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ABSTRACT 
 
Traditional Text-Dependent Speaker Recognition (TDSR) 
systems model the user-specific spoken passwords with 
frame-based features such as MFCC and use DTW or HMM 
type classifiers to handle the variable length of the feature 
vector sequence. In this paper, we explore a direct modeling 
of the entire spoken password by a fixed-dimension vector 
called Compressed Feature Dynamics or CFD.  Instead of 
the usual frame-by-frame feature extraction, the entire 
password utterance is first modeled by a 2-D Featurogram 
or FGRAM, which efficiently captures speaker-identity-
specific speech dynamics. CFDs are compressed and 
approximated version of the FGRAMs and their fixed 
dimension allows the use of simpler classifiers. Overall, the 
proposed FGRAM-CFD framework provides an efficient 
and direct model to capture the speaker-identity information 
well for a TDSR system. As demonstrated in trials on a 344-
speaker database, compared to traditional MFCC-based 
TDSR systems, the FGRAM-CFD framework shows quite 
encouraging performance at significantly lower complexity.  

Index Terms— Speech Features, Text-Dependent Speaker 
Recognition 
 

1. INTRODUCTION 

Conventional Text-Dependent Speaker Recognition (TDSR) 
systems [2] use a unique password for each user and from 
the spoken password derive the user-identity by typically 
extracting frame-by-frame spectral features like MFCC[1,2]. 
Due to the natural variations of the speaking-rate, even if the 
same speaker says the same password twice, the length of 
the feature-vector sequence varies from one password to 
another. To compare two such variable-length spoken 
passwords, conventional TDSR methods employ dynamic 
classification techniques, such as DTW [9] or HMM [4].  
DTW based TD systems capture the speaker-specific speech 
dynamics information as multiple raw templates of the 
feature-vector sequences extracted from training data and 
excellent results were reported for TDSR applications in [9].  
HMM based TD methods capture the speaker-specific 
speech dynamics as adapted HMMs, one for each user. 
Excellent results have also been reported in the past using 
these schemes [4, 5, 8]. However, both DTW and HMM 
based TDSR methods, require a good amount of storage and 
computational complexity. Some of the HMM based 
systems [6, 8] also require a full-blown ASR engine as part 

of the system. In all of these conventional TDSR systems, a 
frame-by-frame extraction of features and spectral-envelope 
only features, such as MFCC, have been used. 

In this paper, we explore two main ideas. First, we 
propose that for text-dependent speaker recognition where 
each speaker is using a unique password, it is better to 
consider the entire password as a whole entity as opposed to 
looking at it frame-by-frame which makes it too granular. 
We propose a direct model of the spoken password using a 
framework we call FGRAM-CFD. In this framework, the 
entire password utterance is first represented by a 2-D time-
feature representation we call “Featurogram” or FGRAM, 
which is like an “image” of the speaker-identity-
information. FGRAM is found to be a powerful feature for 
speaker recognition as shown in later sections. CFDs are 
compressed versions of FGRAMs which even though 
compressed do retain the discriminatory power of the 
FGRAMs. Thus with the proposed FGRAM-CFD direct 
model, each password, irrespective of the length of 
utterance, is now represented by a fixed dimension CFD 
feature vector. For example, a 3 second long password will 
be represented by a vector of size 143 (as compared to 
39x300 numbers in conventional MFCC+Delta feature 
representation). This reduces storage complexity but more 
importantly this new CFD feature allows a TDSR system to 
use simple classifiers as the variable-dimensionality 
problem is solved. To compare two passwords of different 
length we no-longer need any dynamic programming type 
methods such as DTW [9]. As a result, overall storage and 
computational requirements are greatly reduced. 

The second key suggestion of our paper is to look 
beyond features specific to the spectral-envelope (e.g. 
MFCC) and to use the entire signal content. Speech 
production is modeled as a convolution of an excitation 
signal with a spectral-envelop or glottal-shape function. 
Thus, by using spectral-envelop-type features such as 
MFCC, we are not utilizing a lot of speaker-specific 
information contained in the excitation part, such as pitch, 
harmonics, extent of voicing, etc. In this paper, we explore a 
properly resolved spectrogram as an FGRAM feature which 
represents the entire signal. The results show that looking at 
information beyond spectral-envelope indeed does help as 
spectrogram-CFD performs better than MFCCgram-CFD. 
Combining multiple types of FGRAMs also helps to 
enhance performance. It also helps to combine the frame-
by-frame MFCC feature and the direct-model CFD feature 
as seen in the hybrid FGRAM-CFD framework proposed 
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here for a TDSR system we are building for in-office log-
in/access control type applications. Our paper is organized 
as follows: Section 2 presents the proposed FGRAM-CFD 
approach and section 3 presents the multi-CFD speaker 
recognition method. Section 4 details the experimental 
comparisons with conventional TDSR methods. Section 5 
presents the results. Finally section 6 presents the 
conclusions and future directions. 
 

2. FGRAM-CFD: A DIRECT MODEL OF SPOKEN 
PASSWORD FOR SPEAKER RECOGNITION 

We believe that the speaking style of a person is embedded 
in the temporal dynamics of the speech feature and therefore 
for speaker recognition it is beneficial to capture the 
complete time-feature dynamics of the entire password. The 
proposed FGRAM feature does capture the feature 
dynamics of the whole password and captures the speaker-
identity quite well.  This is illustrated in Figure 1 which 
shows the spectrograms of passwords spoken by the client 
speaker and imposters in a TDSR system. Note the within-
speaker similarity (client case) and across-speaker 
divergence (for both known and unknown password cases).   

 
 
                                                                                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Spectrogram of same passwords spoken by client-speaker at two 
different times (T & T1 – client-case); The same password spoken by 
imposters (K1 & K2 – known-password imposter case); Passwords 
(different than client) spoken by other imposters (U1, U2: unknown-
password-imposter case - imposter guessing password of the client.). 
   As seen in figure 2, an N1xK size FGRAM is formed by 
simply stacking the N1, K-dimensional feature-vectors 
extracted from the N1 frames of the password. In this paper, 
we explore the use of two types of FGRAMs namely a) 
Spectrogram and b) MFCC-FGRAM, formed by stacking K-
dimension MFCCs. Clearly the 2-D FGRAM feature does 
capture a lot of information about the speaker-identity by 
taking a “snap-shot” of the entire password.  But an 
FGRAM would require lots of numbers to store. Also the 
variable-dimensionality of the X-axis of the FGRAMs 
remains a problem. 
   Both these problems are solved by the 2nd step of our 
FGRAM-CFD framework as we convert each FGRAM 

image to a compressed and fixed-dimension CFD vector by 
applying a 2-D  Discrete Cosine Transform to the FGRAM 
followed by a specific truncation of  the DC-coefficient and 
the higher order DCT coefficients as shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Formation of FGRAM & FGRAM-CFD from a spoken password  

Thus the proposed FGRAM-CFD framework directly 
models the spoken passwords by this M-dimension CFD 
vector. Even though the information is compressed, CFD 
retains the discriminative power of the original FGRAM as 
shown in Figure 3 below. The “visual” discrimination 
evident in the FGRAMs of Figure 1 is retained in the CFDs 
as shown by the quantitative distances in Figure 3.  
 
 
 
 
 
 
 
 
Figure 3: CFD comparisons (target-to-target and target-to-imposter) for the 
same password-spectrograms shown in Fig 1. 

Overall, the FGRAM-CFD direct model offers the 
following benefits: a) it captures speaker-identity 
information contained in the spoken password in a more 
holistic manner  than frame-by-frame features which are too 
granular, b) it offers a compact and fixed-dimension 
representation of the spoken password, c) it allows easy 
comparison of two passwords and therefore allows the use 
of simple classifiers, and d) it provides an easy “integration” 
of any type of new speakerID features as in [7] to this 
FGRAM-CFD framework.  
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3. A TWO-STAGE HYBRID MFCC+MULTICFD 
FRAMEWORK FOR TD SPEAKER RECOGNITION 

For our main objective of building an efficient TDSR 
system for office login/access-control, we propose a nearest-
neighbor classifier based framework which utilizes all 
available information in the spoken password judiciously, 
namely frame-by-frame MFCC feature as well as the direct 
model FGRAM-CFD features using multiple types of 
FGRAMs. The key steps are described next: 
System Parameters: U: total number of users; F: number of 
different types of FGRAMs used; K: dimension of per-frame 
MFCC feature; M: dimension of CFD; T: no of password 
templates for training; L: MFCC-VQ CB size; 
Training: For each user Pu, from the T training templates, design 
F CFD codebooks CCBk

u of size TxM, k=1,2,…,F; one for each of 
the F types of FGRAMs. Also use conventional VQ methods [10] to 
design a MFCC VQ codebook MCBu of size LxK from MFCCs 
extracted from all T password training-templates of user Pu.  

Test: Given a test password having N1 frames, generate MFCC 
vectors Vj, j=1,2,…,N1 and F FGRAM-CFDs Wk , k=1,2,…,F. 
Given an identity-claim of “c” (i.e. it is spoken by user Pc), 
compute two inverse-likelihood-ratios RCFD and  RMVQ as follows: 

RMVQ = TGT(j) / NEXT(j);     DTGT  and DNEXT  being: 

DTGT (j) is the minimum distance of Vj from MFCC codebook 
MCBc of claimed person Pc, DTGT(j) = min{Dm}, Dm= ||Vj – 
MCBcm||2, m=1,2,…,L. 

DNEXT (j) is the minimum distance of Vj from the set of all 
codebooks of all other users except Pc ,DNEXT(j) = min{Dmn};  
Dmn=||Vj – MCBmn||

2, m=1,2,…,L;   n=1,2,..,.U; n c. 

For each of the F types of FGRAMs, the RCFD(k) ratio is computed 
from the corresponding CFD Wk as follows: 
RCFD (k) = Dk

TGTCFD / Dk
NEXTCFD ; where Dk

TGTCFD  is the minimum 
distance of the test CFD vector Wk  from CFD codebook CCBk

c of 
the claimed person Pc, Dk

TGTCFD = min{Dk
m}, Dk

m=||Wk – 
CCBk

cm||2, m=1,2,…,T,  and DNEXTCFD  is computed in the same 
manner as  DNEXT  above, but using CFD codebooks. 
Then either SUM or PRODUCT fusion are used to combine the 
RCFD(k) scores of the F different FGRAMs to form  the final RCFDF 
score as: 

RCFDF = CFD(k)  or   RCFDF = CFD(k)   

The final scoring ratio Rf is computed as Rf = RMVQ * RD where 
RD is defined as: 
    RD  =  1    if RMVQ < L   or  RMVQ > H 

          = RCFDF  otherwise. L H]: pre-determined constants.  

The final decision is made as follows: For speaker verification, we 
compare Rf with a threshold  and accept the claim if Rf  <  and 
reject otherwise. For speaker identification, the user for which Rf 
< 1 is chosen as the identified user. This way, both the frame-by-
frame MFCC feature and the direct-model CFD feature from the 
entire password are utilized. Note that the 1st stage MFCC-VQ is 
used as a pre-selection step which enhances the performance. 
 

4. EXPERIMENTAL DETAILS AND DATABASE  

For our research, we needed a TDSR database having a 
large number of “client” speakers saying their unique 

passwords several times as well as many “imposter” 
speakers saying random passwords (unknown password 
imposter) as well as passwords of other clients (known-
password imposter). We could not find any such publicly-
available database. The closest one is LDC-YOHO but it 
does not offer several versions of the unique client 
password. Therefore, for this research and for our objective 
to build a TDSR system for office log-in/access-control we 
created our own TDSR database having 344 speakers 
recorded in realistic office environment with usual office 
noise and SNR conditions (i.e. not a clean studio recording) 
over a period of 9 months.  
      This MSR TDSR database is publicly available (please 
contact the main author) for research purpose and we 
encourage the speaker recognition community to use it as it 
is really a good database for Text-Dependent Speaker 
Recognition research with ample examples of realistic client 
and imposter (both known and unknown-password) 
passwords in actual office environment, containing for each 
speaker 15-20 utterances of his/her unique password, 0-8 
known-passwords of other speakers, and 6-10 random 
passwords.  More details of this TDSR database can be 
found in [11].  

For baseline comparison we used a password-HMM 
TDSR system as in [4] using 39 dimension MFCC+Delta 
feature. Several system combinations were tried and the 
combination of 12 password templates for training, 12 states 
and 4 mixtures per state gave the best performance and this 
combination is used as the baseline. We also used the DTW 
TDSR system as in [9] as baseline which reported excellent 
results using dynamic programming with multiple password 
templates per user. Same MFCC+Delta feature was used 
and 6 password templates were used for training. As the 
proposed framework is for a TDSR system, we have not 
included any TI (text independent) methods such as GMM 
[1] or GSV as baseline. Usually TD methods [2] deliver 
better performance than TI methods. TI methods also do not 
perform well for test utterance of short duration like our 
typical 2-second long passwords. We did not implement the 
HMM system in [8] yet but plan to do so in near future.   

For the proposed CFD system, we have chosen the 
system parameters as: No. of password templates for 
training: T=4; [ L, H] = [0.95, 1.1]; VQ CB size=8x9; CFD-
dimension M is chosen as 143 (see Table 1 which shows the 
impact of M on the speakerID performance). An appropriate 
“end-pointing” (EP) method removes the silence/noise part 
of the spoken passwords before forming the FGRAM.  

All system conditions including the cohort 
normalization, end-pointing, the 1st-stage VQ-gating are 
kept the same for the baseline systems. Only differences are 
that the baseline systems used more training templates and 
the conventional MFCC+Delta feature. All passwords other 
than those used for training are used for testing. This created 
a total 1573 identification trials and 4257 verification trials 
(1573 target and 2684 imposter trials in which 1111 are 
known-password-imposter trials).  
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5.    RESULTS AND DISCUSSIONS 

Table 1 shows the impact of the CFD dimension M on 
performance, Table 2 presents the impact of the various 
combinations of the CFD framework and Table 3 compares 
the CFD framework with the baseline methods. In Table 2, 
the “CFD-alone” row indicates a condition when the 1st-
stage VQ pre-selection is not used. The “two-stage” row 
represents the proposed two-stage framework which works 
better than the “CFD-alone” condition. Also we see that 
spectrogram-CFD performs better than MFCCgram-CFD, 
i.e. for speaker recognition it is beneficial to include 
information from the entire speech signal as compared to 
using only spectral-envelope type information. Sum fusion 
of the two FGRAMs gives the best result for both 
identification and verification tasks.  Note that the speaker 
verification results reported here are for the tougher 
“known-password” condition. For the unknown-password 
condition, the results are significantly better. 

M 15 35 63 99 143 224 
SID Err. (%) 22.83 10.67 9.33 7.67 5.67 6.17 

Table 1: Impact of CFD dimension M on Speaker ID performance (100 
speaker; 4 templates/speaker; 600 trials; Spectrogram as FGRAM) 

  Spectro 
gramCFD 

Mfcc 
gramCFD 

Product 
Fusion 

Sum 
Fusion 

  SID  
     %Error 

CFD-alone 5.9 6.2 0.121 0.112 
Two-Stage 1.2 1.6 0.110 0.001 

SV  
     %EER 

CFD-alone 3.8 4.7 1.651 1.550 
Two-Stage 0.92 0.95 0.420 0.108 

Table 2: Performance of various combinations of proposed CFD system 

Comparisons DTW HMM FGRAM-CFD  
SID performance (%Error) 0.93 0.32 0.001 
SV performance (%EER) 4.9 2.3 0.108 
Storage (no. to store) 15.6K 3.8K 600 
Complexity (no. MPY-ADD) 12.5M 1.2M 300K 

Table 3: Performance and complexity comparisons of proposed FGRAM-
CFD method (two-stage-with-sum-fusion) with baseline methods 

As seen in Table 3, the proposed FGRAM-CFD 
framework offers encouraging performance compared to 
conventional TDSR baseline at a significantly lower 
complexity. Especially for the tougher known-password 
speaker verification condition, the CFD method performs 
better. Note that the CFD method used 4 password templates 
per user for training, while the DTW and HMM methods 
used 6 and 12 respectively. We have kept it low for the CFD 
system because in reality people do not want to “record” 
many password templates during enrollment.  

6. CONCLUSION AND FUTURE DIRECTIONS 
We presented a new and interesting approach to text-
dependent speaker recognition by directly modeling the 
spoken password by a fixed dimension FGRAM-CFD 
vector. In contrast to traditional frame-by-frame processing, 
(which we feel is too granular) the proposed FGRAM-CFD 
framework enables us to look at broader speaker-specific 
 

 speech dynamics contained in the entire span of the spoken 
password. The CFD vector, though an approximation, still 
retains the discriminating power of the 2-D FGRAMs. Fixed 
dimensionality of CFD allows one to use simpler classifiers, 
as there is no more any need to use complex dynamic 
programming method like DTW to handle the variable 
dimensionality factor (as needed in traditional frame-by-
frame MFCC type feature based systems). This creates a 
powerful and discriminatory model for TDSR while keeping 
the storage and computational complexity low.  
     We also explored spectrogram as an FGRAM and found 
that it works better than MFCCgram. This clearly shows that 
is useful to look beyond the presently-popular spectral-
envelop-only information as MFCC and incorporate more 
information from the entire speech signal. Experimental 
evaluation on a large 344 speaker TDSR database had 
shown that the proposed FGRAM-CFD TDSR framework 
delivers quite encouraging performance, as good as 
conventional TDSR methods, while using significantly less 
computational and storage requirements. 

The FGRAM-CFD paradigm detailed here presents an 
interesting approach to model variable-length speech 
segments of interest and thus we are exploring the use of the 
FGRAM-CFD model for other speech applications as well.  
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