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ABSTRACT
At Microsoft we use a number of static analysis tools to en-
sure the quality of the code we produce. Over several years,
we have solved problems associated with deploying these
tools in a large development environment, including prob-
lems of performance, policies for using tools, and methods
for encouraging their usage. One challenge is getting appro-
priate feedback from users about the effectiveness of these
methods. In particular, we do not get feedback about errors
and warnings that are found and resolved on the desktop
and do not make it into the code repository. To address this
problem, we have developed an instrumentation framework
called ATMetrics, which allows us to collect usage metrics
that we can use to analyze how static analysis tools are used
in the field. In this paper, we discuss our experiences putting
together this metrics system in a complex industrial setting
and shed light on how it can help to guide key business de-
cisions around the deployment of static analysis tools.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Pro-
gram analysis; D.2.8 [Metrics]: Product metrics

General Terms
Measurement, Reliability, Security

Keywords
static analysis, software defects, managed code, software
quality, software instrumentation, cost benefit analysis

1. INTRODUCTION
Software organizations rely on multiple approaches to pro-

vide quality assurance, including code review, testing and
static analysis. Static analysis offers the opportunity to find
bugs automatically, though it also potentially raises many
false alarms. To minimize these false alarms, some tools en-
courage developers to add annotations which provide more
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semantic information to the analysis. Many tools also aim
to bring warnings to the attention of developers soon af-
ter they write the code, by interrupting them with alerts or
warning markers. All things considered there is a cost to
using static analysis, and a need for a clear benefit to make
it worthwhile.

The Analysis Technologies team at Microsoft manages a
number of static analysis tools and provides support to thou-
sands of developers who use these tools. We recently started
an effort to better understand how developers are interact-
ing with these tools, and learn from their experiences. Our
ultimate goals are to improve the tools and associated pro-
cesses, and demonstrate the value of using tools.

In particular, in this project we focus on getting informa-
tion that was previously unavailable to us: the developer’s
activities on the desktop. We can easily observe static anal-
ysis warnings in source files that have been checked into
the source repository, but warnings that are fixed soon after
they are introduced never make it to us. With many of our
tools now integrated into the build system, developers are
regularly alerted about problems in the code. Furthermore
any problems checked in can potentially break the build or
prevent code integrations (see Section 2). These incentives
make it likely that many problems are fixed before the code
is checked in. Prior to this, such “transient” activities would
be lost.

To capture this missing information, this project aims to
setup lightweight instrumentation on developer workstations
to capture metrics on which warnings occur, which ones are
fixed or suppressed, and other details about user interaction
with static analysis. We also aim to explore any connec-
tion between behaviors observed on the desktop and other
measures of the quality of the underlying component.

In this paper, we describe our experiences and the chal-
lenges of putting together a system like this in an industrial
context. The primary challenges were correctly and robustly
inferring the actions of developers with very little overhead,
and supporting many heterogeneous static analysis tools.
One constraint was that the static analysis viewer containing
much of our instrumentation was still under development, so
we had limited opportunities to test and deploy it.

A key contribution of this paper is the lightweight mech-
anism that enables us to track and infer state transitions
for static analysis warnings. To the best of our knowledge,
this is the first effort in developing and deploying a prag-
matic metrics system for static analysis tools in a complex
industrial context.



We start by describing the processes we have developed to
maximize the use of static analysis at Microsoft in Section
2. Then we overview some of the key questions we want to
answer in Section 3. We describe our experiences, implemen-
tation and challenges in Section 4, our test frameworks in
Section 5, and present some qualitative feedback from users
in Section 6. Going forward, we expect to use this system to
support critical business decision making about which tools
to modify and rules to prioritize.

2. BACKGROUND
Over the last several years, we have focused our efforts

on pushing defect detection tools based on static analysis
into the regular software development process of the largest
product groups at Microsoft, involving thousands of devel-
opers working on tens of millions of lines of code against
strict deadlines.

We use different processes for triaging warnings from our
global and local tools. Inter-procedural analysis tools such
as PREfix [3] and Global Esp [4] are based on heavyweight
global static analysis; these tools are run periodically in a
centralized manner, and the defects identified by the tools
are filed automatically into the defect database of the prod-
uct. Intra-procedural tools, such as PREfast [11] based plug-
ins, are lightweight and more suitable to be run on the devel-
oper’s desktop while the code is being constructed. A wide
range of PREfast plugins have been developed for tackling
critical problem areas such as security, concurrency, perfor-
mance, internationalization issues, and device driver issues.
These tools typically analyze one function at a time based
on function contracts and field invariants specified in the
SAL [14] annotation language.

Today, many of these lightweight tools are enabled by de-
fault on the desktop machines of every programmer in the or-
ganization, using the Microsoft Auto Code Review (OACR)
build infrastructure [13]. OACR integrates static tools into
a common and automated build environment which runs the
checkers in the background. Developers are notified with a
pop up message about the warnings. Warnings are grouped
into warning numbers and warning numbers are classified
with severity levels. When developers review the warnings,
they have the opportunity to fix the code or suppress the
warnings. One of our goals is to understand when issues are
fixed and when they are suppressed.

Another level of quality control is through the “quality
gates” that are applied when moving code from one branch
to a higher branch (called reverse integration). A class of
critical checks form the “minimum bar”. Reverse integration
is prohibited until all warnings from the minimum bar are
fixed. This mechanism ensures that the most serious issues
can be caught and fixed early in the development process.
For big legacy code bases, adding a new check to the min-
imum bar may introduce a large number of warnings trig-
gered by pre-existing bugs. We apply a baselining mecha-
nism to “mask” these warnings in order to avoid a sudden
disruption to the development schedule. Typically these pre-
existing bugs are fixed during a concerted cleanup effort at
the early stage of a product cycle.

3. KEY QUESTIONS
There are hundreds of data points we could potentially

collect as part of an instrumentation effort, ranging from

high level metrics about how often warnings are generated
and shown to developers, to low level details about which
issues are clicked or which code edits are made. But one
of our important goals is to make this system minimally in-
trusive, as developers engage in their primary development
activities. To limit our instrumentation effort, we identi-
fied the key business questions we want to answer with this
project, some of which are described in this section.

3.1 Which warnings occur and are fixed or
suppressed?

The most basic question is: which warning numbers occur
on the desktop, which ones are fixed and which ones are
suppressed? Here we are interested in the absolute counts
as well as the proportional rates. The absolute counts tell
us which issues developers encounter the most. If a warning
number occurs often but is generally suppressed or ignored,
then this may indicate that the associated analysis needs to
be tweaked or the warning deprioritized.

Collecting data points to answer this question presents
some challenges. To maintain correct counts, we need to
keep track of issues from build to build and session to ses-
sion. Using the warning number and line number is not suffi-
cient because line numbers change often. We use a common
approach that relies on contextual information surrounding
a warning [16]. In addition to keeping track of issues, we
need to remember what state the issue was in previously,
because this can change multiple times. For example an is-
sue can go from being ignored to being suppressed, and then
back to being ignored a few days later. This example raises
a third challenge related to our goal to keep instrumenta-
tion lightweight. Sending updates to a central server every
time an issue changes state might be too much overhead if
there are many issues, or if they change state often, so we
need a solution that minimizes the overhead by using sum-
maries. Our design decisions for tackling these challenges
are described in more detail in Section 4.

With these data points, we expect to observe that high
priority issues are fixed at a higher rate, but we want to look
for those warning numbers that buck the trend. This may
influence our decisions about what severity levels to assign
to warning numbers. In particular, we want to identify high
priority issues that tend to be suppressed. To facilitate this,
we need to collect more data about these suppressed issues to
allow us to trace them in the code repository and throughout
the development cycle.

These data points may also point us to trends that need to
be investigated more closely. For example, we may observe
that a particular class of issues occurs much less frequently
than we expect. This could be because the analysis is limited
and we need to improve our tools to find more issues. Or it
could be that the problem really does not happen in the code
base and we can spend less time working on the analysis.
This instrumentation effort can help us identify these classes
of issues for closer investigation.

3.2 How do tools impact developers?
While many problems identified by static analysis tools oc-

cur because the developer made a logical error, some prob-
lems represent best practices or code conventions the de-
veloper may be unaware of. In the latter case, we expect
developers to change their development styles upon learning
better coding practices, and hence introduce fewer instances



of this class of issues. If this is the case then it potentially
represents a significant benefit of using our tools. An al-
ternative outcome is that developers consistently ignore or
suppress these issues. In this case, the number of new is-
sues added per session may not change over time. Or we
may observe different patterns in different groups or at dif-
ferent parts of the development cycle. All these trends can
inform the policies we recommend to groups and the way
we promote tools. Our hypothesis is that most higher pri-
ority issues will be introduced at lower frequencies as the
developer becomes more experienced.

To answer this question, we need data points that can
be used to distinguish individuals and groups, as well as
information on trends observed in each user session. In our
design discussion in Section 4, we describe data points that
refer to overall counts, as well as counts just for warnings
introduced in the active session. We also need data points
about how much development time is spent interacting with
tools and issues.

Another possible impact of tools on developers comes from
the presence of issues in legacy code. In general, older code
is not analyzed unless the developer checks out the source or
explicitly runs the analysis on legacy code. This means that
if a developer has to make even small changes to a legacy file,
they may be confronted with any warnings that were in that
file. This is not a problem for many groups that have put in
a concerted effort to remove serious issues from legacy files,
but our instrumentation should allow us to observe those
scenarios where this does happen.

3.3 What is the effect of baselining?
One way to deal with large numbers of warnings in legacy

code is to baseline them, i.e. to temporarily hide them from
view. The rationale is that warnings in older code are less
likely to be serious since this code has undergone extensive
quality assurance testing. By baselining these issues, we
encourage developers to focus on newer issues. One of our
hypotheses is that developers will fix more issues sooner if
they are only shown new ones.

Our instrumentation allows us to detect whether an issue
has been baselined or not, and whether it is visible. The
static analysis viewer allows developers to turn on or off fil-
ters that determine if baselined issues are invisible or visible
respectively. In addition to baselined issues, we can examine
whether developers keep only high priority issues visible, or
they display all issues, and how this affects the likelihood
that fixes are made.

3.4 How do our observations correlate with
business metrics?

Our ultimate goal is to understand how usage of static
analysis affects the quality of the final software product.
This is in general a hard question to answer since there are
many factors that may affect component quality. Hence our
goal is simply to look for trends and correlations between
static analysis usage patterns and existing business metrics.
We can use internal metrics about components such as the
number of reported crashes or security flaws, and compare
these metrics with data from our instrumentation includ-
ing fix and suppress rates, new issue introduction rates, and
whether baselining is used or low priority issues are filtered
out. We can also compare our instrumentation data with
the policies and practices we observe in different groups.

To facilitate this investigation, we group issues that come
from the same component or binary as part of our instru-
mentation. In addition, we will need to separately col-
lect information about the policies and practices of different
groups, and identify business metrics that are collected uni-
formly across many groups and organizations. Ultimately,
this investigation should inform our efforts to encourage best
practices for using our tools.

3.5 Other Questions
There are several other questions and goals we aim to

support with our instrumentation. One question is how long
different groups of warnings tend to stay active. In some
cases, an issue may be fixed soon after it is flagged by the
build and the developer is alerted. In other cases, developers
may wait until just before a code check-in to fix all serious
issues. Other developers may wait for issues to be flagged
during overnight builds or by quality gates. One expectation
is that lower priority issues will stay active longer because
they do not affect the overnight builds or quality gates. We
also expect to see different trends for different individuals
and teams, and different parts of the development cycle.

We are also interested in how users interact with the
static analysis viewer and the warnings. Our instrumenta-
tion will show us how often users run builds and launch the
viewer, how frequently issues are clicked and which issues
are clicked. A click indicates that the user is investigating
an issue including possibly looking up the help pages. If
a warning number has a low fix rate, but its issues clicked
fairly often, this may suggest that users are choosing to ig-
nore this warning number. We could also observe that some
warning numbers are fixed at a high rate though their is-
sues are rarely clicked. This may indicate that those issues
are being fixed during normal software development without
much guidance from the viewer.

4. IMPLEMENTATION AND CHALLENGES
We have designed and implemented ATMetrics (Analysis

Technologies Metrics system), an instrumentation system
that builds upon existing platforms and processes used in
Microsoft. Specifically, the instrumentation was designed to
be a lightweight add-on to a static analysis viewer which
is driven by the build system. Our custom data points
are transmitted and aggregated using Microsoft’s Software
Quality Metrics (SQM) [12], a platform for collecting remote
data from thousands of volunteers, used in many Microsoft
products. One hope is that in the future our architecture
will be adapted to support other types of analysis technolo-
gies including code coverage and binary instrumentation.

In this section, we provide a broad overview of our design
and go into more details about some of the challenges and
our solutions.

4.1 Architecture Overview
Figure 1 illustrates some of the key aspects of our archi-

tecture. Our instrumentation is designed as a library which
manages the processing and counting of issues and sends
data to a central database. This library also maintains a
persistent state for each unique user configuration enabling
us to track issues from session to session. We added very few
lightweight calls (less than 20 lines) to an existing (though
relatively new) static analysis viewer that is being deployed
as part of the build system to thousands of developers. Our



Figure 1: Architecture Overview

hook points call the library when certain important events
occur in the viewer, such as when issues are added or clicked.
This arrangement facilitates the possibility that our instru-
mentation can be adapted in the future to other scenarios
or analysis technologies.

As we mentioned earlier, our static analysis tools run au-
tomatically with each build. This means we can update most
of our instrumentation state using just the information from
the build system. However, some of our data points rely on
data that is not readily available from tools. To solve this,
we made small modifications to some of our tools to enable
them to send data directly to the instrumentation system.
We describe this in more detail in Section 4.4.

One important concept in our instrumentation is the no-
tion of a session. A session represents the period of time for
which observations are grouped. For example, all issues that
are first seen during a particular session are considered new
for that session, and old for any subsequent sessions. In our
current implementation, we define a session as the period
from when the viewer is opened to when it is closed, but the
notion of a session is flexible enough to be defined as “every
24 hours”, or the periods when the viewer is not idle.

At the end of each session, we use SQM to transmit an
update to a central database, based on the activities that
have occurred in that session. The contents of the update
are described in more detail in Section 4.3. SQM uses this
update to aggregate counts of the issues that have been fixed,
suppressed or ignored. SQM also provides services to allow
us to pull down the data and analyze it.

4.2 Inferring the State of Issues
One of the primary challenges in constructing this instru-

mentation was inferring whether issues are being fixed, sup-
pressed or ignored. We are not parsing the source code or
even monitoring every key stroke as this would be too much
overhead. All we can see is when issues appear and disap-
pear. Based on this, we have to classify issues into one of
the three groups: Fixed, Suppressed or Ignored.

Figure 2 summarizes the conditions that determine which
group an issue is classified into. We can generally always
assume that when an issue appears in the viewer, it should
be treated as Ignored. An exception is when the issue has

Figure 2: Classifying Issues into Groups

been baselined: baselined issues can appear in the viewer if
the developer turns off the Baseline filter. We add baselined
issues to the Suppressed group. All the information needed
to make these two decisions is readily available from the
viewer.

If an issue that was previously displayed in the viewer
disappears, there are several inferences that we could make.
An issue could disappear because it was fixed, because it was
suppressed, because code churn put the issue out of reach of
the analysis or even because the containing source file was
not analyzed. We do not have enough information in the
viewer to make all these inferences, so we need to refer to
the static analysis tools to get more information. This is
another example of information that is only available to us
on the desktop.

For example, we cannot tell which issues have been sup-
pressed because we are not parsing suppress tags or pragmas
(used for source line suppression). However, we can query
tools for the full list of all issues generated before suppres-
sion is applied. Any issues in this full list that do not appear
in the viewer can be inferred to be suppressed. This strat-
egy is limited by the fact that we have many heterogeneous
tools and is not implemented for all tools (Section 4.4). So
in some cases, we may not be able to detect if an issue has
been suppressed.

Another scenario is when the source file containing an is-
sue is skipped during the most recent analysis run. This
could happen because the developer chooses to build only a
subset of files (usually done to get a faster build). It could
also be because the file is not checked out of the code repos-
itory; such files are built but not analyzed by default so that
developers are not presented with warnings in source files



they are not actively working on. Our strategy in these sce-
narios is to retain the last decision about the issue under
question. In other words, we do not move issues into the
Fixed group if its containing source file was not analyzed.
Again we run into the problem that different tools have dif-
ferent processes for indicating which files were checked, and
so this strategy is not implemented for all tools. For those
tools that do not provide information about which files were
checked, we treat all issues that disappear as fixed.

An issue may also move from one of the groups to another.
For example, if an issue that was previously marked as fixed
reappears in the viewer, it will be marked as ignored. As
the next section explains, we account for these movements
in the updates we send to the central database.

4.3 Making Instrumentation Lightweight
The last section presented some scenarios in which we

may make an inaccurate inference. For example, an issue
may be incorrectly marked as Fixed if the containing file is
not checked and the issue was generated from a tool that is
not modified to provide this information. This problem may
be corrected in a later session when the file is checked again.
This example raises the possibility that an issue may change
state spuriously many times. Most of our key questions are
focused on the final state of an issue, or more specifically of
a group of issues with common properties. This allows us to
adopt an aggregation algorithm that maintains and updates
counts of the number of issues in each group. Motivated
by the architecture of the SQM pipeline which encourages
aggregation on the server, our approach reduces the amount
of data sent to the central database, since we are concerned
with groups of issues, not individual issues.

In this approach, we group issues based on some properties
that are common to many issues, such as warning number,
the warning priority, and the binary being built. We then
keep track of all the issues in each group on the local ma-
chine and send only summaries and updates to the central
database.

Figure 3 illustrates this approach for a group of high pri-
ority issues that have warning number 100 and that occur
in code used to build shell.dll. When the developer launches
the instrumented viewer for the first time (a), all issues are
included in the Overall Ignored count. If any issues are
added during the session (b), they are included in both the
New Ignored and Overall Ignored counts. Eventually issues
are fixed or suppressed (c) according to the heuristics de-
scribed in previous sections, and those issues are subtracted
from the Ignored counts.

In the example in Figure 3, two of the new issues are fixed.
Those issues will never make it into the code repository, and
without this desktop based instrumentation, this informa-
tion would be lost. At the end of the first session (d), the
snapshot sent to the central database contains all the final
counts for this group.

This approach accounts for the possibility that changes
may occur between sessions. At the start of each subse-
quent session, it identifies any issues that changed state or
were added between sessions and reflects this in the Overall
counts (e). The New counts are also reset to zero. During
this second session, it is possible that some issues that were
previously marked as Fixed reappear in the viewer (f). This
effectively reduces the total number of fixed issues. This
change is reflected in the next update to the server at the

Figure 3: Counts for a Group of Issues

end of the second session (g), which includes a negative num-
ber for the Overall Fixed count. The update is computed
by subtracting the snapshot at the end of the first session
(c) from the snapshot at the end of the second session (f).
In this way the central database reflects the state of the
desktop after each update.

4.4 Supporting Heterogeneous Tools
Since our instrumentation is built on the static analysis

viewer that is deployed with the build system, we can receive
issues from many different tools including some that we do
not control. For most functions in our instrumentation, this
is not a problem since the build system provides common
information about all issues irrespective of the tool it came
from. For example, all issues have an associated warning
number, and the path to the containing file. However tools
sometimes used different conventions. For example some
tools provided the path to the source file containing the is-
sue, while others provided the path to a compiled binary.

Even more importantly, since we do not own all the tools,
we cannot modify some of them to get the extra informa-
tion we need to determine which issues were suppressed or
which files were checked (as described above in Section 4.2).
Even if we could modify them all, we would not want to
come up with a complicated custom solution for each one.



To help deal with this, we created a small library that could
connect an arbitrary tool to our instrumentation. Tools can
simply include this library and call its high level functions to
pass the information needed to the instrumentation. In ad-
dition, we made small modifications to some utilities shared
by many PREfast plugins to collect the data we need so that
we do not need to modify the plugins themselves.

Ultimately, we had to design our instrumentation to be
robust to the fact that some features would not be sup-
ported by all tools. Specifically, the heuristics for determin-
ing which issues were fixed or suppressed would not be as
accurate for these tools. This means that during our analy-
sis we will need to focus on the data points and aggregations
that come from tools that are fully supported. Fortunately
many of the important tools including many PREfast plu-
gins are among the tools providing full information and ac-
curate inferences.

4.5 Other Implementation Considerations
In Section 4.1, we briefly mentioned that we use a few hook

points in our static analysis viewer to add lightweight calls
to the ATMetrics library. This viewer was being actively
developed by another group and we did not want to disrupt
their process or do extensive redesign. So we inserted our
instrumentation in parts of the code where we can collect
lots of data with minimal disruption and little overhead.
Specifically, we instrumented the points where the viewer is
started and shut down, where the list of warning is updated,
and various event handlers. Our instrumentation is not a
critical function of the viewer so we ensured that under no
circumstances will these calls cause it to crash.

While most of our instrumentation focuses on collecting
counts summarizing groups of warnings, there were some
questions that required more detailed information. Specifi-
cally we wanted to capture details about individual issues in
some cases. For example, we would like to collect instances
of warnings from new analysis tools to better understand
the contexts in which they occur. We would also like to
track suppressed issues to see if they cause problems later in
the development cycle. We use random sampling to choose
a subset of issues with these characteristics, and transmit
details about where they occur with the rest of our data.

5. TEST SUITES AND PRELIMINARY
RESULTS

Prior to deploying our instrumentation, we created a test
framework to establish expected outcomes in different sce-
narios and validate our implementation. We also constructed
a micro-benchmark that we can use to configure ATMetrics
for optimal performance, and created unit tests to validate
the correctness of its components. We describe these test
suites and some preliminary results in this section. The in-
strumented static analysis viewer is currently being deployed
to some teams as part of a pilot. We expect to start receiving
data after it is widely deployed.

5.1 ATMetrics Test Framework
The test framework simulates all the scenarios we hope

to support and computes expected counts at different parts
of the instrumentation process. These counts represent the
number of warnings in the Fixed, Suppressed or Ignored
groups for each scenario. Table 1 shows some of the sce-
narios in our test framework.

FIRST Session Scenarios

No new or moved warnings

Warning Fixed in Session

Warning Suppressed in Session

Warning Added In Session

Warning Added then Fixed In Session

Warning Added then Suppressed In Session

SUBSEQUENT Session Scenarios

Warning Fixed pre Session

Warning Suppressed pre Session

Warning Added pre Session

Previously Fixed Warnings Reappear pre Session

Previously Suppressed Warnings Reappear pre Session

Warning Added then Suppressed In Session

Previously Fixed Warnings Reappear in Session

Previously Suppressed Warnings Reappear in Session

Table 1: Some Scenarios in the ATMetrics Test

Framework

There are three parts of the process used in this frame-
work: the initial state, the pre-session activity and the ses-
sion activity. The initial state specifies counts of warnings
at the beginning of the process. Before a user’s first session,
these counts are all zero, but for subsequent sessions, these
counts are the values recorded at the end of the previous
session. For example the following table represents sample
counts for a user who has used the static analysis viewer
before1:

InitState

F S I Sum
5 5 5 15

We represent counts from this part of the process with the
InitState variable. The counts from the initial state will
affect counts in other parts of the process.

The pre-session activity specifies counts of issues that were
added or moved since the end of the last session, but before
the beginning of the next session. Here we break up this
part into two variables: PreAdded and PreMoved. PreAdded

represents the number of issues added to the code base be-
fore the next session. Of course, we cannot add issues to
the Fixed group because only previously seen issues can be
fixed. Issues can be added to the Suppressed group if they
are added to the baseline. In the following table, three warn-
ings are added to the code base before the session, with one
of them added to the baseline. This represents the scenarios
“Warning Suppressed pre Session” and “Warning Added pre
Session” from Table 1.

PreAdded

S I Sum
1 2 3

PreMoved represents previously seen issues that move to
a different group before the next session. We use PreMoved-

1The counts are for a group of issues with the same warning
number, priority and binary as in Figure 3



to represent the values subtracted from each group, and
PreMoved+ to represent the values added to each group. We
also give the counts in PreMoved- a negative sign so that all
the counts add up to zero. Of course the values in PreMoved

are constrained by the values in InitState. In the follow-
ing table, one of the five fixed warnings (from InitState)
is moved to the Ignored group. Similarly, one suppressed
warning is moved. This represents the scenario “Previously
Fixed/Suppressed Warnings Reappear pre Session”.

PreMoved- PreMoved+

F S I F S I Sum
-1 -1 0 0 0 2 0

Finally, the session activity represents the counts observed
during the session. Here we separate the counts for previ-
ously seen issues from those for new issues. Previously seen
issues can be moved from one group to another (represented
by InMoved), while new issues are first added (represented
by InNewAdded) and then potentially moved to a different
group later in the session (represented by InNewMoved). The
counts in InNewMoved are constrained by the corresponding
values in InNewAdded, while the counts in InMoved are con-
strained by the corresponding values from the sum of Init-
State, PreAdded and PreMoved. In the following tables, four
old issues are fixed and two are suppressed during the ses-
sion. Meanwhile four new issues are added, three of which
are resolved (one fixed, two suppressed).

InMoved- InMoved+

F S I F S I Sum
0 0 -6 4 2 0 0

InNewAdded

I Sum
4 4

InNewMoved- InNewMoved+

S I F S I Sum
0 -3 1 2 0 0

With this arrangement of counts into three parts, we can
now easily compute the expected counts at the end of the
session. Each count in the following table is computed by
adding the corresponding values in all the tables above. For
example, the final number of suppressed warnings is 5+1−
1 + 2 + 2 = 9.

F S I Sum
9 9 4 22

With this final count information, we can also compute the
expected update transmitted at the end of the session similar
to the way this was computed in Figure 3. In other words,
we compute the Overall counts by subtracting InitState

from the final counts above, and compute the New counts by
adding the values from corresponding groups in InNewAdded

and InNewMoved.

Overall New
F S I F S I
4 4 -1 1 2 1

We can use this test framework to represent different sce-
narios by changing the non-computed counts in the preced-
ing tables. We use these counts as inputs to a test suite that
exercises our implementation such that these values are ob-
served at the different parts of the process. We can then
compare the values transmitted by the implementation to
the computed expected outcomes. In this way, we were able
to validate that our implementation matches the outcome in
the framework.

5.2 Other Test Suites
We created a micro-benchmark that contains configurable

performance tests used to exercise our implementation un-
der various loads. These tests simulate the critical developer
activities, i.e. they generate warnings from a build and aux-
iliary information from tools, load issues into the viewer, and
fix or suppress some issues. Based on the performance of the
implementation, we can set thresholds on the number of is-
sues that can be instrumented. Since this instrumentation
is best effort, we prefer to turn it off and lose information if
there are too many warnings than to allow the user to expe-
rience performance degradation. Our goal is for ATMetrics
to cost less than 1% in overhead to the static analysis viewer.

We also created unit tests to validate the correctness of
the implementation. The tests help to verify the robustness
of the implementation. This means that even if a component
fails, or the persistent state containing counts is corrupted,
the viewer should not crash.

6. USER FEEDBACK
While our instrumentation focuses on accurately identify-

ing some quantitative trends, we also need to complete the
picture by talking to users. We conducted informal inter-
views with some users to get qualitative information about
their experiences and perspectives on static analysis tools.
We interviewed six senior developers who each have several
years of experience using our tools. These interviews and
the opinions stated are not representative of all the devel-
opers we support, but provide us with useful ideas that we
can consider when making business decisions and that we
can validate using our instrumentation. We overview some
observations from these interviews in this section.

6.1 On Fixing Issues
Most users reported that they usually addressed all the

high priority issues, and one user working with a security
team aimed to fix all issues, including low priority warnings.
When working on new code, users usually fixed issues just
before checking code into the source repository. But many
of our users also worked on code owned by someone else;
in this case, they would wait for issues to be flagged by
the overnight build and focus on those issues, to minimize
changes to someone else’s code.

Some users pointed out that close to milestones, the em-
phasis is usually on minimizing code changes, so only the
most serious issues are fixed. Alternatively, during devel-
opment cycles dedicated to cleaning up code (often after
a major release), teams usually devote resources to wade
through lower priority issues and warnings flagged in legacy
code.

Obviously the type of warnings that interest users depend
on the nature of the code they work on. Many of our inter-
viewees worked with unmanaged C and C++ code that often



included large legacy components. Hence they were most in-
teresting in problems related to potential buffer overflows.
They also reported that many of the warnings pointed to
missing annotations and unused variables.

Users perceived that most issues were worth fixing, though
they mentioned that sometimes it was necessary to suppress
issues or rewrite the code to make the warnings go away.
One user mentioned that this would often happen when code
conventions in legacy code did not match the expectations of
the tools, and refactoring would be burdensome and poten-
tially error prone. For example, different legacy components
may have different conventions for dealing with error states
including returning status codes or throwing exceptions.

In general, care was needed to effectively use tools on
legacy code. One user reported that anytime a legacy rou-
tine was touched, the developer was expected to clean up any
old warnings that may be present. But in general, users pre-
ferred to address issues in legacy code as part of a dedicated
cleanup cycle. Some users credited an “auto-fix” feature in
some tools (used to automatically correct some problems) as
one property that made the cleanup process feasible. One
user cautioned that assigning the task of cleaning up issues
in legacy code to junior developers or contractors can some-
times lead to regressions because they are not as familiar
with the code. Outside the cleanup cycle, any new legacy
issues (i.e. issues found by new or modified static analysis
techniques) need to be added to a baseline so developers can
focus on problems in new code.

6.2 On the Importance of Static Analysis
All our interviewees felt that using static analysis was

worthwhile, though most emphasized the relative impor-
tance of code review and testing. These different quality
assurance methods find different kinds of problems and so
all are necessary. Static analysis can be exhaustive, and in-
creases the confidence users have in their code. Some users
also reported changing their programming style to avoid
static analysis warnings, leading to more maintainable code.
Even with these sentiments, one user still expressed the im-
portance of reducing the “noise” or false positives in tools,
saying that tools with less noise are taken more seriously.

7. RELATED WORK
One popular framework for instrumenting software devel-

opment activities is Hackystat [8, 7]. Hackystat is a gen-
eral purpose framework that enables software projects to
define, collect and analyze a wide variety of metrics. The
data collection system we used, SQM, was designed for ro-
bust lightweight collection from millions of customers, not
just software teams. We chose to use SQM because it is
supported within Microsoft and widely used in many prod-
ucts. But we still had to make many of the same considera-
tions and tradeoffs Hackystat users make including assuring
data correctness, distinguishing files and projects, making
the system configurable, and scaling to potentially millions
of data points.

We believe this is the first project to focus on collecting
metrics on static analysis usage from the desktop in an in-
dustrial context. In earlier work, Ayewah used Hackystat to
collect metrics in a controlled lab environment where many
of the challenges we describe do not come up [1]. Here the
goal was to monitor the activities of user study participants
who were asked to review a few static analysis warnings. The

instrumentation enabled the authors to capture the user re-
views, how long they spent on each issue, and which files
and IDE resources they used when making their decisions.

Several related studies have explored various ways of fig-
uring out which static analysis warnings are important, or
understanding how users interact with static analysis. Some
studies have users review warnings and provide feedback di-
rectly to researchers. Ayewah and Pugh observed in lab
studies that users review issues fairly quickly and consis-
tently, indicating a low cost associated with their usage [1,
2]. The studies also identified bug patterns that users viewed
as most important. Lab studies are useful for focusing on a
narrow scope of issues but results may not generalize to all
scenarios. Other studies identify the important warnings in-
directly by seeing which ones developers fix. Ruthruff et al.
[15] create models to predict which warnings will be fixed
based on the characteristics of warnings fixed in the past.
Kim and Ernst examine open source projects that did not
necessarily use static analysis tools to see which warnings
were removed as a result of other quality assurance activ-
ities as a measure of the importance of the issues [10, 9].
These studies only capture warnings that make it into the
code repository but we believe that many serious issues are
caught on the desktop using other quality assurance pro-
cesses. In future work, we hope to apply some of the tech-
niques in these studies on the warnings we observe on the
desktop.

Ultimately, we would like to more concretely demonstrate
the cost benefits of using our tools. We can learn from the
experiences of other researchers evaluating tools and unit
test order. Jaspan et al. measure the return on investment
of using a static analysis tool by comparing it to the costs
and benefits of manual testing [6] and conclude that static
analysis is very worthwhile. Do et al. use cost benefit analy-
sis to change the order in which unit tests are run to ensure
that the most important tests are run first [5].

8. CONCLUSIONS AND FUTURE WORK
We have successfully built and deployed an instrumen-

tation framework to collect more metrics on how our static
analysis tools are used. In particular we can now collect data
on activities on the desktop that would previously have been
lost. This is of particular value to us because we believe that
many of the warnings that our users receive are fixed in the
developers’ workspaces before they commit any code to the
source repository. Through this project, we learned that in-
strumenting analysis tools on the desktop is feasible, but can
be challenging because of the need to infer developer activ-
ities with limited information and because of heterogeneous
tools.

Going forward we plan to use this data to identify issues
that occur a lot, and those that are fixed or suppressed at
high rates. We can use this information to tweak our anal-
ysis or change the severity levels of warnings. We also plan
to look for trends among developers and groups, and com-
pare our observations with internal business metrics used to
measure the quality of components. This information will
enable us to make a stronger case for the return on invest-
ment from using static analysis. In the future, we expect
that this work can be adapted to instrument some of the
other analysis technologies we support including code cov-
erage and binary analysis.
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