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ABSTRACT

This article describes an application of the partially observable
Markov (POM) model to the analysis of a large scale commercial
web search log. Mathematically, POM is a variant of the hidden
Markov model in which all the hidden state transitions do not
necessarily emit observable events. This property of POM is used
to model, as the hidden process, a common search behavior that
users would read and skip search results, leaving no observable
user actions to record in the search logs. The Markov nature of the
model further lends support to cope with the facts that a single
observed sequence can be probabilistically associated with many
hidden sequences that have variable lengths, and the search results
can be read in various temporal orders that are not necessarily
reflected in the observed sequence of user actions. To tackle the
implementation challenges accompanying the flexibility and ana-
lytic powers of POM, we introduce segmental Viterbi algorithm
based on segmental decoding and Viterbi training to train the
POM model parameters and apply them to uncover hidden
processes from the search logs. To validate the model, the latent
variables modeling the browsing patterns on the search result page
are compared with the experimental data of the eye tracking stu-
dies. The close agreements suggest that the search logs do contain
rich information of user behaviors in browsing the search result
page even though they are not directly observable, and that using
POM to understand these sophisticated search behaviors is a
promising approach.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Experimentations.

Keywords
Eye tracking, Partially Observable Markov model, search log
mining, segmental Viterbi algorithm, web search behaviors

1. INTRODUCTION

Embedded in the massive log data that capture the detailed inte-
ractions between the Web search engine and its users are the in-
sights and knowledge that hold the key to further understand and
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improve almost every aspect of the search engine. Mining the
search logs has been a prevalent and fruitful practice for many
applications, ranging from improving retrieval quality
[1][5][21][30], query suggestion and clustering [6][34], to infer-
ring contextual user behaviors and document importance
[2][16][26][31][36]. Web search logs, however, can only record
observable user actions such as clicks and query refinements.
How the search result are read and perceived by the users remain
elusive. In interpreting the logs, one inevitably has to make certain
assumptions on the unrecorded and unobservable aspects of the
user behaviors. The impacts of these unobserved behavioral as-
sumptions on the validity of the conclusions can be significant and
may well vary from applications to applications.

Eye tracking has been a widely accepted method to study user
behaviors that would be otherwise difficult to observe. Many have
included this technique to further analyze user behaviors for web
search. For example, it has been shown that users read the search
results in an uneven fashion, with results on top of the page re-
ceiving more attention than the others [18][22][25][27][28]. When
the target results are manipulated to appear at a less prominent
position, they are rarely seen and, as a result, the user’s search
success rates deteriorate significantly [18]. Other factors identified
by the eye tracking experiments that greatly affect user behaviors
on the search engine result page (SERP) but are challenging to
directly record or deduce from the search log include the gender
differences [25][27], the query intents [33], the habitual preferred
scan paths [28], the effects of the search engine brand [27], and
the contextual snippets on informational and navigational queries
[14].

The knowledge discovered from the eye tracking studies has also
inspired numerous log mining algorithms, information retrieval
theories and system designs. For instance, the search browsing
models that explicitly distinguish the document relevance from
the snippet relevance in analyzing the clickthrough data [16] can
find physical supports from the experimental results reported in
[14][27][28]. The use of the reading time as a proxy to assess the
document relevance in [1][17][24][34] is consistent with the ob-
servations reported in [33], and the observations in [14] support
the “trust bias” theory proposed in [22]. Perhaps the most pro-
found implication from the eye tracking experiments is a plausible
explanation to the positional bias that is widely known to exist in
the clickthrough data. Positional bias refers to the phenomenon
where the search results displayed more prominently on a SERP
will receive a higher clickthrough rate, even when the search re-
sults are manipulated to display in the reversed order [22][27].
This bias has been a challenge in applying the clickthrough data to
assess document relevance because it suggests there are factors
affecting the click behaviors other than the relevance of the search
results alone. One leading explanation is the uneven browsing
pattern of the SERP discovered through eye tracking studies. As



users are not likely to click on the results they have not even seen,
it is quite reasonable to postulate that the user’s uneven browsing
pattern on the SERP directly impacts the click behavior and be-
comes a key factor underlying the positional bias. For applications
that use the clickthrough data as a form of relevance feedback,
adjusting for the positional bias is a critical step in order to cor-
rectly infer what the feedback is. A widely used approach is the
“depth-first” behavior model inspired by the eye tracking studies
[22][25] that are first adopted for web search in [29] and then
search advertisements in [32]. Essentially, the depth-first model
assumes that users scan the SERPs from top to bottom sequential-
ly, with the relevant search results being clicked as soon as they
are read by the users. A click at the position £, for instance, im-
plies the search results preceding that position have all been
viewed. It however does not imply the result at £ +1 is viewed if
no click is observed. By considering the clickthrough rate as a
form of user feedback only for results that are viewed, this simple
model has been shown as effective in filtering out the bias and
gathering accurate evidence for improving ranking for search
[11[2][29] or advertisements [10][32], detecting adversarial traffic
[9], and estimating the user perceived retrieval quality
[L1][13][26][34].
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Figure 1: A histogram of the position differences between two
adjacent clicks in the search log.

Despite these successes, the depth-first model is a simplification
that deserves a closer examination. First, the estimates of the user
population following the depth-first strategy vary significantly in
the eye tracking literature. While the experimental results of [25]
report the percentage can be as high as 65%, others put it as low
as 20% [27][28]. Variability in human subjects aside, the SERP
browsing behavior is difficult to describe in a precise quantitative
manner. This is because analyzing the scanpaths in eye tracking
studies remains a formidable challenge as the supports in captur-
ing the fine grained temporal information remain less than ideal
[27]. As shown in Figure 1, a typical search log consists of more
than 30% of clicks that occur at positions higher or equal to the
click immediately preceding, suggesting a significant number of
clicks occur after users having clicked search results further down
in the SERP, contradicting the assumption of the depth-first beha-
vior model. Secondly, most eye tracking experiments were con-
ducted in a setting where the SERPs presented to the user are
highly controlled that frequently occurring elements such as ad-
vertisements and query suggestions are all carefully filtered out. It
is therefore unclear how the lessons learned in these lab experi-
ments can be extrapolated to the general usages. Third, the expe-
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riments were typically conducted on sizeable yet demographically
skewed user groups where the subjects were predominantly young
college students well versed in technologies. It is reasonable to
question whether some of the observed behaviors are representa-
tive for the general population. As an example, while these studies
typically found viewing more than one SERP as a very rare event,
data from our web search logs and from many commercial moni-
toring services suggest that viewing multiple SERPs still accounts
for a significant portion of usages. Therefore, it is highly desirable
to have a means to study the subject in the web scale that can go
beyond the oft highly controlled lab settings in order to obtain a
holistic view of the user behaviors on the SERPs.

This paper describes a mathematical framework, called the par-
tially observable Markov (POM) model, which we use as a com-
plementary method to the eye tracking experiments to uncover
unobservable search behaviors. POM tackles the key challenge of
using the search logs, i.e., coping with unknown biases and unob-
servable behaviors, by treating them as a statistical hidden data
problem [15]. We then solve for the maximum likelihood (ML)
solution of the hidden data, i.e., obtaining the model that can ex-
plain the log data with the highest probability. This data mining
approach enables us to study how users interact with a search
engine at a larger scale and for wider demographics without the
logistic constraints of conducting eye tracking experiments. A
contribution of this work is, by modeling the sequence of user
events in Markov chain, we extend the analysis to consider not
only the spatial but also the temporal information in the search
logs. There are two aspects of the temporal information consi-
dered in this work. First, we consider all the user actions recorded
in the search logs in a session, including hovering events, page
loading and unloading, query reformulation, etc., in addition to
the conventional click events. The model is therefore richer than
just click behavior analysis and, in a sense, takes advantage of the
additional information that can be extracted from a search session
in the logs. Secondly, by lining up all the recordable events along
the time line to form a holistic view of the user event sequence,
the model is able to exploit the information embedded in the tem-
poral order of the events. A natural outcome of this exploitation is
the ML estimation of the user scanpaths on the SERP which, as
mentioned in [27], remains a key challenge in obtaining from the
eye tracking data. Through the use of probabilistic modeling, the
variability in user behaviors is naturally taken into account in the
probabilistic distribution in a mathematically tractable manner,
and qualitative statements on user behaviors are also quantified in
the process.

The rest of the paper is organized as follows. In Section 2, we
describe POM in detail. We show that a POM model can be re-
garded as a variant of the hidden Markov model (HMM) where
some state transitions do not correspond to observable events. The
topic was briefly considered in the seminal work of [3] in which a
‘null’ transition was introduced into HMM. To facilitate the mod-
el training using the well known forward-backward algorithm,
certain restrictions on the null transitions (e.g., null transitions
cannot be self-looped) were introduced. These restrictions are
relaxed in this work, leading the implementation of the forward-
backward algorithm rather complicated and infeasible. To address
this challenge, we develop a new training algorithm, called the
segmental Viterbi algorithm, which is based on segmental decod-
ing and Viterbi approximation. Essentially, the segmental Viterbi
algorithm combines two common alternatives to the forward-
backward algorithm into one unified framework for ML parameter



estimations. We derive segmental Viterbi in details in Section 2,
and show in Section 3 the results of applying the POM model to
the search log data collected by a commercial search engine. We
compare the estimated ML hidden process with the physical ob-
servations reported by the eye tracking studies. The consistencies
between the POM and eye tracking results suggest the search logs
may well retain enough subtle cues of the user behaviors that can
be uncovered by data mining methods. Finally in Section 4 we
discuss how the methods described in this paper can be further
extended to more applications.

2. PARTIALLY OBSERVABLE MARKOV
(POM) MODEL OF SEARCH LOGS

The search logs record detailed interactions between the search
engine and the users. Among the information available in the log
are: (1) the events triggered by user actions in a search session,
such as clicking or hovering over a search result and query sub-
mission or reformulations, (2) the actions taken by the search
engine in response to the user events, such as the search results
shown to the users and their respective locations on the SERP, and
(3) a unique identifier associating the users with their search ses-
sions. In short, the search logs tell us when and who does what at
where on the SERP. Our modeling effort aims at uncovering how
the sequence of events can be triggered and hopefully provides a
glimpse into why.

2.1 Partially observable process

The key concept of this model is to treat the user events as a par-
tially observable stochastic process. The notion is further illu-
strated in Figure 2 where the top row represents a search session
as recorded in a search log. There, each observable user action,
such as a click on a result or a query reformulation, is captured as
an event ¢;. Between two adjacent events in the observable event
sequence O = {e;, e, ...}, the user may have viewed and skipped
many search results that cannot be recorded in the logs. As a re-
sult, there are many alternatives that can lead to the same observa-

Observation O

e; e €3 ey
A a a a
time
t; t 3 ty
Hypothesis Q;
V1:€1 V2:€2 V4:€3 V6:€4
A A \ . A
S;=0 S§,=0 Ksz? S§,~0 Ksz-) S=0
5571 S e
t; 15) 3 ty
Hypothesis O,
V]:€1 V3:€2 V5:€3 V7:€4
S0 V=2 [0 Vo7 §=0 V=2 Ts~0
A _ A _ A
S~1 Sl S5=1 time
t t 3 ty

Figure 2: Illustration of two partially observed hypotheses
that can both give rise to the observed sequence at the top
row.
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tion, two of which possible hypotheses Q; and Q, are illustrated in
Figure 2 where the unobservable user actions are shown as dotted
arrows. More specifically, let V; be the random process denoting
the k-th object (in the temporal order) the user views in a search
session. The possible object types include not only the search
results but also the query suggestion, spelling correction, adver-
tisements, query refinement input box, and other links in the
header and footer of the SERP. For each k, we further define a
Boolean random variable S, representing whether V, is skipped or
not, as shown in Figure 2. The model is partially observable be-
cause, in the search logs, we can only record the V) for which
object k is entered text or clicked (i.e., S; = 0), or is hovered but
not clicked (i.e., S; = 1). Objects that are viewed and skipped
without hovering are not recorded. As such, a given session ob-
servation can be a result of theoretically infinite many hypotheses
O;={(V:, S), V3, S5) ... (Vn;, Snj)}, each of which has a differ-
ent session length n;. In Figure 2, for example, the lengths for the
two hypotheses Q; and Q, are n; = 6 and n, = 7, respectively.
More generally, an observed user event sequence O can be the
outcome of any partial observable sequence that meets the follow-
ing conditions:

Vi=e,,V;=€,,5,=5;=0=8,=1Vm,li<l<j

We use the notation O, — O for Oy that can be a partially ob-

servable sequence of the user event observation O. Consequently,
we have

PO)=3", ,P@) "

Here, we regard the “view sequence” {V;, V, _} as modeling us-
er’s browsing behavior that is analogous to the “scanpath” in the
eye tracking studies. On the other hand, the “engagement se-
quence” {S;, S, ...} is viewed as modeling the user’s skipping or
clicking behavior that, conceptually, is intimately related to the
user’s relevance judgment of the search results. However, since
we include the query refinement and search result hovering in our
analysis, the engagement variable S really models whether a user
has interacted with an object on the SERP or not. To fully under-
stand the interactions between the user and the search engine, one
can examine for each session all the possible hypotheses, each of
which is weighted by its likelihood

PO)=3, ,P©Q)
=2 020 POSOPW. S, | V.8 P, .S, V1,81, 1.8, )

@
2.2 Model Assumptions

A key challenge in evaluating each search session with a/l of its
possible hypotheses is the lengths of these hypotheses are not only
unobservable but also unequal. To tackle this problem, we first
assume that underneath the partially observable process is a Mar-
kov chain of order N, with an example of N = 1 turning (2) into

PO)=3, Q)
=2 o PSPPI T PO 17008, 0P V.V 0.850)

3)



Although it is possible to directly work with a Markov chain of
any order (Sec. 4), in this work we consider only first order Mar-
kov model for simplicity.

Similarly, we further make the following two assumptions not for
theoretical necessity but for engineering simplicity. First, we as-
sume that the engagement variable S; is only dependent upon the
SERP object the user is currently viewing, i.e., Sy has V} as the
sufficient statistics such that

PS; V.V 108, = PS; 1) w
Secondly, we assume that the user’s mental process in determin-
ing which SERP object to visit next is not impacted by whether
the user has engaged with the current search result or not, i.e.,

P(V/‘ | V_/‘—I»Sj—l) = P(Vj | Vj—l) )
This assumption appears inconsistent with the cascade model [13]
and its derivatives [11][19] in which the human users are believed
to be more likely to continue exploring the rest of the SERP when
the search results they encounter are not relevant. However, it has
been suggested [34] that the relevance of the result is a very weak
predictor of user’s continuing exploration on the SERP and vice
versa. While the intuition behind the cascade model holds for
some cases, many search sessions see the opposite user behavior.
Most notably, instead of reading the next result, many quickly
abandon the SERP by reformulating the queries when they feel
the search engine does not fully understand their search intents.
Conversely, many users continue reading the rest of the SERP not
because they have not encountered relevant results but because
they see the search engine has retrieved useful leads, especially
for informational queries that can be best served by multiple re-
sults. Since the behavioral data suggest what users read next can
result from diametrical causes, we in this work follow the model-
ing approach in [34] and assume user’s continuing browsing pat-
tern is statistically independent of the result being relevant or not.

With these assumptions, we can further simplify (3), the likelih-
ood of a partially observed hypothesis as

P(O) = ZQI( -0 P(Qk )
- ZQk AOH";; P(Vj | Vj—l )P(Sj | V/)

where we use V) to represent the submitted query received at the
onset of a search session. From (6), it is clear that the statistical
properties of a POM model are fully specified by the view transi-

tion probabilities v,,, = P(V; =n | Vi, =m)and the engage-

(©)

ment probabilities s, = P(S; #0[V; =m). In the following,

we use A to denote the collection of all these transition and en-
gagement probabilities that parameterize a POM model.

2.3 Segmental Decoding

A key utility behind POM is to allow statistical inference on how
users browse the SERP. We following the convention of HMM
and use the term “decoding” to refer to the process of uncovering
the maximum likelihood (ML) hypothesis O, from an observed
sequence O, namely, given a POM with parameter A the decoding
process is to find
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Oy =argmax P(Qy | A)
0,—0 (7

The decoding problem highlights a major difference between a
POM and a HMM in that the decoded sequence in a POM has an
unknown length, namely, the n; in (6) is itself a hidden variable in
a POM whereas it is a part of the observation in a HMM. To ad-
dress this issue, we propose the segmental decoding technique,
adapted from the segmental model of speech recognition [20], for
decoding a POM model. The segmental decoding technique is
governed by three basic principles that effectively tackle the prob-
lem of having to deal with the theoretically unlimited number of
hypotheses due to the unknown length #; in (6). First, the conca-
tenation principle states that the ML solution to (7), with the first
order Markov assumption, is simply a concatenation of the ML
solutions between two adjacent observations e; and e;,;. More
precisely, if we denote

D) = argmax P(Qy | A)

Or—(e;.e;41)

~ A0) Ad
We have O, =(Q,Eo), ,il),...

“end-of-session” object and pad it to the end of every observation
so that (7) can be realized using segmental decoding technique
even for the last segment. Secondly, the recursive principle of
segmental decoding notes that the concatenation principle can be
recursively applied to itself. Suppose we have a hypothesis in
which the user is assumed to have viewed and skipped a result x
between e; and e;,;. We can apply the same arguments underlying
the concatenation principle and obtain

). In this work we introduce an

O =| arg max P(Q; | A), argmax P(O; | A)

O —(e; x) O > (x.e41)

Finally, the parsimonious principle states that the ML solution
cannot afford loops as hidden sequence, i.e., we can discard any
Oy that hypothesizes x = e;. This is because (6) shows that incor-
porating the probability of any repeated path can only lower the

overall likelihood score. The sequence length of any QAIEJ) is
J

therefore bounded by the maximum number of the result objects
that can appear on the SERP. Accordingly, the segmental decod-
ing can be realized with straightforward dynamic programming
with a finite search space.

In practice, segmental decoding is not necessarily limited to ob-
taining only the maximum likelihood hypothesis. Many dynamic
programming algorithms allow decoding of the top N hypothesis
for each observation, an enhancement commonly called as the N-
best decoding [20]. In this work, we consider only N = 1 for ana-
lyzing the search log, but use N = 5 in the Viterbi training process
described below.

2.4 Viterbi Training of a POM model

The search logs consist of a set of observations {O;, O, ...} that
are collected independently. The task of training a POM is to find
an estimation of the model parameter that is optimal in the ML
sense, namely,

A= arg maxHP(Ol- |A) =arg maxH ZP(Qk |A)
A i A i 0,0,

®)



As POM being in the class of the hidden data problem, the train-
ing intuitively can be achieved by many well known algorithms
such as forward-backward [3] or the Expectation-Maximization
(EM) algorithm [15]. The key idea behind either of these algo-

rithms is to start an initial guess of the parameter A? and gradu-
ally improve the ML estimation through iterations. More specifi-
cally, in the /-™ iteration, the EM algorithm aims to gradually
improve the model by finding the re-estimation formula through

A =argmax Y P(O; | A"P)logP(O, | A )
A 3

Since the summation terms are bounded by Gibb’s inequality, we
note that the maximization problem can be solved by using the
condition in which the equality holds for Gibb’s inequality. The
re-estimation formula for (8) therefore amounts to

7y
2220, 0 PO NN NV, =m ¥y =)
o0 = =
My
(-1 _
22000, PO IN );w,» =m)
W
(-1 _
2200 PO A )ZIMVJ- =m,S; #0)
,\([) _ Jj=
Sm -

Zizgﬁq P(Oy |A(H))ZA:1(VJ. - m)
! ©)

Here we use 1(.) to denote the indicator function that is defined
as:

1 xistrue
1(x) = .
0 otherwise

As is in the case of decoding, the unobservable nature of session
length n; makes it challenging to apply exactly the EM algorithm
to train a POM model as there will be infinite number of Q, in (9)
to be considered. To address this problem, we use the expedited
approximation known as the Viterbi algorithm [20] that only uses
the top N-best hypotheses in the training. As a result, the Viterbi
training process for POM consists of the following steps:

1. Initialization: Start with an initial model A” (Sec.
24.1).

2. Decoding: For iteration /, apply the segmental decoding

method (Sec. 2.3) with Ao find top N hypotheses
for each observation.

3. Re-estimation: Obtain A" using (9).

4. Tteration: repeat step 2 and 3 until the process con-
verges.

Theoretically, N-best Viterbi training will asymptotically approx-
imate the EM algorithm as N becomes very large. With a finite N,
however, Viterbi training does no longer enjoy the mathematically
guaranteed convergence property of the EM algorithm. In our
applications, we have found that with N set to 5, the training
process does converge (with proper initial conditions, Sec. 2.4.1)
in less than 8 iterations for sizeable log data, consistent with the
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empirical findings in applying the Viterbi training to HMM train-
ing in speech recognition.

2.4.1 Model Initialization

Both EM and Viterbi are iterative algorithms that converge only
to a local optimum. It has been empirically observed that the ini-
tial condition of these iterative algorithms plays an important role
in the quality of the model the algorithms eventually converge to.
How to best choose an initial condition, however, remains an open
research question. In this work, we experimented with two ap-
proaches to initialize the POM model. The first approach initializ-
es the view sequence for each observation using the depth-first
model (Sec.1) with probability 1. For example, if we observe a
search session consists of a click on the third search result, we
hypothesize the user has also viewed the first and the second re-
sults and decided to skip both of them. The initial POM model

A s then obtained by counting the ML view transition and
skip probabilities with (9).

The second approach detaches itself farther from the depth-first
model and solve for the initial condition by considering the transi-

tion probability of adjacent events ¢; = P(e,,; = j| € =1i) that

can be counted directly from the search logs. We note the hypo-
thesis that the user does not view and skip anything in between

has the probability v;(1—s;), and the probability of the user
viewing and skipping one intermediate result £ before reaching
result j (and not skipping it) is Zk VikSevig (1= ;) . With induc-

tion, the probability of ¢; is a sum of the conditional probabilities
of users skipping exactly 0, 1, 2... results between interacting
with result i and j. Assuming each condition weighs equally, we
have

cij :Vl](l_sj)+zvlkskv1fj(l_sf)+

k
ZZvimsmvmnsnvnj(l —8;)+...
m n

To simplify the notation, we can rewrite (10) in the matrix form

(10)

C=V(I-S)+VSVA-S)+(VS) VA -S) +...
=+ VS+(VS)? +...)vV(I-S)
=(@-VS)"'Va -8)

or equivalently,

Cd-VvS)-vad-S)=0 an
where C = [c;], V = [v;], and S = diag(s,), respectively. This equa-
tion highlights the fact that there exists a boundary condition for
which the parameters must satisfy, i.e., although POM has two
hidden matrices V and S to consider, we only have a single degree
of freedom in choosing their initial values. In our implementation,
we typically choose a diagonal matrix S=¢ -1 as the initial value
and solve for V using (11). Because V represents a probabilistic
transition matrix, each entry in V must be non-negative and each
row must sum up to 1. Obtaining V from (11) is therefore a con-
strained problem solvable using the gradient descent algorithm.

Empirically, we have found that the second approach, with a set at
the pSkip value of the whole search log [34], yields a much better
initial condition than the depth-first model in terms of the number



of iterations needed to converge and the smoothness of the proba-
bilities in the converged results.

3. COMPARISONS WITH EYE TRACKING
RESULTS

The research question explored in this paper is to what extent the
mathematical framework of POM can uncover the user activities
that are not recorded in the search logs. Since traditionally such
activities are studied through direct observations such as experi-
ments using the eye-tracking devices, we compare the results
obtained by the POM model with those in the published eye track-
ing findings.

3.1 Data Collection and Model Training

We apply the POM model to the search log data collected by a
commercial web search service deployed in the EN-US market
that used a two column SERP layout as shown in Figure 3. The
core search results (CR) were displayed on the left column, where
the right column displayed the query suggestions (QS). When
appropriate, advertisements could occupy the top portion of the
left column (labeled as TA) or the lower portion of the right col-
umn (labeled as SA), right below the query suggestions, as shown
in Figure 3.
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Figure 3: A two column SERP layout showing content mod-
ules top ads, core results, query suggestions, side ads labeled
as TA, CRs, QS, and SA, respectively. The second text box for
query reformulation and the paging buttons located near the
bottom of the SERP are shown here.

All these content modules can contain more than one search result
in them. For example, Figure 3 shows the TA module has three
results. In addition, two textbox objects, one just below the header
and the other just above the footer, and a few paging buttons were
also available on the SERP for the users to reformulate their que-
ries or navigate to the next SERP. The usages of these textboxes
and paging buttons are also captured in the search logs and consi-
dered in the POM analysis. Because not all the content modules
would appear on every SERP, the search logs also recorded their
presence. We utilized this information during the decoding
process (Sec. 2.3) so that the probabilities of the infrequently ap-
pearing modules would not be under-estimated. Similarly, as
clicking on navigational objects such as QS items or the paging
buttons will necessarily take the users to a different SERP, special
cares were taken to keep track of the navigational activities so that
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any consequent click on the back button to return to the original
SERP could be correctly recorded in the search log as resumed
viewing activities. We implemented the decoding and training
algorithms described in Sec. 2 for search logs of various dura-
tions, ranging from one full day to two months. Typically, the
segmental Viterbi training takes five to eight iterations to con-
verge on a week long search log. We found the duration of the
training logs do not change the outcomes dramatically. The results
reported below are based on the parameters estimated with one
week worth of the search data.

3.2 Comparison to Scanpath Analysis

A key question that the eye tracking experiments aims to study is
the manner users pay attention to the results on the SERP. This
issue has been studied by analyzing the scanpath that traces the
order of the search results receiving gaze fixations. We compare

the scanpath in eye-tracking studies to the ML hypothesis Qk de-

coded from the search logs using (7). The predominant model of
the SERP scanpath is the depth-first model based on the eye-
tracking experiments reported in [25]. It states that search users
read the results sequentially in the order as presented, clicking on
relevant results as soon as they are encountered, rather than sur-
vey the whole SERP before making any selections.
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Figure 4: View transition probabilities of CR-n to CR-(n+1) in
POM

The studies behind the depth-first model, however, did not include
the cases where advertisements may appear on top of the core
search results. A direct application of the depth-first model to
SERPs where the TA module exists would suggest that top ads be
the first module the users see. After training from the logs, how-
ever, POM shows the probabilities of the first module seen by the
users are 0.92 for CR-1 and only 0.036 for the TA. In other words,
POM suggests the most likely user behavior is the top ads are
largely ignored. The result is consistent with the “banner blind-
ness” effects that are observed in the eye tracking studies for gen-
eral web page advertisements [7]. Similarly, the probability of
users viewing the QS module first, positioned on the top on the
right column, is 0.030. POM analysis therefore suggests that,
upon the page load, users most likely go directly to the core
search results and ignore other areas on the SERP even though
their locations are no less prominent.

The view transition probabilities within the CRs, shown in Figure
4, illustrate further comparisons between POM inferred browsing



behaviors and the depth-first model. As shown in the first two
columns of Figure 4, the POM transition probabilities from CR-1
to CR-2 and from CR-2 to CR-3, are only 0.64 and 0.39, respec-
tively, suggesting that at the top of the SERP, users are not me-
chanically following the depth-first model of the reading beha-
vior. A deeper investigation into the data shows a considerable
portion of the probability mass here goes to the transition into
query reformulation, leading to a conclusion that, for SERPs re-
ceiving no clicks, the ML decoded hypothesis consists of only top
two core results being viewed before users either abandon or re-
formulate their queries. This finding matches the eye tracking
observations that report users do not explore further results if top
two or three results are not relevant for Yahoo and Google, re-
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Figure 5: Probabilities of backward viewing the previous re-
sult (labeled as $POS-1) and backward viewing the top result
(labeled as CR-1) with respect to search result positions in
POM

Based on the data collected in the logs, the scroll line of the SERP
we studied straddles between CR-2 and CR-4 for the majority of
the cases, as Figure 3 demonstrates. Below the scroll line, the
POM view transition probabilities suggest the depth-first viewing
pattern is indeed the most dominant behavior. Figures 4 shows
POM infers from the logs that more than 80% of chances users
simply read sequentially from CR-3 down, in a sharp contrast to
the view transitions above the scroll line. The dramatic impact of
the scroll line on the SERP viewing behaviors are also reported in
the eye tracking studies [22]. As a matter of fact, POM seems to
have inferred a more detailed and intricate relationships between
the viewing behaviors and their SERP location dependency.

First, the series of experiments [22][27][28] report that it is not
unusual to see gaze fixations on search results that have already
had fixations before, implying that users occasionally look back at
results they have previously viewed. ML estimates from the POM
model indicate the probabilities of looking backward are position
dependent, and the most dominant trend is to either transition
back one result or all the way back to the first CR on the SERP.
As shown in Figure 5, backward transition probabilities are lowest
for results that are just below the scrolling line, and gradually
increase towards the end of the SERP where we also observe the
backward transition becomes more local, namely, users seem to
look one result back rather than jump back to the first CR. We are
not aware of any eye tracking studies that report quantitative de-
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tails on backward viewing behavior to corroborate the ML esti-
mates of the POM model.

The presence of the right column on the SERP does not seem to
command a lot of attention. This is shown in Figure 6 where the
transition probabilities from core results to the right column are in
general small with the exception at CR-2, right above the scroll
line, where the probability of viewing query suggestion next peaks
at 11.2%. This POM inferred behavior is consistent with the in-
tuition that scrolling the SERP takes more user effort than scan-
ning the right column. Nevertheless, we note that, as shown in
Figure 4, the probability of viewing CR-3 right after CR-2 is still
three times more likely than sidetracking to the right column,
suggesting the sequential depth-first model still describes the do-
minant behavioral pattern. The transition probabilities from the
right to the left column are all very low, with the highest number
at 8.24% from SA to CR. The POM ML estimates indicate that
once users are in the right column they are most likely to reformu-
late the query or end the search session.

Aberration from the depth-first viewing, either through query
reformulation (labeled as ReQ in Figure 6), paging, or diverting to
the right column, has the lowest probability right below the scroll
line. As can be seen by combining the readings from Figures 5
and 6, the ML estimates from the POM model suggest that, at the
bottom of the SERP, it is very likely for the users to look back one
result before traversing down the SERP and clicking on the pag-
ing button to visit the next page or entering a reformulated query
into the textbox located below the paging section. This inferred
behavior is similar to the backward viewing behaviors described
above. Comparing the ML estimates from POM model with the
simplified depth-first model derived from the eye tracking data,
we observe that the two models least agree on the behaviors to-
wards either end but are largely consistent in the middle of the
SERP. Because the SERP viewing behavior seems to be position
dependent, statements about the percentage of users following the
depth-first model cannot be made summarily. This might be an
explanation to the large discrepancies reported in the literature
(e.g., [25] vs. [27])
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Figure 6: POM inferred probabilities of not continuing to
read core results with respect to SERP positions

3.3 Click and View Positional Bias

Eye tracking studies are instrumental in identifying an important
web browsing behavior that all the presented results are not equal-
ly read by the users [28]. As users are likely to only click on the



results they have viewed, this uneven browsing behavior has tre-
mendous implications on correctly interpreting the clicks in the
web logs in general and search logs in specific. The eye tracking
results reported by Joachims et a/ [22] demonstrates the positional
bias on core search results both in terms of the search results be-
ing viewed and clicked. Based on the experiments conducted on
users’ viewing of Google SERP, their data showed the chance of
search results being seen reduces dramatically as their rank posi-
tions increase along the length of the SERP. For example, the
chance of having a gaze fixation on CR-4 is only half of that on
CR-1. It stands to reason that, if for a query CR-1 is merely re-
ceiving the same clickthrough rate as CR-4, it is unfair to charac-
terize CR-1 as being equally relevant as CR-4. In fact, CR-4 is
likely to be more relevant than CR-1 because it receives more
clickthrough per impression. Similarly, Joachim’s experimental
data seem to show the manner of presentation has significant ef-
fects on the clickthrough rate as the clickthrough rate briefly
trends up around CR-6 where the screen scroll line lies in those
controlled experiments [22].

To compare POM with the fixation rates from the eye tracking
data, we show in Figure 7 the aggregated view and clickthrough
rates for the CR module derived from the POM model analysis.
The aggregated view and clickthrough rates are obtained by run-
ning all the search sessions in the logs through the POM ML de-
coder (Sec. 2.3) and counting the Boolean frequency of each CR
being viewed and clicked per SERP, respectively. By “Boolean
frequency” we mean a search result is counted as a view/click,
respectively, if it appears in the decoded sequence, regardless how
many times it occurs. As can be seen from Figure 7, the POM
inferred view rates bear close resemblances to the eye tracking
data reported in [22] as they also show the strong positional bias
in terms of the CRs being viewed and clicked based on its position
on the SERP.
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Figure 7: POM inferred view rate and the clickthrough rate
for CRs with respect to their positions on the SERP. Like eye
tracking experiments, POM inferred behaviors also suggest
positional bias in both SERP viewing and clicking behaviors.

This agreement on positional biases is noteworthy especially giv-
en the experimental conditions behind the data are significantly
different. The POM inferred data are based on the field deploy-
ment where noncore search results are not filtered out from the
top and on the side of the SERP, in a contrast to the eye tracking
studies. Secondly, the search engine used for POM analysis tend
to put more detailed descriptions for the search results than
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Google, the search engine used for the eye tracking studies that is
known to have a shorter abstract for each search result so that the
screen size could accommodate more search results [27]. Accor-
dingly, the data for POM studies have a variable scroll line posi-
tion ranging from just below CR-2 to CR-4, depending on wheth-
er the TA module is triggered for the queries or not. In contrast,
the scroll line used in Joachim’s experiments has a fixed position
at 6. Perhaps due to these reasons, there is no clear scroll line
effect observed in Figure 7. However, both data sets suggest that
search results placed under the scroll line have less than 10% of
being viewed by the users.

The POM inferred data exhibit subtle differences on the top
search results, though. The eye tracking studies report that the first
two results are equally viewed, and sometimes users view CR-1
after CR-2 [22][27], which can probably explain the relatively
lower fixation rate on CR-1 than in Figure 7. The POM inferred
data, however, do not support the same observation in that the
view transition from page load to CR-2 directly has very low
probability. The POM data suggest the leading causes for CR-1
not being viewed are sessions ending at TA or users clicking on
other navigational buttons located in the header section (e.g. im-
age or news search). As a result, Figure 7 shows a much higher
CR-1 view rate. The rest of the CR view rates, in the mean time,
are considerably lower than the fixation rates in the eye tracking
experiments where the data were obtained by carefully filtering
out non CRs. In the log data for POM inference, we observe that
query reformulation is a very substantial user activity and the high
probabilities of query reformulation at the top two positions con-
tribute to the low view rates for the rest of the CRs. Although the
eye tracking studies also report that users on the average read only
two results before reformulating their queries [27], it is not clear if
they occur as frequently in the controlled experiments where the
eye tracking devices were used.

Figure 7 also highlights that the view rate is not simply a scale-
offset of the click rate, confirming that the click and browsing
behaviors are mostly likely not driven by the same cognitive me-
chanism and that they deserve to be studied separately. The simi-
lar observations have also been made by the eye tracking studies
n [14][18] where the users are observed to exhibit similar brows-
ing yet quite different clicking behaviors in carrying out informa-
tional and navigational queries.

4. DISCUSSION

The consistent conclusions drawn from the statistical POM analy-
sis and the physical eye tracking experiments suggest that data
mining on the search logs is a viable approach towards a deeper
understanding of the search behaviors, especially in the areas of
browsing and clicking behaviors on the SERP. Aside from the
qualitative model derived from the eye tracking studies, statistical
techniques can provide a quantitative and analytically tractable
framework that uses the massive search log data to understand and
improve the search engine quality without running into the physi-
cal difficulties of use eye tracking devices described in [27].

One promising application is to apply POM to better estimate the
search result relevance from the search logs for the purpose of
improving search engine ranking function. The key intuition, as
widely adopted by [1][2][21][29], is that higher quality search
results may lead to a higher clickthrough rate and vice versa. The
challenge is how to compute the clickthrough rate correctly. The
ability of POM in inferring viewing sequence can be potentially



helpful here, although the topic cannot be fully explored in its
entirety in this paper.

Table 1: ML decoded sequence in POM

Observed Click Sequence POM Decoded Sequence
1,53 1,2,3,4,5,3
2,8, 1 1,2,3,4,5,6,7,8.9, 1

Table 1 illustrates two observed click sequences in the CR module
and their corresponding POM decoded view sequences. The first
observation involves a backward click on CR-3 after a click on
CR-5 is first observed. The common approach, as pioneered in
[29], is to treat the search session as having clicks on CR-1, 3, and
5 with CR-2 and 4 skipped. Under this view, the click on CR-3
would carry the exact the same weight as if the observed click
sequence were CR-1, 3, and then 5. In contrast, the same observa-
tion will elicit a somewhat different interpretation under POM as
the decoded sequence in Table 1 shows CR-3 is first viewed,
skipped, and only be clicked after the user has viewed CR-5. In
other words, POM suggests the user has two impressions on CR-
3, and only one out of these two impressions does a click occur.
The POM model suggests a lower estimation on the clickthrough
rate on CR-3 than CR-1 or 5 in this case. The same additional
penalty on the backward click also applies to the second observa-
tion in Table 1 in which the last click on CR-1 will be regarded as
less significant as the click on CR-2 as the POM model infers the
user most likely has skipped CR-1 once before. In addition, the
decoded sequence for this observation also highlights the ability
of POM to infer the user has most likely viewed an additional
search result CR-9 beyond the last clicked position CR-8, enabl-
ing us to treat CR-9 as viewed and skipped like CR-3 through 7. It
is well known from the eye tracking data [22] that users often read
additional results on the SERP beyond the last clicked position,
although the pattern is so noisy and position dependent that no
simple qualitative description can be made. As demonstrated in
Table 1, POM provides a statistical way of modeling this beha-
vior.

Despite these encouraging results, the current formulation of
POM can be made more powerful by further relaxing the assump-
tions described in Sec. 2.2, such as the first order Markov assump-
tion. Recent advancements in machine learning have allowed
flexible and potentially infinite order of Markov chain to be used
in modeling temporal sequences. Exemplary techniques that can
be adapted for POM include the variable N-gram in language
modeling [20], variable length HMM [8], and infinite HMM [4]
that uses Dirichlet process to integrate out infinite parameters.

The current formulation also uses only one set of probabilities to
parameterize the model. As a result, the model is estimating the
overall average behaviors for all users and query types. Although
some eye tracking studies support that browsing behaviors might
not be varying with query types being informational or naviga-
tional [14][18][27], others do show subtle behavioral changes
between informational and transaction queries [33]. In addition, it
is known that male and female subjects have dramatically differ-
ent search behaviors [27][28]. All these known factors affecting
the search behaviors make the current use of a single parameter
set less than ideal. A natural extension to (2) is to use a mixture
model so that factors leading to significant behavioral differences
can be captured individually by mixture components. Again, the
number of mixture components does not have to be hardcoded but
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can be automatically learned using Bayesian techniques such as
Chinese Restaurant Process. In addition, the current formulation
POM only uses a simple skip probability to model the clicking
behavior. It has been argued that the quality of search result snip-
pets and the relevance of the landing page should be further teased
apart and modeled separately [16]. However, how to properly
model these factors remains an unanswered question and requires
more experimentation. As an example, the eye tracking data sug-
gest the criteria to determine whether a snippet is effective seem
to be opposite for navigational and informational queries [14].
Understanding the effectiveness of a mixture POM model may
prove a good first step in resolving these issues.
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