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ABSTRACT 

This article describes an application of the partially observable 

Markov (POM) model to the analysis of a large scale commercial 

web search log. Mathematically, POM is a variant of the hidden 

Markov model in which all the hidden state transitions do not 

necessarily emit observable events. This property of POM is used 

to model, as the hidden process, a common search behavior that 

users would read and skip search results, leaving no observable 

user actions to record in the search logs. The Markov nature of the 

model further lends support to cope with the facts that a single 

observed sequence can be probabilistically associated with many 

hidden sequences that have variable lengths, and the search results 

can be read in various temporal orders that are not necessarily 

reflected in the observed sequence of user actions. To tackle the 

implementation challenges accompanying the flexibility and ana-

lytic powers of POM, we introduce segmental Viterbi algorithm 

based on segmental decoding and Viterbi training to train the 

POM model parameters and apply them to uncover hidden 

processes from the search logs. To validate the model, the latent 

variables modeling the browsing patterns on the search result page 

are compared with the experimental data of the eye tracking stu-

dies. The close agreements suggest that the search logs do contain 

rich information of user behaviors in browsing the search result 

page even though they are not directly observable, and that using 

POM to understand these sophisticated search behaviors is a 

promising approach. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval 

General Terms 

Algorithms, Experimentations. 

Keywords 

Eye tracking, Partially Observable Markov model, search log 

mining, segmental Viterbi algorithm, web search behaviors 

1. INTRODUCTION 
Embedded in the massive log data that capture the detailed inte-

ractions between the Web search engine and its users are the in-

sights and knowledge that hold the key to further understand and 

improve almost every aspect of the search engine. Mining the 

search logs has been a prevalent and fruitful practice for many 

applications, ranging from improving retrieval quality 

[1][5][21][30], query suggestion and clustering [6][34], to infer-

ring contextual user behaviors and document importance 

[2][16][26][31][36]. Web search logs, however, can only record 

observable user actions such as clicks and query refinements. 

How the search result are read and perceived by the users remain 

elusive. In interpreting the logs, one inevitably has to make certain 

assumptions on the unrecorded and unobservable aspects of the 

user behaviors. The impacts of these unobserved behavioral as-

sumptions on the validity of the conclusions can be significant and 

may well vary from applications to applications. 

Eye tracking has been a widely accepted method to study user 

behaviors that would be otherwise difficult to observe. Many have 

included this technique to further analyze user behaviors for web 

search. For example, it has been shown that users read the search 

results in an uneven fashion, with results on top of the page re-

ceiving more attention than the others [18][22][25][27][28]. When 

the target results are manipulated to appear at a less prominent 

position, they are rarely seen and, as a result, the user‟s search 

success rates deteriorate significantly [18]. Other factors identified 

by the eye tracking experiments that greatly affect user behaviors 

on the search engine result page (SERP) but are challenging to 

directly record or deduce from the search log include the gender 

differences [25][27], the query intents [33], the habitual preferred 

scan paths [28], the effects of the search engine brand [27], and 

the contextual snippets on informational and navigational queries 

[14].  

The knowledge discovered from the eye tracking studies has also 

inspired numerous log mining algorithms, information retrieval 

theories and system designs. For instance, the search browsing 

models that explicitly distinguish the document relevance from 

the snippet relevance in analyzing the clickthrough data [16] can 

find physical supports from the experimental results reported in 

[14][27][28]. The use of the reading time as a proxy to assess the 

document relevance in [1][17][24][34] is consistent with the ob-

servations reported in [33], and the observations in [14] support 

the “trust bias” theory proposed in [22]. Perhaps the most pro-

found implication from the eye tracking experiments is a plausible 

explanation to the positional bias that is widely known to exist in 

the clickthrough data. Positional bias refers to the phenomenon 

where the search results displayed more prominently on a SERP 

will receive a higher clickthrough rate, even when the search re-

sults are manipulated to display in the reversed order [22][27]. 

This bias has been a challenge in applying the clickthrough data to 

assess document relevance because it suggests there are factors 

affecting the click behaviors other than the relevance of the search 

results alone. One leading explanation is the uneven browsing 

pattern of the SERP discovered through eye tracking studies. As 
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users are not likely to click on the results they have not even seen, 

it is quite reasonable to postulate that the user‟s uneven browsing 

pattern on the SERP directly impacts the click behavior and be-

comes a key factor underlying the positional bias. For applications 

that use the clickthrough data as a form of relevance feedback, 

adjusting for the positional bias is a critical step in order to cor-

rectly infer what the feedback is. A widely used approach is the 

“depth-first” behavior model inspired by the eye tracking studies 

[22][25] that are first adopted for web search in [29] and then 

search advertisements in [32]. Essentially, the depth-first model 

assumes that users scan the SERPs from top to bottom sequential-

ly, with the relevant search results being clicked as soon as they 

are read by the users. A click at the position k, for instance, im-

plies the search results preceding that position have all been 

viewed. It however does not imply the result at k +1 is viewed if 

no click is observed. By considering the clickthrough rate as a 

form of user feedback only for results that are viewed, this simple 

model has been shown as effective in filtering out the bias and 

gathering accurate evidence for improving ranking for search 

[1][2][29] or advertisements [10][32], detecting adversarial traffic 

[9], and estimating the user perceived retrieval quality 

[11][13][26][34]. 

 

Figure 1: A histogram of the position differences between two 

adjacent clicks in the search log.  

Despite these successes, the depth-first model is a simplification 

that deserves a closer examination. First, the estimates of the user 

population following the depth-first strategy vary significantly in 

the eye tracking literature. While the experimental results of [25] 

report the percentage can be as high as 65%, others put it as low 

as 20% [27][28]. Variability in human subjects aside, the SERP 

browsing behavior is difficult to describe in a precise quantitative 

manner. This is because analyzing the scanpaths in eye tracking 

studies remains a formidable challenge as the supports in captur-

ing the fine grained temporal information remain less than ideal 

[27]. As shown in Figure 1, a typical search log consists of more 

than 30% of clicks that occur at positions higher or equal to the 

click immediately preceding, suggesting a significant number of 

clicks occur after users having clicked search results further down 

in the SERP, contradicting the assumption of the depth-first beha-

vior model. Secondly, most eye tracking experiments were con-

ducted in a setting where the SERPs presented to the user are 

highly controlled that frequently occurring elements such as ad-

vertisements and query suggestions are all carefully filtered out. It 

is therefore unclear how the lessons learned in these lab experi-

ments can be extrapolated to the general usages. Third, the expe-

riments were typically conducted on sizeable yet demographically 

skewed user groups where the subjects were predominantly young 

college students well versed in technologies. It is reasonable to 

question whether some of the observed behaviors are representa-

tive for the general population. As an example, while these studies 

typically found viewing more than one SERP as a very rare event, 

data from our web search logs and from many commercial moni-

toring services suggest that viewing multiple SERPs still accounts 

for a significant portion of usages. Therefore, it is highly desirable 

to have a means to study the subject in the web scale that can go 

beyond the oft highly controlled lab settings in order to obtain a 

holistic view of the user behaviors on the SERPs. 

This paper describes a mathematical framework, called the par-

tially observable Markov (POM) model, which we use as a com-

plementary method to the eye tracking experiments to uncover 

unobservable search behaviors. POM tackles the key challenge of 

using the search logs, i.e., coping with unknown biases and unob-

servable behaviors, by treating them as a statistical hidden data 

problem [15]. We then solve for the maximum likelihood (ML) 

solution of the hidden data, i.e., obtaining the model that can ex-

plain the log data with the highest probability. This data mining 

approach enables us to study how users interact with a search 

engine at a larger scale and for wider demographics without the 

logistic constraints of conducting eye tracking experiments. A 

contribution of this work is, by modeling the sequence of user 

events in Markov chain, we extend the analysis to consider not 

only the spatial but also the temporal information in the search 

logs. There are two aspects of the temporal information consi-

dered in this work. First, we consider all the user actions recorded 

in the search logs in a session, including hovering events, page 

loading and unloading, query reformulation, etc., in addition to 

the conventional click events. The model is therefore richer than 

just click behavior analysis and, in a sense, takes advantage of the 

additional information that can be extracted from a search session 

in the logs. Secondly, by lining up all the recordable events along 

the time line to form a holistic view of the user event sequence, 

the model is able to exploit the information embedded in the tem-

poral order of the events. A natural outcome of this exploitation is 

the ML estimation of the user scanpaths on the SERP which, as 

mentioned in [27], remains a key challenge in obtaining from the 

eye tracking data. Through the use of probabilistic modeling, the 

variability in user behaviors is naturally taken into account in the 

probabilistic distribution in a mathematically tractable manner, 

and qualitative statements on user behaviors are also quantified in 

the process. 

The rest of the paper is organized as follows. In Section 2, we 

describe POM in detail. We show that a POM model can be re-

garded as a variant of the hidden Markov model (HMM) where 

some state transitions do not correspond to observable events. The 

topic was briefly considered in the seminal work of [3] in which a 

„null‟ transition was introduced into HMM. To facilitate the mod-

el training using the well known forward-backward algorithm, 

certain restrictions on the null transitions (e.g., null transitions 

cannot be self-looped) were introduced. These restrictions are 

relaxed in this work, leading the implementation of the forward-

backward algorithm rather complicated and infeasible. To address 

this challenge, we develop a new training algorithm, called the 

segmental Viterbi algorithm, which is based on segmental decod-

ing and Viterbi approximation. Essentially, the segmental Viterbi 

algorithm combines two common alternatives to the forward-

backward algorithm into one unified framework for ML parameter 
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estimations. We derive segmental Viterbi in details in Section 2, 

and show in Section 3 the results of applying the POM model to 

the search log data collected by a commercial search engine. We 

compare the estimated ML hidden process with the physical ob-

servations reported by the eye tracking studies. The consistencies 

between the POM and eye tracking results suggest the search logs 

may well retain enough subtle cues of the user behaviors that can 

be uncovered by data mining methods. Finally in Section 4 we 

discuss how the methods described in this paper can be further 

extended to more applications. 

2. PARTIALLY OBSERVABLE MARKOV 

(POM) MODEL OF SEARCH LOGS 
The search logs record detailed interactions between the search 

engine and the users. Among the information available in the log 

are: (1) the events triggered by user actions in a search session, 

such as clicking or hovering over a search result and query sub-

mission or reformulations, (2) the actions taken by the search 

engine in response to the user events, such as the search results 

shown to the users and their respective locations on the SERP, and 

(3) a unique identifier associating the users with their search ses-

sions. In short, the search logs tell us when and who does what at 

where on the SERP. Our modeling effort aims at uncovering how 

the sequence of events can be triggered and hopefully provides a 

glimpse into why. 

2.1 Partially observable process 
The key concept of this model is to treat the user events as a par-

tially observable stochastic process. The notion is further illu-

strated in Figure 2 where the top row represents a search session 

as recorded in a search log. There, each observable user action, 

such as a click on a result or a query reformulation, is captured as 

an event ei. Between two adjacent events in the observable event 

sequence O = {e1, e2 …}, the user may have viewed and skipped 

many search results that cannot be recorded in the logs. As a re-

sult, there are many alternatives that can lead to the same observa-

tion, two of which possible hypotheses Q1 and Q2 are illustrated in 

Figure 2 where the unobservable user actions are shown as dotted 

arrows. More specifically, let Vk be the random process denoting 

the k-th object (in the temporal order) the user views in a search 

session. The possible object types include not only the search 

results but also the query suggestion, spelling correction, adver-

tisements, query refinement input box, and other links in the 

header and footer of the SERP. For each k, we further define a 

Boolean random variable Sk representing whether Vk is skipped or 

not, as shown in Figure 2. The model is partially observable be-

cause, in the search logs, we can only record the Vk for which 

object k is entered text or clicked (i.e., Sk = 0), or is hovered but 

not clicked (i.e., Sk = 1). Objects that are viewed and skipped 

without hovering are not recorded. As such, a given session ob-

servation can be a result of theoretically infinite many hypotheses 

Qj = {(V1 , S1), (V2 , S2) … (Vnj , Snj)}, each of which has a differ-

ent session length nj. In Figure 2, for example, the lengths for the 

two hypotheses Q1 and Q2 are n1 = 6 and n2 = 7, respectively. 

More generally, an observed user event sequence O can be the 

outcome of any partial observable sequence that meets the follow-

ing conditions: 

jlilmSSSeVeV ljimjmi   ,,,10,, 1  

We use the notation OQk   
for Qk that can be a partially ob-

servable sequence of the user event observation O. Consequently, 

we have 

 


OQ k
k

QPOP )()(
                              (1)

 

Here, we regard the “view sequence” {V1, V2 …} as modeling us-

er‟s browsing behavior that is analogous to the “scanpath” in the 

eye tracking studies. On the other hand, the “engagement se-

quence” {S1, S2 …}  is viewed as modeling the user‟s skipping or 

clicking behavior that, conceptually, is intimately related to the 

user‟s relevance judgment of the search results.  However, since 

we include the query refinement and search result hovering in our 

analysis, the engagement variable Sk really models whether a user 

has interacted with an object on the SERP or not. To fully under-

stand the interactions between the user and the search engine, one 

can examine for each session all the possible hypotheses, each of 

which is weighted by its likelihood  


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(2) 

2.2 Model Assumptions 
A key challenge in evaluating each search session with all of its 

possible hypotheses is the lengths of these hypotheses are not only 

unobservable but also unequal. To tackle this problem, we first 

assume that underneath the partially observable process is a Mar-

kov chain of order N, with an example of N = 1 turning (2) into 

),,|(),|()()|(
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

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k
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t1 t2 t3 t4 
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t1 t2 t3 t4 

e1 e2 e3 e4 
Observation O 

Hypothesis Q1 

Hypothesis Q2 

V1=e1 

S1=0 

V2=e2 

S2=0 

V4=e3 

S4=0 

V1=e1 

S1=0 

V3=e2 

S3=0 

V5=e3 

S1=0 

V7=e4 

S7=0 

V3=? 

S3=1 

V4=? 

S4=1 

V6=? 

S6=1 

Figure 2: Illustration of two partially observed hypotheses 

that can both give rise to the observed sequence at the top 

row. 
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Although it is possible to directly work with a Markov chain of 

any order (Sec. 4), in this work we consider only first order Mar-

kov model for simplicity. 

Similarly, we further make the following two assumptions not for 

theoretical necessity but for engineering simplicity. First, we as-

sume that the engagement variable Sk is only dependent upon the 

SERP object the user is currently viewing, i.e., Sk has Vk as the 

sufficient statistics such that 

)|(),,|( 11 jjjjjj VSPSVVSP 
                     (4)

 

Secondly, we assume that the user‟s mental process in determin-

ing which SERP object to visit next is not impacted by whether 

the user has engaged with the current search result or not, i.e.,  

)|(),|( 111   jjjjj VVPSVVP
                       (5)

 

This assumption appears inconsistent with the cascade model [13] 

and its derivatives [11][19] in which the human users are believed 

to be more likely to continue exploring the rest of the SERP when 

the search results they encounter are not relevant. However, it has 

been suggested [34] that the relevance of the result is a very weak 

predictor of user‟s continuing exploration on the SERP and vice 

versa. While the intuition behind the cascade model holds for 

some cases, many search sessions see the opposite user behavior. 

Most notably, instead of reading the next result, many quickly 

abandon the SERP by reformulating the queries when they feel 

the search engine does not fully understand their search intents. 

Conversely, many users continue reading the rest of the SERP not 

because they have not encountered relevant results but because 

they see the search engine has retrieved useful leads, especially 

for informational queries that can be best served by multiple re-

sults. Since the behavioral data suggest what users read next can 

result from diametrical causes, we in this work follow the model-

ing approach in [34] and assume user‟s continuing browsing pat-

tern is statistically independent of the result being relevant or not. 

With these assumptions, we can further simplify (3), the likelih-

ood of a partially observed hypothesis as 
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        (6)
 

where we use V0 to represent the submitted query received at the 

onset of a search session. From (6), it is clear that the statistical 

properties of a POM model are fully specified by the view transi-

tion probabilities )|( 1 mVnVPv jjmn   and the engage-

ment probabilities )|0( mVSPs jjm  . In the following, 

we use Λ to denote the collection of all these transition and en-

gagement probabilities that parameterize a POM model. 

2.3 Segmental Decoding 
A key utility behind POM is to allow statistical inference on how 

users browse the SERP. We following the convention of HMM 

and use the term “decoding” to refer to the process of uncovering 

the maximum likelihood (ML) hypothesis Qk from an observed 

sequence O, namely, given a POM with parameter Λ the decoding 

process is to find 

)|(maxargˆ 


k
OQ

k QPQ
k                           (7)

 

The decoding problem highlights a major difference between a 

POM and a HMM in that the decoded sequence in a POM has an 

unknown length, namely, the nk in (6) is itself a hidden variable in 

a POM whereas it is a part of the observation in a HMM. To ad-

dress this issue, we propose the segmental decoding technique, 

adapted from the segmental model of speech recognition [20], for 

decoding a POM model. The segmental decoding technique is 

governed by three basic principles that effectively tackle the prob-

lem of having to deal with the theoretically unlimited number of 

hypotheses due to the unknown length nk in (6). First, the conca-

tenation principle states that the ML solution to (7), with the first 

order Markov assumption, is simply a concatenation of the ML 

solutions between two adjacent observations ej and ej+1. More 

precisely, if we denote 

)|(maxargˆ
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We have ,...)ˆ,ˆ(ˆ )1()0(

10 kkk QQQ  . In this work we introduce an 

“end-of-session” object and pad it to the end of every observation 

so that (7) can be realized using segmental decoding technique 

even for the last segment. Secondly, the recursive principle of 

segmental decoding notes that the concatenation principle can be 

recursively applied to itself. Suppose we have a hypothesis in 

which the user is assumed to have viewed and skipped a result x 

between ej and ej+1. We can apply the same arguments underlying 

the concatenation principle and obtain 


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Finally, the parsimonious principle states that the ML solution 

cannot afford loops as hidden sequence, i.e., we can discard any 

Qk that hypothesizes x = ej. This is because (6) shows that incor-

porating the probability of any repeated path can only lower the 

overall likelihood score. The sequence length of any 
)(ˆ j

k j
Q is 

therefore bounded by the maximum number of the result objects 

that can appear on the SERP. Accordingly, the segmental decod-

ing can be realized with straightforward dynamic programming 

with a finite search space. 

In practice, segmental decoding is not necessarily limited to ob-

taining only the maximum likelihood hypothesis. Many dynamic 

programming algorithms allow decoding of the top N hypothesis 

for each observation, an enhancement commonly called as the N-

best decoding [20]. In this work, we consider only N = 1 for ana-

lyzing the search log, but use N = 5 in the Viterbi training process 

described below. 

2.4 Viterbi Training of a POM model 
The search logs consist of a set of observations {O1, O2 …} that 

are collected independently. The task of training a POM is to find 

an estimation of the model parameter that is optimal in the ML 

sense, namely, 

 




i OQ
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ik
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As POM being in the class of the hidden data problem, the train-

ing intuitively can be achieved by many well known algorithms 

such as forward-backward [3] or the Expectation-Maximization 

(EM) algorithm [15]. The key idea behind either of these algo-

rithms is to start an initial guess of the parameter 
)0( and gradu-

ally improve the ML estimation through iterations. More specifi-

cally, in the l-th iteration, the EM algorithm aims to gradually 

improve the model by finding the re-estimation formula through 

)|(log)|(maxargˆ )1()(   


ii

l
i

l OPOP  

Since the summation terms are bounded by Gibb‟s inequality, we 

note that the maximization problem can be solved by using the 

condition in which the equality holds for Gibb‟s inequality. The 

re-estimation formula for (8) therefore amounts to  
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Here we use 1(.) to denote the indicator function that is defined 

as: 






otherwise0

 trueis 1
)(1

x
x  

As is in the case of decoding, the unobservable nature of session 

length nk makes it challenging to apply exactly the EM algorithm 

to train a POM model as there will be infinite number of Qk in (9) 

to be considered. To address this problem, we use the expedited 

approximation known as the Viterbi algorithm [20] that only uses 

the top N-best hypotheses in the training. As a result, the Viterbi 

training process for POM consists of the following steps: 

1. Initialization: Start with an initial model 
)0(  (Sec. 

2.4.1). 

2. Decoding: For iteration l, apply the segmental decoding 

method (Sec. 2.3) with 
)1(  l
to find top N hypotheses 

for each observation. 

3. Re-estimation: Obtain 
)(l  using (9). 

4. Iteration: repeat step 2 and 3 until the process con-

verges. 

Theoretically, N-best Viterbi training will asymptotically approx-

imate the EM algorithm as N becomes very large. With a finite N, 

however, Viterbi training does no longer enjoy the mathematically 

guaranteed convergence property of the EM algorithm. In our 

applications, we have found that with N set to 5, the training 

process does converge (with proper initial conditions, Sec. 2.4.1) 

in less than 8 iterations for sizeable log data, consistent with the 

empirical findings in applying the Viterbi training to HMM train-

ing in speech recognition.  

2.4.1 Model Initialization 
Both EM and Viterbi are iterative algorithms that converge only 

to a local optimum. It has been empirically observed that the ini-

tial condition of these iterative algorithms plays an important role 

in the quality of the model the algorithms eventually converge to. 

How to best choose an initial condition, however, remains an open 

research question. In this work, we experimented with two ap-

proaches to initialize the POM model. The first approach initializ-

es the view sequence for each observation using the depth-first 

model (Sec.1) with probability 1. For example, if we observe a 

search session consists of a click on the third search result, we 

hypothesize the user has also viewed the first and the second re-

sults and decided to skip both of them. The initial POM model 
)0(  is then obtained by counting the ML view transition and 

skip probabilities with (9).  

The second approach detaches itself farther from the depth-first 

model and solve for the initial condition by considering the transi-

tion probability of adjacent events )|( 1 iejePc ttij    that 

can be counted directly from the search logs. We note the hypo-

thesis that the user does not view and skip anything in between 

has the probability )1( jij sv  , and the probability of the user 

viewing and skipping one intermediate result k before reaching 

result j (and not skipping it) is 
k jkjkik svsv )1( . With induc-

tion, the probability of cij is a sum of the conditional probabilities 

of users skipping exactly 0, 1, 2… results between interacting 

with result i and j. Assuming each condition weighs equally, we 

have 

...)1(

)1()1(









jnjn

m n

mnmim

k

jkjkikjijij

svsvsv

svsvsvc

                (10) 

To simplify the notation, we can rewrite (10) in the matrix form 

S)V(IVS)(I

S)...)V(I(VS)VS(I

...S)V(I(VS)S)VSV(IS)V(IC

1

2

2








 

or equivalently, 

0S)V(IVS)C(I 
                            (11)

 

where C = [cij], V = [vij], and S = diag(si), respectively. This equa-

tion highlights the fact that there exists a boundary condition for 

which the parameters must satisfy, i.e., although POM has two 

hidden matrices V and S to consider, we only have a single degree 

of freedom in choosing their initial values. In our implementation, 

we typically choose a diagonal matrix IS   as the initial value 

and solve for V using (11). Because V represents a probabilistic 

transition matrix, each entry in V must be non-negative and each 

row must sum up to 1. Obtaining V from (11) is therefore a con-

strained problem solvable using the gradient descent algorithm.  

Empirically, we have found that the second approach, with α set at 

the pSkip value of the whole search log [34], yields a much better 

initial condition than the depth-first model in terms of the number 
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of iterations needed to converge and the smoothness of the proba-

bilities in the converged results. 

3. COMPARISONS WITH EYE TRACKING 

RESULTS 
The research question explored in this paper is to what extent the 

mathematical framework of POM can uncover the user activities 

that are not recorded in the search logs. Since traditionally such 

activities are studied through direct observations such as experi-

ments using the eye-tracking devices, we compare the results 

obtained by the POM model with those in the published eye track-

ing findings. 

3.1 Data Collection and Model Training 
We apply the POM model to the search log data collected by a 

commercial web search service deployed in the EN-US market 

that used a two column SERP layout as shown in Figure 3. The 

core search results (CR) were displayed on the left column, where 

the right column displayed the query suggestions (QS). When 

appropriate, advertisements could occupy the top portion of the 

left column (labeled as TA) or the lower portion of the right col-

umn (labeled as SA), right below the query suggestions, as shown 

in Figure 3.  

 

Figure 3: A two column SERP layout showing content mod-

ules top ads, core results, query suggestions, side ads labeled 

as TA, CRs, QS, and SA, respectively. The second text box for 

query reformulation and the paging buttons located near the 

bottom of the SERP are shown here. 

All these content modules can contain more than one search result 

in them. For example, Figure 3 shows the TA module has three 

results. In addition, two textbox objects, one just below the header 

and the other just above the footer, and a few paging buttons were 

also available on the SERP for the users to reformulate their que-

ries or navigate to the next SERP. The usages of these textboxes 

and paging buttons are also captured in the search logs and consi-

dered in the POM analysis. Because not all the content modules 

would appear on every SERP, the search logs also recorded their 

presence. We utilized this information during the decoding 

process (Sec. 2.3) so that the probabilities of the infrequently ap-

pearing modules would not be under-estimated. Similarly, as 

clicking on navigational objects such as QS items or the paging 

buttons will necessarily take the users to a different SERP, special 

cares were taken to keep track of the navigational activities so that 

any consequent click on the back button to return to the original 

SERP could be correctly recorded in the search log as resumed 

viewing activities. We implemented the decoding and training 

algorithms described in Sec. 2 for search logs of various dura-

tions, ranging from one full day to two months. Typically, the 

segmental Viterbi training takes five to eight iterations to con-

verge on a week long search log. We found the duration of the 

training logs do not change the outcomes dramatically. The results 

reported below are based on the parameters estimated with one 

week worth of the search data. 

3.2 Comparison to Scanpath Analysis 
A key question that the eye tracking experiments aims to study is 

the manner users pay attention to the results on the SERP. This 

issue has been studied by analyzing the scanpath that traces the 

order of the search results receiving gaze fixations. We compare 

the scanpath in eye-tracking studies to the ML hypothesis kQ̂ de-

coded from the search logs using (7). The predominant model of 

the SERP scanpath is the depth-first model based on the eye-

tracking experiments reported in [25]. It states that search users 

read the results sequentially in the order as presented, clicking on 

relevant results as soon as they are encountered, rather than sur-

vey the whole SERP before making any selections. 

 

Figure 4: View transition probabilities of CR-n to CR-(n+1) in 

POM 

The studies behind the depth-first model, however, did not include 

the cases where advertisements may appear on top of the core 

search results. A direct application of the depth-first model to 

SERPs where the TA module exists would suggest that top ads be 

the first module the users see. After training from the logs, how-

ever, POM shows the probabilities of the first module seen by the 

users are 0.92 for CR-1 and only 0.036 for the TA. In other words, 

POM suggests the most likely user behavior is the top ads are 

largely ignored. The result is consistent with the “banner blind-

ness” effects that are observed in the eye tracking studies for gen-

eral web page advertisements [7]. Similarly, the probability of 

users viewing the QS module first, positioned on the top on the 

right column, is 0.030. POM analysis therefore suggests that, 

upon the page load, users most likely go directly to the core 

search results and ignore other areas on the SERP even though 

their locations are no less prominent.  

The view transition probabilities within the CRs, shown in Figure 

4, illustrate further comparisons between POM inferred browsing 
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behaviors and the depth-first model. As shown in the first two 

columns of Figure 4, the POM transition probabilities from CR-1 

to CR-2 and from CR-2 to CR-3, are only 0.64 and 0.39, respec-

tively, suggesting that at the top of the SERP, users are not me-

chanically following the depth-first model of the reading beha-

vior. A deeper investigation into the data shows a considerable 

portion of the probability mass here goes to the transition into 

query reformulation, leading to a conclusion that, for SERPs re-

ceiving no clicks, the ML decoded hypothesis consists of only top 

two core results being viewed before users either abandon or re-

formulate their queries. This finding matches the eye tracking 

observations that report users do not explore further results if top 

two or three results are not relevant for Yahoo and Google, re-

spectively [27].  

 

 

Figure 5: Probabilities of backward viewing the previous re-

sult (labeled as $POS-1) and backward viewing the top result 

(labeled as CR-1) with respect to search result positions in 

POM 

Based on the data collected in the logs, the scroll line of the SERP 

we studied straddles between CR-2 and CR-4 for the majority of 

the cases, as Figure 3 demonstrates. Below the scroll line, the 

POM view transition probabilities suggest the depth-first viewing 

pattern is indeed the most dominant behavior. Figures 4 shows 

POM infers from the logs that more than 80% of chances users 

simply read sequentially from CR-3 down, in a sharp contrast to 

the view transitions above the scroll line. The dramatic impact of 

the scroll line on the SERP viewing behaviors are also reported in 

the eye tracking studies [22]. As a matter of fact, POM seems to 

have inferred a more detailed and intricate relationships between 

the viewing behaviors and their SERP location dependency.  

First, the series of experiments [22][27][28] report that it is not 

unusual to see gaze fixations on search results that have already 

had fixations before, implying that users occasionally look back at 

results they have previously viewed. ML estimates from the POM 

model indicate the probabilities of looking backward are position 

dependent, and the most dominant trend is to either transition 

back one result or all the way back to the first CR on the SERP. 

As shown in Figure 5, backward transition probabilities are lowest 

for results that are just below the scrolling line, and gradually 

increase towards the end of the SERP where we also observe the 

backward transition becomes more local, namely, users seem to 

look one result back rather than jump back to the first CR. We are 

not aware of any eye tracking studies that report quantitative de-

tails on backward viewing behavior to corroborate the ML esti-

mates of the POM model. 

The presence of the right column on the SERP does not seem to 

command a lot of attention. This is shown in Figure 6 where the 

transition probabilities from core results to the right column are in 

general small with the exception at CR-2, right above the scroll 

line, where the probability of viewing query suggestion next peaks 

at 11.2%.  This POM inferred behavior is consistent with the in-

tuition that scrolling the SERP takes more user effort than scan-

ning the right column. Nevertheless, we note that, as shown in 

Figure 4, the probability of viewing CR-3 right after CR-2 is still 

three times more likely than sidetracking to the right column, 

suggesting the sequential depth-first model still describes the do-

minant behavioral pattern. The transition probabilities from the 

right to the left column are all very low, with the highest number 

at 8.24% from SA to CR. The POM ML estimates indicate that 

once users are in the right column they are most likely to reformu-

late the query or end the search session.  

Aberration from the depth-first viewing, either through query 

reformulation (labeled as ReQ in Figure 6), paging, or diverting to 

the right column, has the lowest probability right below the scroll 

line. As can be seen by combining the readings from Figures 5 

and 6, the ML estimates from the POM model suggest that, at the 

bottom of the SERP, it is very likely for the users to look back one 

result before traversing down the SERP and clicking on the pag-

ing button to visit the next page or entering a reformulated query 

into the textbox located below the paging section. This inferred 

behavior is similar to the backward viewing behaviors described 

above. Comparing the ML estimates from POM model with the 

simplified depth-first model derived from the eye tracking data, 

we observe that the two models least agree on the behaviors to-

wards either end but are largely consistent in the middle of the 

SERP. Because the SERP viewing behavior seems to be position 

dependent, statements about the percentage of users following the 

depth-first model cannot be made summarily. This might be an 

explanation to the large discrepancies reported in the literature 

(e.g., [25] vs. [27]) 

 

Figure 6: POM inferred probabilities of not continuing to 

read core results with respect to SERP positions 

3.3 Click and View Positional Bias 
Eye tracking studies are instrumental in identifying an important 

web browsing behavior that all the presented results are not equal-

ly read by the users [28]. As users are likely to only click on the 
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results they have viewed, this uneven browsing behavior has tre-

mendous implications on correctly interpreting the clicks in the 

web logs in general and search logs in specific. The eye tracking 

results reported by Joachims et al [22] demonstrates the positional 

bias on core search results both in terms of the search results be-

ing viewed and clicked. Based on the experiments conducted on 

users‟ viewing of Google SERP, their data showed the chance of 

search results being seen reduces dramatically as their rank posi-

tions increase along the length of the SERP. For example, the 

chance of having a gaze fixation on CR-4 is only half of that on 

CR-1. It stands to reason that, if for a query CR-1 is merely re-

ceiving the same clickthrough rate as CR-4, it is unfair to charac-

terize CR-1 as being equally relevant as CR-4. In fact, CR-4 is 

likely to be more relevant than CR-1 because it receives more 

clickthrough per impression. Similarly, Joachim‟s experimental 

data seem to show the manner of presentation has significant ef-

fects on the clickthrough rate as the clickthrough rate briefly 

trends up around CR-6 where the screen scroll line lies in those 

controlled experiments [22].  

To compare POM with the fixation rates from the eye tracking 

data, we show in Figure 7 the aggregated view and clickthrough 

rates for the CR module derived from the POM model analysis. 

The aggregated view and clickthrough rates are obtained by run-

ning all the search sessions in the logs through the POM ML de-

coder (Sec. 2.3) and counting the Boolean frequency of each CR 

being viewed and clicked per SERP, respectively. By “Boolean 

frequency” we mean a search result is counted as a view/click, 

respectively, if it appears in the decoded sequence, regardless how 

many times it occurs. As can be seen from Figure 7, the POM 

inferred view rates bear close resemblances to the eye tracking 

data reported in [22] as they also show the strong positional bias 

in terms of the CRs being viewed and clicked based on its position 

on the SERP. 

 

Figure 7: POM inferred view rate and the clickthrough rate 

for CRs with respect to their positions on the SERP. Like eye 

tracking experiments, POM inferred behaviors also suggest 

positional bias in both SERP viewing and clicking behaviors. 

This agreement on positional biases is noteworthy especially giv-

en the experimental conditions behind the data are significantly 

different. The POM inferred data are based on the field deploy-

ment where noncore search results are not filtered out from the 

top and on the side of the SERP, in a contrast to the eye tracking 

studies. Secondly, the search engine used for POM analysis tend 

to put more detailed descriptions for the search results than 

Google, the search engine used for the eye tracking studies that is 

known to have a shorter abstract for each search result so that the 

screen size could accommodate more search results [27]. Accor-

dingly, the data for POM studies have a variable scroll line posi-

tion ranging from just below CR-2 to CR-4, depending on wheth-

er the TA module is triggered for the queries or not. In contrast, 

the scroll line used in Joachim‟s experiments has a fixed position 

at 6. Perhaps due to these reasons, there is no clear scroll line 

effect observed in Figure 7. However, both data sets suggest that 

search results placed under the scroll line have less than 10% of 

being viewed by the users. 

The POM inferred data exhibit subtle differences on the top 

search results, though. The eye tracking studies report that the first 

two results are equally viewed, and sometimes users view CR-1 

after CR-2 [22][27], which can probably explain the relatively 

lower fixation rate on CR-1 than in Figure 7. The POM inferred 

data, however, do not support the same observation in that the 

view transition from page load to CR-2 directly has very low 

probability. The POM data suggest the leading causes for CR-1 

not being viewed are sessions ending at TA or users clicking on 

other navigational buttons located in the header section (e.g. im-

age or news search). As a result, Figure 7 shows a much higher 

CR-1 view rate. The rest of the CR view rates, in the mean time, 

are considerably lower than the fixation rates in the eye tracking 

experiments where the data were obtained by carefully filtering 

out non CRs. In the log data for POM inference, we observe that 

query reformulation is a very substantial user activity and the high 

probabilities of query reformulation at the top two positions con-

tribute to the low view rates for the rest of the CRs. Although the 

eye tracking studies also report that users on the average read only 

two results before reformulating their queries [27], it is not clear if 

they occur as frequently in the controlled experiments where the 

eye tracking devices were used. 

Figure 7 also highlights that the view rate is not simply a scale-

offset of the click rate, confirming that the click and browsing 

behaviors are mostly likely not driven by the same cognitive me-

chanism and that they deserve to be studied separately. The simi-

lar observations have also been made by the eye tracking studies 

in [14][18] where the users are observed to exhibit similar brows-

ing yet quite different clicking behaviors in carrying out informa-

tional and navigational queries. 

4. DISCUSSION 
The consistent conclusions drawn from the statistical POM analy-

sis and the physical eye tracking experiments suggest that data 

mining on the search logs is a viable approach towards a deeper 

understanding of the search behaviors, especially in the areas of 

browsing and clicking behaviors on the SERP. Aside from the 

qualitative model derived from the eye tracking studies, statistical 

techniques can provide a quantitative and analytically tractable 

framework that uses the massive search log data to understand and 

improve the search engine quality without running into the physi-

cal difficulties of use eye tracking devices described in [27]. 

One promising application is to apply POM to better estimate the 

search result relevance from the search logs for the purpose of 

improving search engine ranking function. The key intuition, as 

widely adopted by [1][2][21][29], is that higher quality search 

results may lead to a higher clickthrough rate and vice versa. The 

challenge is how to compute the clickthrough rate correctly. The 

ability of POM in inferring viewing sequence can be potentially 
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helpful here, although the topic cannot be fully explored in its 

entirety in this paper. 

Table 1: ML decoded sequence in POM 

Observed Click Sequence POM Decoded Sequence  

1, 5, 3 1, 2, 3, 4, 5, 3 

2, 8, 1 1, 2, 3, 4, 5, 6, 7, 8 ,9, 1 

 

Table 1 illustrates two observed click sequences in the CR module 

and their corresponding POM decoded view sequences. The first 

observation involves a backward click on CR-3 after a click on 

CR-5 is first observed. The common approach, as pioneered in 

[29], is to treat the search session as having clicks on CR-1, 3, and 

5 with CR-2 and 4 skipped. Under this view, the click on CR-3 

would carry the exact the same weight as if the observed click 

sequence were CR-1, 3, and then 5. In contrast, the same observa-

tion will elicit a somewhat different interpretation under POM as 

the decoded sequence in Table 1 shows CR-3 is first viewed, 

skipped, and only be clicked after the user has viewed CR-5. In 

other words, POM suggests the user has two impressions on CR-

3, and only one out of these two impressions does a click occur. 

The POM model suggests a lower estimation on the clickthrough 

rate on CR-3 than CR-1 or 5 in this case. The same additional 

penalty on the backward click also applies to the second observa-

tion in Table 1 in which the last click on CR-1 will be regarded as 

less significant as the click on CR-2 as the POM model infers the 

user most likely has skipped CR-1 once before. In addition, the 

decoded sequence for this observation also highlights the ability 

of POM to infer the user has most likely viewed an additional 

search result CR-9 beyond the last clicked position CR-8, enabl-

ing us to treat CR-9 as viewed and skipped like CR-3 through 7. It 

is well known from the eye tracking data [22] that users often read 

additional results on the SERP beyond the last clicked position, 

although the pattern is so noisy and position dependent that no 

simple qualitative description can be made. As demonstrated in 

Table 1, POM provides a statistical way of modeling this beha-

vior. 

Despite these encouraging results, the current formulation of 

POM can be made more powerful by further relaxing the assump-

tions described in Sec. 2.2, such as the first order Markov assump-

tion. Recent advancements in machine learning have allowed 

flexible and potentially infinite order of Markov chain to be used 

in modeling temporal sequences. Exemplary techniques that can 

be adapted for POM include the variable N-gram in language 

modeling [20], variable length HMM [8], and infinite HMM [4] 

that uses Dirichlet process to integrate out infinite parameters. 

The current formulation also uses only one set of probabilities to 

parameterize the model. As a result, the model is estimating the 

overall average behaviors for all users and query types. Although 

some eye tracking studies support that browsing behaviors might 

not be varying with query types being informational or naviga-

tional [14][18][27], others do show subtle behavioral changes 

between informational and transaction queries [33]. In addition, it 

is known that male and female subjects have dramatically differ-

ent search behaviors [27][28]. All these known factors affecting 

the search behaviors make the current use of a single parameter 

set less than ideal. A natural extension to (2) is to use a mixture 

model so that factors leading to significant behavioral differences 

can be captured individually by mixture components. Again, the 

number of mixture components does not have to be hardcoded but 

can be automatically learned using Bayesian techniques such as 

Chinese Restaurant Process. In addition, the current formulation 

POM only uses a simple skip probability to model the clicking 

behavior. It has been argued that the quality of search result snip-

pets and the relevance of the landing page should be further teased 

apart and modeled separately [16]. However, how to properly 

model these factors remains an unanswered question and requires 

more experimentation. As an example, the eye tracking data sug-

gest the criteria to determine whether a snippet is effective seem 

to be opposite for navigational and informational queries [14]. 

Understanding the effectiveness of a mixture POM model may 

prove a good first step in resolving these issues. 
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