊆ Bu,4r, ∣S∣ ≤ ℎ, such that

∀ v, w ∈ Bu,4r,
if ∣P (v, w)∣ > r and P (v, w) ⊆ Bu,4r

then P (v, w) ∩ S ∕= ∅.

The definition says that for every r and every ball of
radius 4r, a small set of vertices covers all shortest paths
of length greater than r which are inside the ball. Note
that one could use constants bigger than 4, but then
the constant in Definition 2 below should be adjusted
appropriately.

The findings of Bast et al. suggest that real road
networks may have low highway dimension.

We note that this definition is related to that of
doubling dimension. A graph is said to be � doubling
(or to have doubling dimension log�) if every ball can be
covered by at most � balls of half the radius. Doubling
and highway dimension are not the same, however. A
square grid with unit lengths is an example of a graph
of constant doubling dimension that has large (Θ(

√
n))

highway dimension. A star graph with unit edge lengths
has constant highway dimension and large (Θ(log n))
doubling dimension.

However, the star graph is in some sense an ex-
ception. We show that for “continuous” graphs, small
highway dimension implies small doubling dimension.
By continuous graphs we mean graphs where each edge
is viewed as infinitely many vertices of degree two with
infinitely small edges (formally the continuous graph is
the geometric realization of the graph topology).

Claim 1. If the geometric realization of the graph topol-
ogy of G has highway dimension ℎ, then its shortest path
metric is ℎ doubling.

Proof. Consider a ball B = Bu,4r and a set S with
∣S∣ ≤ ℎ such that every shortest path P in B with
∣P ∣ > r contains an element of S. We claim that the
union of the balls of radius r around the elements of S
contains B. Suppose there is a vertex v ∈ B not covered
by the union, and let w be a vertex of S that is closest
to v. Then the shortest w–v path Q does not contain
any element of S as an internal vertex (or w would not
be the closest vertex) and ∣Q∣ > r (or v would be in the
ball around w). This contradicts the choice of S.

It seems that a notion stronger than doubling di-
mension is indeed necessary to fully explain the success
of speedup heuristics on road networks. It has been
shown experimentally [11] that some of the speedup
heuristics do not perform as well on planar grids as
they do on road networks, even though both classes
of graphs have low doubling dimension. Highway di-
mension might be necessary to explain the difference
between these classes.

Next we define shortest-path covers and relate them
to highway dimension.



Definition 2. [(r, k) Shortest-Path Cover ((r, k)-
SPC)] A set C is an (r, k)-SPC of G if and only if
∀u ∈ V, ∣C ∩ Bu,2r∣ ≤ k and ∀ shortest path P : r <
∣P ∣ ≤ 2r, P ∩ C ∕= ∅.

Intuitively, an (r, k)-SPC is a set of vertices that covers
all paths of length between r and 2r and is locally sparse,
i.e., has a small intersection with every ball of radius 2r.

The constants in definitions 1 and 2 are chosen to
enable the proof of the following lemma, which also
relies on the upper bound on ∣P ∣ in Definition 2.

Lemma 3.1. If G has highway dimension ℎ, then for
any r there exists an (r, ℎ)-SPC of G.

Proof. Let S∗ be the smallest set that covers all shortest
paths P satisfying r < ∣P ∣ ≤ 2r. We prove that S∗ is
an (r, ℎ)-SPC. Suppose by way of contradiction that for
some u, U = S∗ ∩Bu,2r and ∣U ∣ > ℎ. By the definition
of ℎ, there is a set H, with ∣H∣ ≤ ℎ, covering all shortest
paths in Bu,4r of length greater than r. In particular,
H covers all shortest paths of length between r and 2r
covered by U . Therefore (S∗ − U) ∪H is smaller than
S∗ and covers all shortest paths of length between r and
2r, contradicting the optimality of S∗.

The natural exhaustive enumeration of all vertex
subsets of size ℎ or less gives an algorithm with running
time nO(ℎ). Adapting the greedy approximation algo-
rithm for set cover [15] gives a polynomial-time con-
struction (nO(1) time independent of the highway di-
mension) with a logarithmic approximation factor.

Lemma 3.2. If G has highway dimension ℎ, then
for any r we can construct, in polynomial time, an
(r,O(ℎ log n))-SPC.

Proof. Starting from an empty set, repeatedly choose a
vertex that covers the most uncovered paths, breaking
ties arbitrarily. It is easy to see that this algorithm
runs in polynomial time. We must show that the set it
returns is an (r,O(ℎ log n))-SPC.

Pick v ∈ V and let B1 and B2 be the balls centered
at v of radius 2r and 4r, respectively. By Definition 1,
there is a set S in B2 with ∣S∣ ≤ ℎ such that every
shortest path in B2 of length at least r is covered by S.
We say that a shortest path P is relevant if its length
is between r and 2r and P intersects B1. Note that all
relevant paths are contained in B2 and are covered by
S.

Suppose at some step the algorithm chooses a vertex
w in B1. Every path covered by w must be relevant,
and by the greedy choice of w and the fact that the
relevant paths are covered by S, w covers at least 1/ℎ
of the currently uncovered relevant paths. As the initial

number of relevant paths is O(n2), the algorithm can
choose O(ℎ log n) vertices in B1.

Note that one can use an alternative definition of
highway dimension by defining it to be the smallest
ℎ for which (r, ℎ)-SPC exists for all r > 0. For this
definition, an argument similar to that used in the proof
of Lemma 3.2 can be used to construct (r,O(ℎ log n)-
SPC in polynomial time. We think that our original
definition is cleaner. However, the alternative definition
can be extended to directed graphs, as we discuss below.

3.1 Directed Graphs
In this section we extend the results to directed

(asymmetric) graphs. First we define a (directed) ball.
The directed ball Bu,r is the subgraph of G induced by
vertices v such that dist(u, v) ≤ r or dist(v, u) ≤ r.

Unfortunately our proof of Lemma 3.1 does not
work in the directed case. One way to extend the
results is to use the alternative definition of the highway
dimension: the smallest ℎ for which an (r, ℎ)-SPC exists
for all r.

Another way to handle directed graphs is to assume
that asymmetry is limited. For � > 0, we say that a
graph is �-symmetric if for all v, w we have dist(v, w) ≤
(1 + �)dist(w, v). One can show that, with appropriate
change to constant factors in the definitions and the
proofs, the results for undirected graphs extend to the
�-symmetric graphs.

4 Preprocessing

This section describes our basic preprocessing algo-
rithm. In Section 5, this basic construct is used to show
that the RE algorithm [10] is efficient on networks with
low highway dimension. Moreover, with small modifica-
tions (which will be described as needed), the algorithm
can also be applied to obtain variants of CH, HH, TN,
and SHARC that are provably efficient. Before we get
to our preprocessing algorithm, we describe an idea of
Geisberger et al. that inspired it: contraction hierar-
chies [8].

4.1 Contraction Hierarchies (CH) and Short-
cuts

Most state-of-the-art shortest-path heuristics, in-
cluding the CH algorithm, depend crucially on a very
simple notion: shortcuts [20]. Let u, v ∈ V be two ver-
tices such that the distance between u and v is d. A
shortcut is a new edge e = (u, v) with length d. The
shortcut operation deletes a vertex v from the graph and
adds edges between its neighbors to maintain the short-
est path information. In particular, for any neighbors u,
w such that (u, v) ⋅ (v, w) is the shortest path between u



and w and there is no alternative shortest path that does
not use v, we add (u,w) with ℓ(u,w) = ℓ(u, v)+ ℓ(v, w).
The addition of shortcuts breaks the invariant that
shortest paths in the input graph are unique. Break-
ing ties by favoring paths with fewer edges is sufficient
for our purposes, even though it does not eliminate all
ties.

Given the notion of shortcuts, CH preprocessing
is trivial: define a total order among the vertices and
shortcut them sequentially in this order, until a single
vertex remains. The output of this routine is the
set E+ of shortcut edges, as well as the vertex order
itself. Queries will always be correct, irrespective of the
contraction order — see query processing below.

However, query complexity and the size of the
auxiliary data required may vary greatly from one
permutation to the next. The best results reported in [8]
are obtained by on-line heuristics that select the next
vertex to shortcut based on its current degree and the
number of new edges added to the graph, among other
factors. We denote the position of a vertex v in the
ordering by rank(v).

An s–t CH query essentially runs bidirectional Di-
jkstra search on the graph G+ = (V,E∪E+). However,
when scanning v, only the edges (v, w) with rank(v) <
rank(w) are examined. The search terminates when
there is no labeled vertex in either direction. At this
point, each vertex v has estimates ds(v) and dt(v) on
distances from s to v and from v to t. (Unlike in Di-
jkstra’s algorithm, these estimates may be greater than
the actual distances for some vertices.) A vertex u min-
imizing ds(u) + dt(u) is on a shortest path from s to t,
given by the concatenation of the s–u and u–t paths.

This remarkably simple algorithm is surprisingly
efficient on road networks. On the European network,
random queries visit fewer than 500 vertices (out of
18 million) on average. Preprocessing takes only 10
minutes on a workstation and adds fewer shortcuts than
there are original edges.

4.2 The Common Preprocessing Algorithm
We are now ready to describe our preprocessing

algorithm. As in CH preprocessing, we must order the
vertices and shortcut them in this order. This yields
the ordering and the set E+ of shortcuts. To specify
the ordering, we use a sequence of shortest-path covers.

Specifically, let S0 = V and for 1 ≤ i ≤ logD, let Si
be an (2i, k)-SPC cover. Our algorithm computes these
covers. Here k is ℎ if we do not restrict preprocessing
time (Lemma 3.1) and k is O(ℎ log n) for polynomial-

time preprocessing. Let Li = Si −
∪logD
j=i+1 Sj . In our

contraction order, the vertices in Li come before those
in Li+1. Within each Li, the ordering is arbitrary.

Lemma 4.1. If v ∈ Li, the number of edges (v, w) ∈ E+

with w ∈ Lj (for fixed j ≥ i) is at most k.

Proof. By construction, (v, w) represents a shortest
path P in the original graph. Because the internal
vertices of P were eliminated before v and w, they
belong to Lx for some x ≤ i ≤ j. Also, w must belong
to Bv,2⋅2j . If not, the length of P would be more than
2 ⋅ 2j , but P does not contain a vertex from Ly with
y > j. Since Bv,2⋅2j has at most k vertices from Lj , the
lemma follows.

Note that this only bounds the number of shortcuts
that connect v to higher levels. We can obtain a similar
bound for lower levels as well:

Lemma 4.2. If v ∈ Li, the number of edges (v, w) ∈ E+

with w ∈ Lj (for fixed j < i) is at most k.

Proof. The shortcut (v, w) is created when we remove
the last internal vertex z on the shortest path P (v, w)
in the underlying graph. Therefore, z ∈ Lt, for some
t ≤ i. If ∣P (v, w)∣ > 2t+1, there must be a vertex of Lt′

(with t′ ≥ t + 1) on the path P , which contradicts our
assumption that z was the last vertex removed. Because
t ≤ i, we must have ∣P (v, w)∣ ≤ 2t+1 ≤ 2i+1. Since there
can be no more than k vertices of Li in B(w, 2i+1), the
lemma follows.

With the results in Section 3, these lemmas imply
the following bounds on preprocessing:

Theorem 4.1. For any graph G = (V,E) with highway
dimension ℎ and diameter D there is an ordering of
vertices that causes CH preprocessing to produce E+

such that degree of every vertex in G(V,E ∪ E+) is
at most Δ + ℎ logD and ∣E+∣ = O(nℎ logD). For
poly-time preprocessing, the degree bound is O(Δ +
ℎ log n logD) and the ∣E+∣ bound is O(nℎ log n logD).

Note that the query returns a path in the aug-
mented graph (and its length). In applications where
the corresponding original path is required, we must
translate each shortcut into a sequence of original edges.
This can be trivially done in time linear in the size of
the sequence [20], as long as we remember (as part of
the auxiliary data), which were the two elements (edges
or shortcuts) combined to create each shortcut added
during preprocessing. This requires O(∣E+∣) space.

5 Query Complexity

We now study the complexity of queries for various
heuristics: RE, CH, TN, and SHARC.



5.1 Reach (RE)
The RE algorithm [10] is based on the notion of

reach [13]. Given a path P and a vertex v ∈ P that
divides P into P1 and P2, the reach of v w.r.t. P is
rP (v) = min{∣P1∣, ∣P2∣}. Let p(v) be the set of shortest
paths containing v. The reach of v (w.r.t. the entire
graph) is r(v) = maxP∈p(v) rP (v).

The preprocessing stage of the original RE algo-
rithm heuristically adds shortcuts to the graph and
computes upper bounds r on reaches in the augmented
graph. An s–t query performs bidirectional Dijkstra
search with pruning by reach. When the forward search
labels a vertex v with distance label d(v), it checks if
r(v) is smaller than the minimum of d(v) and B, the
distance label of the top heap element of the backward
search. If so, it does not add v to the priority queue (if
v were on the shortest path from s to t, its reach would
be at least min{d(v), B}). Symmetric pruning is done
for the backward search.

Bidirectional Dijkstra search will give correct an-
swers irrespectively of when one switches between for-
ward and backward searches. We consider the [effec-
tive] variant that balances the two directional searches
by distance traversed: repeatedly pick either forward
or backward search, choosing the direction whose min-
imum labeled vertex distance is smaller (break ties ar-
bitrarily).

To obtain provably good query times, we use the
shortcuts E+ generated by the common preprocessing
algorithm described in Section 4.2. Intuitively, adding
shortcuts reduces reaches, and the way the algorithm
adds shortcuts also yields reach bounds sufficiently good
for our analysis:

Lemma 5.1. For any v ∈ Li, r(v) ≤ 2 ⋅ 2i in G+ =
(V,E ∪ E+).

Proof. By way of contradiction, suppose that r(v) >
2 ⋅ 2i. Then, there is a shortest path P in G+ between
a vertex x and a vertex y such that

1. P contains v and

2. both the subpath P1 from x to v and the subpath
P2 from v to y are longer than 2 ⋅ 2i.

Both P1 and P2 must contain vertices u ∈ Lj for j > i.
Among those, let u1 and u2 be the closest vertices
to v on P1 and P2, respectively. It follows that all
vertices of P between u1 and u2 (including v) will be
shortcut before u1 and u2, which means (u1, u2) must
be a shortcut. Since we break ties by number of hops,
the path using the shortcut is shorter than P . This
contradicts the assumption that P is a shortest path.

With these bounds, we can prove the following
about the original RE query algorithm:

Theorem 5.1. Consider the variant of RE that bal-
ances the two searches based on the radii searched thus
far. There is an ordering of vertices during preprocess-
ing such that RE query takes O((Δ + ℎ logD)(ℎ logD))
time, and a poly-time computable ordering such that the
query takes O((Δ + ℎ log n logD)(ℎ log n logD)) time.

Proof. For the forward search from s, consider the ball
Bs,2⋅2i . The search does not scan any v ∈ Li such that
v is outside the ball. This is because r(v) ≤ 2 ⋅ 2i,
which implies that v is either scanned by the reverse
search or not scanned at all. Therefore the search scans
at most O(k logD) vertices. A similar argument holds
for the reverse search. The fact that vertex degrees are
bounded by Δ + k logD completes the proof.

Note that RE does not need the vertex ordering
but needs reach bounds. For a vertex v ∈ Li, we can
store 2 ⋅ 2i (which can be represented by i) as its reach
bound. The result also holds for any reach upper bounds
that are at least as good as those computed by our
preprocessing. In particular, it holds for optimal reach
values in the graph with added shortcuts, which can be
computed in polynomial time.

Note that Theorem 5.1 ignores data structure over-
head. Using the appropriate heap data structure,
all overhead can be amortized, with the exception of
deletemin operations, which precede every vertex scan.
Recall that the number of vertex scans is O(k logD).
Using Fibonacci heaps [7], this leads to an additive
term of k logD log n. Assuming integral edge lengths
and defining C as the ratio between the maximum and
the minimum positive edge lengths, we can use multi-
level bucket data structure [5] for a k logD logC addi-
tive term. Since D ≥ C, this term is dominated by the
bound of the theorem. From now on, we will ignore the
data structure overhead.

5.2 Contraction Hierarchies (CH)
We now return to the contraction hierarchies al-

gorithm (CH), described in Section 4.1. Recall that
its query is essentially bidirectional Dijkstra with ad-
ditional pruning: when scanning an edge (v, w) from
v, w is labeled (added to the heap) only if rank(v) <
rank(w).

To get similar bounds to Theorem 5.1, we must
prove that a CH query visits at most O(k) vertices
in each level Li. It would be sufficient to show that
all vertices visited by the forward search at level i are
within distance at most 2⋅2i from the source s (a similar
argument would hold for the backward search). This is



almost true. If a vertex v ∈ Li is such that ∣P (s, v)∣ ≥
2 ⋅ 2i, then there must be a vertex u ∈ Lj (with j > i)
on P (s, v). This means that rank(u) > rank(v), so the
forward CH search would never follow path P (s, v) in
its entirety (as desired). Because of pruning, however,
not every branch of the search tree followed by CH is
a shortest path. Conceivably, the search could find an
alternative path (not shortest) of increasing ranks from
s to v.

We propose two alternative solutions to this issue:
modifying CH queries to strengthen the pruning condi-
tion, or modifying CH preprocessing only. We describe
each approach in turn.

5.2.1 CH with Range Optimization
A simple way to fix CH is to add range optimization:

When scanning an edge (v, w) with w ∈ Lj , if the
label for w from the scan is d(w) > 2 ⋅ 2j , we do
not label w, i.e., we do not put w on the priority
queue. (Because a shortest path of length greater than
2 ⋅ 2j must pass through a vertex in Lj+1, we know the
current path to w is not the shortest.) We remark that
this modification requires knowing the level of a vertex
from the preprocessing, which can be implemented with
constant overhead per vertex. This approach can be
seen as implicitly adding reach pruning to CH. In
particular, the same time bounds hold.

Theorem 5.2. There is an ordering of vertices
such that CH query with range optimization takes
O((Δ + ℎ logD)(ℎ logD)) time, and a poly-time com-
putable ordering such that the query takes O((Δ +
ℎ log n logD)(ℎ log n logD)) time.

Although our bounds are the same, CH with range
optimization would probably be better than RE in
practice, since CH can perform pruning by rank as well.

5.2.2 Additional Shortcuts
Adding range optimization to CH is natural, but

somewhat unsatisfactory: the entire analysis follows
from RE. We now consider an alternative approach that
keeps the original CH query algorithm intact. All we
need is a slightly modified version of the preprocessing
algorithm of Section 4.2.

We shortcut vertices in the same order as before.
When we shortcut vertex v ∈ Li, we still create edges
between its neighbors as needed. However, the modified
version creates some additional edges: for every pair
{u,w} ⊆ Bv,2i+1 (in the current graph) such that
v ∈ P (u,w), we create a new edge (u,w) with length
∣P (u,w)∣. Note that, even with these extra edges,
Lemma 4.1 still applies. We denote the augmented set
of shortcuts (which includes E+) by E∗.

We also change the output of the preprocessing
algorithm: instead of producing a total order, it sets
rank(v) = i for all vertices at level i (intuitively, we
allow ties in the global vertex order). Queries remain
unchanged: run bidirectional Dijkstra with pruning by
rank (when scanning an edge (v, w), only label w if
rank(v) < rank(w)).

The modified shortcut strategy ensures that for
every original shortest s–t path there is a corresponding
path in G+ = (V,E ∪ E∗) with no consecutive vertices
on the same level. The one possible exception is
the highest level, which may contain two (adjacent)
vertices, but not more. We handle the special case as
follows: if, when scanning a vertex v in the forward
direction, we find a neighbor w on the same level that
has been scanned in the reverse direction, we check if
ds(v) + ℓ(v, w) + dt(w) is the shortest path seen so far.
(We perform a similar test during the reverse search.)
Note, however, that CH pruning still applies: we do not
add w to the heap.

The performance of this version of the CH query is
the same as RE.

Theorem 5.3. Consider the variant of CH with ad-
ditional shortcuts. The total number of short-
cut edges is bounded by ∣E∗∣ = O(nℎ logD) or
O(nℎ log n logD) for poly-time preprocessing. The
query takes O((Δ + ℎ logD)(ℎ logD)) time or O((Δ +
ℎ log n logD)(ℎ log n logD)) for polynomial-time pre-
processing.

Note that this version of the CH algorithm can also
be seen as a stronger version of highway hierarchies
(HH) [20]. A predecessor of CH, HH uses a partial
ordering of the vertices, with incomparable sets forming
hierarchy levels. The query algorithm never goes down
the hierarchy, but it is allowed to move “sideways”
(between vertices on the same level). In our variant
of CH, each Li acts as a level in the highway hierarchy,
but we only allow the searches to go strictly up.

We still have one issue to address: retrieving the
original shortest paths. Each extra shortcut we add
may represent an original path with several edges (not
just two, as in Section 4.2). Consider a shortcut (u,w)
added when eliminating v ∈ Li: because all lower-level
vertices have been eliminated at this point, this shortcut
corresponds to a path of at most k vertices in Bv,2⋅2i .
We store this path with the new shortcut. This extra
information requires O(nk2 logD) space in total.

5.3 Transit Nodes (TN)
We now consider the TN algorithm [1]. As already

mentioned, this algorithm is based on the observation
that anyone driving from a small region to faraway



destinations must pass through one of a small number of
access nodes. The union of all access nodes constitutes
the set of transit nodes.

The TN preprocessing algorithm uses heuristics to
find a compact set of transit nodes that is locally small,
i.e., any vertex v has a small set A(v) access nodes
contained in the set of transit nodes. It then adds
shortcuts between each vertex v and its access nodes.
Finally, it computes and stores a (quadratic-sized)
sized table of distances between pairs of transit nodes.
(Note that each table entry effectively corresponds to a
shortcut in the original graph.)

To answer an s–t query, the algorithm first uses
a fast distance filter (based on geometric distances) to
estimate how close s and t are. If the estimated distance
is small, a Dijkstra-based algorithm is used to find
the actual shortest path. Otherwise (if the estimated
distance is large enough) the algorithm explicitly looks
at all three-edge paths of the form (s, s′, t′, t), where
s′ ∈ A(s) and t′ ∈ A(t). The smallest such path is the
shortest path from s to t. Note that this can be done in
time O(∣A(s)∣ ⋅ ∣A(t)∣) using the table computed during
preprocessing.

Further improvements to the TN algorithm [2]
include the use of highway hierarchies to speed up
preprocessing and local queries, and hierarchical transit
nodes.

This algorithm is remarkably fast in practice. On
continental-sized maps, the preprocessing algorithm can
find a set of approximately 10 000 transit nodes such
that every vertex has about 10 access nodes. This
means that long-range queries (more than 99% of the
total) can be performed with about 100 table lookups,
which takes a few microseconds. Note that, unlike all
other algorithms we study, long-range TN queries are
not Dijkstra-based.

A variant of the Transit Node algorithm. We
propose the following TN variant: during an s–t query,
consider paths of the form (s, x, t), with x ∈ A(s)∩A(t).
Note that these paths have at most one intermediate
vertex, instead of two as in the original transit node
algorithm.

We further modify the preprocessing of Section 4.2
as follows. After computing the sets Si and Li, we add
shortcuts connecting each vertex v to all vertices in Si
within distance 2 ⋅ 2i from v. Let E′ be the set of edges
thus added. From Lemma 4.1, ∣E′∣ ≤ nk logD (where
k = ℎ or k = O(ℎ log n)). The TN query variant works
on the graph G′ = (V,E ∪ E′): given s and t, we look
only at edges in E∪E′ adjacent to s and t, and pick the
shortest one- or two-edge path discovered in the process.

To see that the query algorithm is correct, let i be
such that 2i−1 < ∣P (s, t)∣ ≤ 2i. If (s, t) ∈ E ∪ E′, we

find the shortest path. Otherwise, the shortest path
between s and t contains a vertex v ∈ Si−2, and both s
and t are connected to v, so we find the shortest path
as well.

Theorem 5.4. The total number of shortcut edges is
∣E′∣ = O(nℎ logD), or O(nℎ log n logD) for poly-time
preprocessing. If we do not restrict preprocessing time,
TN query takes O(Δ + ℎ logD) time, and for poly-time
preprocessing the query takes O(Δ +ℎ log n logD) time.

Note that these bounds are better than for CH, HH,
and RE. The space bound is asymptotically the same,
unless we need to output the original path in linear time.

As every edge in E′ corresponds to a large number
of edges in E, we cannot afford to store this mapping
directly. Instead, the preprocessing algorithm outputs
a representation of each edge in E′ as a sequence of
edges in E ∪ E+ (recall that E+ is the set of shortcuts
added by the common preprocessing algorithm). Every
shortcut is a shortest path, and any shortest path in
G+ = (V,E ∪ E+) has at most k logD edges (no more
than the number of scans performed by RE in G+).
Thus, an upper bound on the total space required by
our extended representation is O(n(k logD)2).

5.4 The SHARC algorithm
The SHARC algorithm [3] combines the ideas of

arc flags [17, 14] and shortcuts. The core idea of arc
flag preprocessing is to label nodes (assigning them to
“regions”) and attach additional information to each
arc (each edge (u, v) consists of two arcs u → v and
v → u).1 Given the target’s label, a modified Dijkstra
checks whether an arc can or cannot be on the shortest
path to the target. In SHARC the labeling of nodes
is done using an iterative and hierarchical heuristic
partitioning. We note that this approach has similarities
to the notion of labeled routing in distributed graph
algorithms [22].

One of the main advantages of SHARC is that it
provides good empirical results even when executed in a
unidirectional manner. Unidirectional Dijkstra variants
are particularly important for time-dependent route
planning (bidirectional Dijkstra cannot easily perform
a reverse search from the target, since the arrival time
is not known).

While SHARC uses heuristics to compute shortcuts
and to decide how to partition the map to compute arc
flags, we suggest a modification of SHARC that uses low
highway dimension to compute both the shortcuts and
the labels of each vertex and edge. Roughly speaking,
an arc u → v is given the flag of vertex w if the

1To avoid confusion we use “arc” to mean “directed edge”.



shortest path from u to w goes through v, and w belongs
to some Si and the distance between u and w is at
most 2i+1. The label of each vertex is approximately
the list of the k nearest points in Si for each scale i.
Hence if 2i < d(s, t) ≤ 2i+1 then there exists a vertex
w ∈ Si∩P (s, t) and by definition there will be a shortcut
from s to w, the arc s→ w is given the flag w and w is
part of the label of t.

1. Preprocessing. The preprocessing algorithm is
the same as for TN. If v ∈ Si and P ∣(u, v)∣ ≤ 2i+1

then we add a shortcut arc from u to v. Note that
each vertex creates at most O(k logD) out-going
edges, so the total memory is O(nk logD).

2. Arc flags. An arc u → v is given the flag of
vertex w if w ∈ Si, ∣P (u,w)∣ ≤ 2i+1, and v ∈
P (u,w). Note that u can have at most k logD
flags. Recall that P (u,w) is defined on the graph
G+ = (V,E ∪ E+) that includes the shortcuts and
breaks ties by choosing the shortest paths with the
least number of hops.

3. Vertex labels. The label of a vertex u is the
sequence F (u) = F1, . . . , FlogD, where Fi = Si ∩
Bu,2i+1 . Note that F (u) contains at most k logD
elements. Hence storing a table mapping each
vertex to its label requires O(nk logD) space.

4. Query. Given a target t, at any vertex u we modify
Dijkstra to consider only arcs u → v such that
v ∈ Fj(t), where j = min{i ∣ ∃u→ w,w ∈ Fi(t)}.

Theorem 5.5. The modified SHARC algorithm
has polynomial-time preprocessing requiring space
O(nℎ log n logD) and such that each query takes
O((ℎ log n logD)2) time.

Proof. Given a fixed target, there are at most
O(ℎ log n logD) arcs that the modified Dijkstra can
reach from the source (the arcs leading to vertices in
the label of the target). From each such vertex the only
arcs taken are those to vertices in the label of the tar-
get. Therefore the total number of vertices explored is
O(ℎ log n logD), and the total possible arcs explored is
O((ℎ log n logD)2). It is easy to verify that the shortest
path from s to t must be included in this search.

We can similarly obtain a (superpolynomial-time)
preprocessing algorithm that enables unidirectional
queries to take O((ℎ logD)2) time. Finally, we note
that, as for the TN auxiliary space requirements, we
need more auxiliary data to output the path in the orig-
inal graph efficiently.

6 Emergence of Networks with Low Highway
Dimension

The formation of real road networks is a complex
process involving geographic, economic, political, and
cultural aspects. In this section we propose a simple
model that hopefully captures some of these aspects.
We then show that networks formed by this process
have low highway dimension. This provides a plausible
explanation for the emergence of low highway dimension
networks. We do not claim our model captures all
aspects of road network creation (just as the small-
world models for social networks [16, 18] do not claim
to capture all aspects of social network topology).

We would like to capture three properties of road
network formation.

1. Roads are built in an incremental manner over
time, and each decision is typically done in a local
manner—without necessarily taking into account
a centralized global planner. Hence we consider a
decentralized and on-line process of forming a road
network.

2. The underlying geometric space on which roads are
built has some low-dimensional structure. To cap-
ture this property, we assume that the underlying
geometric space has a low doubling dimension. (Re-
call that a metric has doubling dimension log� is
every ball of radius 2r can be covered by � balls of
radius r.)

3. Longer highways are typically faster than short
roads. (For example, interstate highways are typi-
cally faster than state highways, which are faster
than local inter-neighborhood roads, which are
faster than small inter-neighborhood roads, and so
on.) To formalize this we introduce a speedup pa-
rameter 0 < � < 1 and define the traversal time
�(u, v) of a road segment with endpoints u, v to be
d(u, v)1−�.

Consider the following model that is similar in spirit
to the dynamic spanner construction of [12]. Start
with a metric space (M,d) with doubling dimension
log�. An on-line adversary supplies a sequence of points
v1, v2, . . . ⊆ M , where vt is the new location added at
time t. When vt arrives, we need to connect vt to the
existing road network. We do this by connecting vt to
nearby peers at appropriate scales.

Intuitively, if vt is a new city, we connect it to
nearby cities; if it is a new neighborhood, we connect
it to nearby neighborhoods; etc. However, if neighbor-
hoods are created further and further away from the
city center, there comes a point where we connect the



new neighborhood not only to nearby neighborhoods,
but also to nearby city centers.

Formally, let D be the diameter of the metric space.
For each integer 0 ≤ i ≤ logD we maintain a set Ci such
that any two vertices in Ci are at least 2i apart (in the
metric space). We say that Ci is a 2i-cover. Our covers
are hierarchical, i.e., if v ∈ Ci, v is in Cj for all j < i.
All vertices are in C0. We say that a vertex v is a level
i vertex if i is the maximum index for which v ∈ Ci.

When a new point vt arrives, we find the lowest i
for which there is a vertex at distance 2i from v and
place vr into all Cj for 0 ≤ j < i. (If no such i exists,
we place vr into all covers.)

After determining which covers vr belongs to, we
connect it to other vertices as follows. For each i such
that vr is in Ci, add two types of edges from vr:

1. Edges to all vertices in Bvt,6⋅2i ∩ Ci other than vr.
Note that it is possible that Bvt,6⋅2i ∩ Ci = {vr},
i.e., no edges are added. For each such edge a, note
that 2i ≤ d(a) ≤ 6 ⋅ 2i.

2. If i < logD and vr ∕∈ Ci+1, we connect vr to the
closest vertex in Ci+1. Note that the length of such
an edge is at most 2i+1 because we have not added
vr to Ci+1. The length is also greater than 2i, since
the vertex we connect vr to is in Ci.

Note that we add at most �4 logD edges. This is
because for each vertex vr, we add at most �4 edges for
each 0 ≤ i ≤ logD. To see this, we need to prove that
Bvr6⋅2i contains at most �4 vertices in Ci. In fact, we
show this for Bvr8⋅2i . By the definition of �, Bvr8⋅2i can
be covered by �4 balls of radius 2i−1. By the definition
of Ci, each of the balls in the cover contains at most one
vertex of Ci.

Recall that we have a speedup parameter � ∈ (0, 1),
so a highway of geographic length d(u, v) has a traversal
time of �(u, v) = d(u, v)1−�. To simplify the analysis,
we fix � = 0.25. The proofs below can be modified to
show that Theorem 6.1 holds for any constant � ∈ (0, 1).
We keep symbolic � in the exponents of expressions to
make this more transparent.

We shall refer to shortest paths with respect to
traversal times as fastest paths. By shortest paths we
will mean shortest paths with respect to d.

For the rest of this section, let x ∕= y ∈ V be such
that 2i < d(x, y) ≤ 2i+1. Let Q be a fastest x–y path
and let a be the longest edge on Q.

Lemma 6.1. For � = 0.25, there exists an x–y path P
such that �(P ) < 9 ⋅ 2i(1−�).

Proof. Consider the following recursive construction of
a sequence of vertices x = x0, x1, . . . , xi. Given xj−1, let

xj be xj−1 if xj−1 ∈ Cj ; otherwise, let xj be the vertex
in Cj we connected xj−1 to when adding it to the graph.
Note that d(xj−1, xj) ≤ 2j . Therefore there is a path

Px from x to xi ∈ Ci of length d(Px) ≤
∑i
j=1 2j ≤ 2 ⋅2i.

The transit time �(Px) is at most

i∑
j=1

2j(1−�) ≤ 2(i+1)(1−�) − 1

2(1−�) − 1
< 2.5 ⋅ 2i(1−�).

The last step uses the fact that 2(1−�)

2(1−�)−1 < 2.5 for
� = 0.25.

Similarly, there is a path Py from y to yi ∈ Ci with
d(Py) ≤ 2 ⋅ 2i and �(Py) < 2.5 ⋅ 2i(1−�).

Both xi and yi are in Ci and d(xi, yi) ≤ 6 ⋅ 2i.
Without loss of generality, assume that yi has been
added after xi. Then we added the edge (xi, yi) as well.
This edge in combination with Px and Py give an x-y
path P with

�(P ) < 5 ⋅ 2i(1−�) + 6(1−�)2i(1−�) ≤ 9 ⋅ 2i(1−�)

using the inequality 60.75 < 4.

Lemma 6.2. For � = 0.25, the longest edge a on the
fastest path Q is such that

2i ⋅ 9−1/� ≤ d(a) ≤ 2i ⋅ 91/(1−�).

Proof. To get the upper bound, we observe that the
traversal time of a cannot exceed the traversal time of
P in Lemma 6.1: d1−�(a) ≤ 9 ⋅ 2i(1−�), which implies
the desired bound.

To get the lower bound, note that the average speed
(distance/time) on Q is at most the speed on a, which is
d�(a). Thus the traversal time of Q is at least 2i divided
by the speed, and applying the lemma again we get

2i

d�(a)
≤ 9 ⋅ 2i(1−�).

This implies the lower bound.

Lemma 6.3. For � = 0.25, the fastest x–y path goes
through a vertex v ∈ Ck with i− 16 < k < i+ 5.

Proof. Let v, w be the endpoints of a and without loss
of generality assume that v has been added to the graph
after w. The edge has been added because w ∈ Ck for
some k, and either v ∈ Ck, in which case 2k ≤ d(a) ≤
6 ⋅2k, or v ∈ Ck−1 and 2k ≤ d(a) ≤ 2k+1. In both cases,
the former bound applies

2k ≤ d(a) ≤ 6 ⋅ 2k.

We combine these bounds with those of Lemma 6.2
in two ways. First, 2k ≤ 2i ⋅ 91/(1−�) and therefore
k ≤ i+ 1

1−� log 9 < i+ 5. Second, 2i ⋅ 9−1/� ≤ 6 ⋅ 2k and
therefore k > i− 3− (log 9)/� > i− 16.



Theorem 6.1. For � = 0.25, a network constructed
as above has a traversal time metric whose highway
dimension is �O(1).

Proof. First we bound the number of vertices of Ci in
Bv,4r. The ball can be covered by �log(8r/2i) balls of
radius 2i−1. Since each of the balls contains at most
one vertex of Ci, this gives the desired bound.

Consider shortest paths longer than r in Bv,4r. By
Lemma 6.3, these paths are covered by the intersection
of the ball with Ci for ⌊log r⌋ − 7 ≤ i ≤ ⌈log r⌉ + 9.
The number of relevant covers is constant, and the
intersection of each cover with the ball is constant as
well.

The theorem shows that a fairly simple model can
be used to generate networks with constant highway
dimension. We do not attempt to model the “Steiner”
property of real road networks, where a new vertex
may be connected to a point on an existing edge,
which corresponds to creating a new intersection on an
existing road segment. We also allow adversarial vertex
placement, but in real life new vertices are usually added
close to existing access points. A more sophisticated
model may lead to tighter bounds.

7 Discussion

We have shown that having small highway dimension
formally guarantees good query performance for vari-
ants of many of the recent shortest-path speedup algo-
rithms (RE, CH, HH, TN, SHARC). No formal perfor-
mance guarantees had been previously known for these
algorithms. Our results shed light on what might be
the underlying reason for their remarkably good per-
formance on road networks. We believe our notion of
highway dimension may help to further expand the pos-
sibilities of future route planning services.

Our definition of highway dimension has been moti-
vated by the good practical performance of recent short-
est path algorithms. In particular, the set of transit
nodes of [1, 2] is similar to a shortest-path cover: all
long enough shortest paths go through a transit node.
However, the set is sparse only in a local sense: on aver-
age, each vertex has a small number of access nodes, the
transit nodes it has to be aware of. It is possible that
real road networks have small highway dimension only
in a weaker sense, i.e., for some values of r some vertices
may have many cover elements nearby, but on average
the number of nearby elements is small. Moreover, road
networks have other properties that may help to explain
the good practical performance of the recent algorithms
(beyond what we could prove). For example, they are
almost planar and have small separators.

Recall that our SPC algorithm is greedy, always
selecting vertices that cover the most shortest paths.
As highways are more extensively used in road networks,
the algorithm tends to pick highway nodes. The cover it
produces may be closer to optimal than our worst-case
bound implies.

The following rest area location problem is closely
related to highway dimension and SPCs. Given a
graph with transit times on edges and a parameter
T , one would like to find the smallest number of rest
areas subject to the following conditions: The rest
areas are located at vertices, and each trip of duration
T or more along a fastest path passes through at
least one rest area. This problem appears to be NP-
hard, and a variant of the greedy set-cover algorithm
gives an O(log n) approximation. An interesting open
question is whether a better approximation is possible
in polynomial time, which may be the case because of a
special structure of the sets involved.

An interesting open question is an experimental
study of issues related to highway dimension of real
road networks. In particular, it would be interesting
to measure the worst-case highway dimension as well as
the distribution of cover sizes for different r and differ-
ent balls. Unfortunately the underlying problems are
probably NP-hard, and even our polynomial-time ap-
proximation algorithm is too slow to be practical for
continent-size networks. Therefore such a study will
have to include new algorithms or heuristics for bound-
ing the highway dimension and related parameters.

Acknowledgments

We would like to thank Daniel Delling for suggesting the
use of highway dimension in the analysis of the SHARC
algorithm.

References

[1] H. Bast, S. Funke, and D. Matijevic. Ultrafast
Shortest-Path Queries via Transit Nodes. In C. Deme-
trescu, A.Ṽ. Goldberg, and D.S̃. Johnson, editors, The
Shortest Path Problem: Ninth DIMACS Implementa-
tion Challenge, pages 175–192. AMS, 2009.

[2] H. Bast, S. Funke, D. Matijevic, P. Sanders, and
D. Schultes. In transit to constant time shortest-
path queries in road networks. In Proc. 9th Inter-
national Workshop on Algorithm Engineering and Ex-
periments, pages 46–59. SIAM, 2006. Available at
http://www.mpi-inf.mpg.de/ bast/tmp/transit.pdf.

[3] R. Bauer and D. Delling. SHARC: Fast and robust
unidirectional routing. In Proc. 10th International
Workshop on Algorithm Engineering and Experiments,
pages 13–26, 2008.



[4] R. Bauer, D. Delling, and D. Wagner. Short-
est Path Indices: Establishing a Method-
ology for Shortest-Path Problems. Unpub-
lished manuscript, http://digbib.ubka.uni-
karlsruhe.de/volltexte/1000006961, 2009.

[5] E. V. Denardo and B. L. Fox. Shortest-Route Meth-
ods: 1. Reaching, Pruning, and Buckets. Oper. Res.,
27:161–186, 1979.

[6] E. W. Dijkstra. A Note on Two Problems in Connexion
with Graphs. Numer. Math., 1:269–271, 1959.

[7] M. L. Fredman and R. E. Tarjan. Fibonacci Heaps
and Their Uses in Improved Network Optimization
Algorithms. J. Assoc. Comput. Mach., 34:596–615,
1987.

[8] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: Faster and simpler hierarchi-
cal routing in road networks. In WEA, pages 319–333,
2008.

[9] A. V. Goldberg and C. Harrelson. Computing the
Shortest Path: A∗ Search Meets Graph Theory. In
Proc. 16th ACM-SIAM Symposium on Discrete Algo-
rithms, pages 156–165, 2005.

[10] A. V. Goldberg, H. Kaplan, and R. F. Werneck.
Reach for A∗: Efficient Point-to-Point Shortest Path
Algorithms. In Proc. 8th International Workshop on
Algorithm Engineering and Experiments, pages 38–51.
SIAM, 2006.

[11] A.Ṽ. Goldberg, H. Kaplan, and R.F̃. Werneck. Reach
for A∗: Shortest Path Algorithms with Preprocessing.
In C. Demetrescu, A.Ṽ. Goldberg, and D.S̃. Johnson,
editors, The Shortest Path Problem: Ninth DIMACS
Implementation Challenge, pages 93–140. AMS, 2009.

[12] L. Gottlieb and L. Roditty. An optimal dynamic
spanner for doubling metric spaces. In Proc. 16th
Annual European Symposium Algorithms, pages 478–
489, 2008.

[13] R. Gutman. Reach-based Routing: A New Approach
to Shortest Path Algorithms Optimized for Road Net-
works. In Proc. 6th International Workshop on Al-
gorithm Engineering and Experiments, pages 100–111,
2004.

[14] M. Hilger, E. Köhler, R.H̃. Möhring, and H. Schilling.
Fast Point-to-Point Shortest Path Computations with
Arc-Flags. In C. Demetrescu, A.Ṽ. Goldberg, and
D.S̃. Johnson, editors, The Shortest Path Problem:
Ninth DIMACS Implementation Challenge, pages 73–
92. AMS, 2009.

[15] D. Johnson. Approximation algorithms for combina-
torial problems. J. Comp. and Syst. Sci., 9:256–278,
1974.

[16] J. Kleinberg. The Small-World Phenomenon: An
Algorithmic Perspective. In Proc. 32th Annual ACM
Symposium on Theory of Computing, pages 163–170.
ACM, 1999.

[17] U. Lauther. An Extremely Fast, Exact Algorithm
for Finding Shortest Paths in Static Networks with
Geographical Background. In IfGIprints 22, Institut
fuer Geoinformatik, Universitaet Muenster (ISBN 3-

936616-22-1), pages 219–230, 2004.
[18] S. Milgram. The Small World Problem. Psychology

Today, 1:61–67, 1967.
[19] P. Sanders and D. Schultes. Highway Hierarchies

Hasten Exact Shortest Path Queries. In Proc. 13th
Annual European Symposium Algorithms, pages 568–
579, 2005.

[20] P. Sanders and D. Schultes. Engineering Highway Hi-
erarchies. In Proc. 14th Annual European Symposium
Algorithms, pages 804–816, 2006.

[21] R. E. Tarjan. Data Structures and Network Algo-
rithms. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, 1983.

[22] M. Thorup and U. Zwick. Approximate distance
oracles. J. Assoc. Comput. Mach., 52(1):1–24, 2005.


