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ABSTRACT

We recently proposed a new algorithm to perform acoustic model
adaptation to noisy environments called Linear Spline Interpolation
(LSI). In this method, the nonlinear relationship between clean and
noisy speech features is modeled using linear spline regression. Lin-
ear spline parameters that minimize the error the between the pre-
dicted noisy features and the actual noisy features are learned from
training data. A variance associated with each spline segment cap-
tures the uncertainty in the assumed model. In this work, we extend
the LSI algorithm in two ways. First, the adaptation scheme is ex-
tended to compensate for the presence of linear channel distortion.
Second, we show how the noise and channel parameters can be up-
dated during decoding in an unsupervised manner within the LSI
framework. Using LSI, we obtain an average relative improvement
in word error rate of 10.8% over VTS adaptation on the Aurora 2
task with improvements of 15-18% at SNRs between 10 and 15 dB.

Index Terms— robust speech recognition, model adaptation

1. INTRODUCTION

Acoustic model adaptation has been proposed as a method of im-
proving speech recognition performance in noisy environments.
Some adaptation methods operate in a data-driven manner, but bet-
ter performance is typically obtained by algorithms that utilize the
known relationship between clean speech, noise, and noisy speech.
However, because this relationship is nonlinear in the feature do-
main, the best way to exploit this relationship is an open question.

Several different methods for handling this nonlinearity have
been proposed. For example, in data-driven Parallel Model Com-
bination, Monte Carlo sampling is used to generate samples from
the constituent speech and noise distributions which are then used
to estimate the parameters of the resulting noisy speech distribution
[1]. In Vector Taylor Series (VTS) adaptation, e.g. [2], the non-
linear function that describes noisy speech features as a function of
the clean speech and noise features is linearized around expansion
points defined by the speech and noise models. In [3], an Unscented
Transform is used to estimate the noisy speech distribution using a
small number of speech and noise sample points.

We recently introduced a novel HMM adaptation scheme called
Linear Spline Interpolation (LSI) [4]. In LSI, the relationship be-
tween the a priori and a posteriori SNRs in the log mel spectral
domain is modeled using linear spline regression. Adaptation is per-
formed by linearly transforming the a priori SNR to obtain an esti-
mate of the a posteriori SNR . This transformation is determined by

∗A portion of this work was performed while the author was an intern at
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interpolating the parameters of the linear spline. Finally, the noisy
speech distribution can be determined from the distribution of the a
posteriori SNR .

The proposed algorithm has two key advantages. First, the
spline parameters are learned from training data. Unlike VTS, the
linearization is not restricted to be tangent to the nonlinear function
that defines the relationship between clean and noisy speech. Rather,
the algorithm can find any set of spline parameters that minimize
the error between the predicted and actual noisy speech features.
Second, because each line segment has an associated variance, we
can capture the uncertainty due to the phase asynchrony between the
clean speech and the additive noise [5]. In almost all other model
adaptation schemes, this source of uncertainty is ignored.

In this paper, we improve the Linear Spline Interpolation algo-
rithm in two ways. First, we extend the formulation to compensate
for linear channel distortion, i.e. spectral tilt, in addition to additive
noise. Second, we derive the update equations required to perform
unsupervised online re-estimation of the noise and channel parame-
ters during decoding. As the experimental results show, both of these
contribute to significantly improved speech recognition accuracy.

2. TRANSFORMING PRIOR SNR TO POSTERIOR SNR

If x, n, h, and y are the log mel spectral representations of the clean
speech, noise, channel and noisy speech, respectively, then the noisy
log mel spectrum y can be expressed as

y = n + log(1 + e(x+h−n) + 2αe(x+h−n)/2) (1)

where α is a random variable that represents the relative phase be-
tween the clean speech and the noise [5]. Because the expected value
of α = 0, most model adaptation and feature enhancement algo-
rithms in the literature ignore its effect and operate on the simplified
expression y = n + log(1 + e(x+h−n)). If we define x̃ = x + h as
the (possibly) filtered version of clean speech, this expression also
shows the relationship between the a priori SNR u = x̃− n and the
a posteriori SNR v = y − n in the log mel spectral domain:

v = log(1 + eu) (2)

Figure 1 shows a two-dimensional histogram of the a priori SNR
versus the a posteriori SNR for the 12th log mel spectral component,
derived from the clean and multi-condition training data of the Au-
rora 2 corpus. As the figure shows, the mode of the data lies on
the line defined by (2). However, the data has significant variance
around this mode as a result of the phase asynchrony between the
clean speech and the noise. By modeling this variance explicitly,
Linear Spline Interpolation can achieve more accurate model adap-
tation.
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Fig. 1. 2-D histogram of u vs. v for the 12th log mel coefficient,
showing the variance of the data. The mode of the data given by (2)
and trained linear spline with 10 segments are also shown.

3. LINEAR SPLINE INTERPOLATION

3.1. Linear spline regression

In linear spline regression, pairs of data (x, y) are modeled by a
series of segments, where each segment is modeled using linear re-
gression. The regression parameters are computed under the con-
straint that neighboring regression lines must intersect at the segment
boundaries, called knots.

In the proposed algorithm, we model the relationship in (2) by
a linear spline regression composed of K segments, where the kth
segment is defined as

v = aku + bk + εk, ∀ Uk−1 < u ≤ Uk (3)

where ak, bk, and εk are the slope, y-intercept, and error of the kth
line segment, respectively, and Uk−1 and Uk are the knots that define
the segment boundaries. In each segment, the error εk is modeled as
a zero-mean Gaussian with variance σ2

εk
. To find the set of spline

parameters given a set of knot locations, we minimize

Nk∑
n=1

{akun + bk − ln(1 + eun)}2 , Uk−1 < un ≤ Uk (4)

where Nk is the number of samples that lie in the kth segment. Note
that we are minimizing the distance to the mode of the data given
by (2). The parameters that minimize (4) for all K segments and
satisfy the adjacency constraints are found by solving a system of
linear equations, as described in [6]. As shown in Figure 1, the linear
spline regression closely approximates the nonlinear function in (2).

3.2. Minimum Mean Square Error Estimate of Noisy Speech

We can use the linear spline to construct an MMSE estimate of y
given x and n. To do so, we first construct an MMSE estimate of
the a posteriori SNR v given the a priori SNR u. This estimate is a
weighted sum of the means of the segment-conditional posterior dis-
tribution p(v|u, k) = N (v; aku + bk, σ2

εk
), and can can be written

v̂ =
∑

k

wk

∫
vp(v|u, k)dv =

∑
k

wk(aku + bk). (5)

where wk represents the probability that u lies in the kth line seg-
ment. We compute wk as

wk = p(k) =

∫
p(k, u)du =

∫
p(k|u)p(u)du (6)

where p(k|u) = δ(u ∈ (Uk−1, Uk]), i.e. p(k|u) = 1 if u is in the
kth segment and 0 otherwise. Of course, if u is known, then p(u) is
also a delta function at the value of u, and wk = 1 for the segment
containing u, and wk = 0 for all other segments.

By substituting the definitions of u and v into (5) and rearrang-
ing terms, the MMSE estimate of y can be computed as

ŷ = (1 − ∑
k wkak)n + (

∑
k wkak)(x + h) +

∑
k wkbk (7)

4. HMM ADAPTATION USING LINEAR SPLINE
INTERPOLATION

Our goal is to estimate the parameters of the noisy speech distribu-
tion p(y). The mean of y is computed by applying the expectation
operator to both sides of (7). The variance can then be computed
from the second moment E[y2] and the estimate of the mean of y.
This gives the following estimates of the mean and variance of p(y)

μy = (1 −
∑

k

wkak)μn + (
∑

k

wkak)(μx + μh) +
∑

k

wkbk

(8)

σ2
y = (1 −

∑
k

wkak)2σ2
n + (

∑
k

wkak)2σ2
x +

∑
k

w2
kσ2

εk
(9)

In the previous section, it was assumed that u was known. As
a result, wk was 1 for the segment that bounded u and 0 otherwise.
In the model domain, u is unknown, and therefore wk is computed
based on the probability distribution of u. If we assume that x and n
are independent Gaussian random variables then u is also Gaussian
with mean μu = μx − μn and variance σ2

u = σ2
x + σ2

n. Using this
distribution for u and (6), we compute wk as

wk =

∫ Uk

Uk−1

p(u)du = Φ(Uk; μu, σ2
u) − Φ(Uk−1; μu, σ2

u) (10)

where Φ is the continuous density function (CDF) of a Gaussian
distribution, and {Uk−1, Uk} are the knots of the kth segment.

The adaptation formulae in (8) and (9) are valid for log mel spec-
tral components. To transform these to the cepstral domain, we de-
fine the following terms

A = diag
(∑

k w1ka1k, · · · ,
∑

k wLkaLk

)
(11)

b =
[∑

k w1kb1k, · · · ,
∑

k wLkbLk

]T
(12)

Σε = diag
(∑

k w2
1kσ2

ε1k
, · · · ,

∑
k w2

Lkσ2
εLk

)
(13)

where
{
alk, blk, σ2

εlk

}
are the spline parameters for the kth spline

segment of the lth log mel coefficient. We additionally define
e = Cb, F = CAD and G = I − F , where C is the trun-
cated DCT and D is the pseudo-inverse of C . The cepstral model
parameters can now be transformed as

μy = F μx + Gμn + es (14)

Σy = F ΣxF T + GΣnGT + CΣεC
T

(15)

Note that even though Σy is a full matrix, we assume it is diagonal
for decoding purposes.

The adaptation equations for the dynamic model parameters are
similar to the static parameters. They have been omitted for space
considerations but can be found in [4].
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5. UNSUPERVISED NOISE AND CHANNEL
RE-ESTIMATION USING LSI

In [4], LSI was used to perform HMM adaptation for a fixed estimate
of the noise parameters and no channel distortion (μh = 0). We now
show how the noise and channel parameters can be re-estimated in
an unsupervised manner using a Generalized EM approach. We start
with the following auxiliary function

Q(λ, λ̂) =
∑
t,s

γts log(p(yt|s, m, λ)) (16)

where γts is the posterior probability of Gaussian component s oc-
curring at frame t given the observation sequence and p(yt|s, λ) =
N (yt, μy,s,Σy,s) is the likelihood of the observation under the
adapted LSI model.

5.1. Re-estimation of the noise and channel means

The re-estimation formulae for the noise mean can be determined by
taking the derivative of (16) with respect to μn and setting the result
equal to 0. Solving for μn, we obtain

μn =

( ∑
t,s

γtsG
T
s Σ−1

y,sGs

)−1

×
( ∑

t,s

γtsG
T
s Σ−1

y,s(yt − F s(μx,s + μh) − es)

)
(17)

Note that the transformation parameters now have a subscript s to
indicate they are a function of the Gaussian component. The update
equation for the channel mean μh can be similarly computed as

μh =

( ∑
t,s

γtsF
T
s Σ−1

y,sF s

)−1

×
( ∑

t,s

γtsF
T
s Σ−1

y,s(yt − F sμx,s − Gsμn − es)

)
(18)

The re-estimation formulae for the means of the dynamic noise
and channel parameters can be similarly computed. However, in this
work we assume the the channel is fixed and the noise is stationary.
As a result, the means of the dynamic noise and channel parameters
are simply set equal to zero.

5.2. Re-estimation of the noise variances

Unfortunately, there is no closed-form solution for the noise variance
update. Therefore, we update the variance iteratively using Newton’s
method. The new estimate of the variance is computed as

Σnew
n = Σn − [H(Σn)]−1[∇Q(Σn)] (19)

where H(Σn) is the Hessian matrix with elements defined as

Hij(Σn) =
∂2Q

∂σ2
n(i)∂σ2

n(j)
(20)

Because the variances are not guaranteed to remain non-negative, we
optimize Σ̃n = log(Σn) in practice. Due to space constraints, we
omit the derivation, but we give the expressions for the terms of the
gradient and Hessian below.

∂Q
∂σ̃2

n(i)
=− 1

2
σ2

n(i)
∑

t,s γts

× ∑
d

{
Gs(d,i)2

σ2
y,s(d)

×
(
1 − (yt(d)−μy,s(d))2

σ2
y,s(d)

)}
(21)

∂2Q
∂σ̃2

n(i)∂σ̃2
n(j)

= 1
2
σ2

n(i)σ2
n(j)

∑
t,s γts

×∑
d

{
Gs(d,i)2Gs(d,j)2

[σ2
y,s(d)]2

(
1 − 2

(yt(d)−μy,s(d))2

σ2
y,s(d)

)

−δ(i − j)
∑

d
Gs(d,i)2

σ2
y,s(d)

(
1 − (yt(d)−μy,s(d))2

σ2
y,s(d)

)}
(22)

This approach is also used to update the variances of the dynamic
noise parameters (ΣΔn,ΣΔΔn). We assume that the static, delta,
and delta-delta components are independent, so the Hessian matrices
for each set of parameters can be computed independently.

5.3. Algorithm Implementation

We now summarize the sequence of steps involved in performing
model adaptation using LSI.

1. Read in the noisy utterance

2. Initialize μh = 0 and compute sample estimates of
{μn,Σn,ΣΔn,ΣΔΔn} from the first and last N frames of
the utterance.

3. For each Gaussian, compute the spline weights {wk} and
transformation parameters {F , G, e,Σε}.

4. Adapt the HMM parameters and decode the utterance.

5. Using the hypothesized transcription, compute posterior
probabilities γst and re-estimate the channel and noise pa-
rameters.

6. For each Gaussian, recompute the spline weights and trans-
formation parameters and adapt the HMM parameters.

7. Decode the utterance and output the transcription.

This sequence of steps constitutes a single iteration of General-
ized EM for updating the noise and channel parameters. If multiple
iterations are desired, an inner loop of steps 5 and 6 can be per-
formed. In our implementation, three iterations of Newton’s method
were performed to update the noise variances during the M-step.

6. EXPERIMENTS

In order to evaluate the performance of the proposed LSI model
adaptation technique, a series of experiments were performed on
the Aurora 2 corpus [7]. Aurora 2 consists of data degraded with
eight types of noise at SNRs between 0 dB and 20 dB. Evaluation is
performed using three test sets that contain noise types seen in the
training data (Set A), unseen in the training data (Set B), and additive
noise plus channel distortion (Set C).

The acoustic models were trained from the clean training set us-
ing HTK with the standard “complex back end” Aurora 2 recipe. An
HMM with 16 states per digit and 20 Gaussians per state is created
for each digit as a whole word. There is a three state silence model
with 36 Gaussians per state and a one state short pause model tied
to the middle state of silence. Standard 39-dimensional MFCC fea-
tures consisting of 13 static, delta, and delta-delta features were used
and C0 was used instead of log energy. Noise is assumed to be sta-
tionary and Gaussian with a diagonal covariance. The baseline word
accuracy with no compensation is 62.6%.

A linear spline was trained for each mel component using the
clean and multi-condition training data from Aurora 2. Each spline
consisted of 36 segments. This number was shown to have good
performance in previous work [4]. The knot locations were chosen
empirically. Knots were more densely placed at values of u between
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SNR Set A Set B Set C Avg
(dB) VTS LSI VTS LSI VTS LSI VTS LSI

∞ 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6

20 99.0 99.1 99.2 99.2 99.0 99.0 99.1 99.1

15 97.9 98.3 98.2 98.5 98.0 98.2 98.0 98.4

10 94.8 95.8 95.4 96.2 94.8 95.9 95.0 95.9

5 87.2 88.7 88.1 89.2 87.2 88.2 87.5 88.7

0 68.6 71.0 70.2 71.8 70.6 71.6 69.8 71.5

-5 31.9 38.6 33.7 38.5 39.2 40.9 34.9 39.3

Avg 89.5 90.6 90.2 91.0 89.9 90.6 89.9 90.7

Table 1. Accuracy obtained by LSI and VTS as a function of SNR.
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Fig. 2. Relative improvement in word error rate of LSI over VTS
adaptation as a function of SNR

−5 dB and 5 dB based on the observation that the variance of p(v|u)
changes more quickly at SNRs near 0 dB.

We compared the performance of the proposed LSI adaptation
method to VTS adaptation [2]. In both LSI and VTS, the noise and
channel parameters were initialized in the same way and the exact
same optimization procedure was used for parameter re-estimation.
The static, delta, and delta-delta means and variances were adapted
in both cases.

The first experiment we performed used a single iteration of the
noise and channel parameter re-estimation. The results are shown in
Table 1 as a function of the SNR for each test set. Note that ‘∞’
indicates clean speech and that the average accuracy in the last row
only includes SNRs between 0 dB and 20 dB. As the table shows,
the proposed LSI algorithm outperforms VTS at every SNR with
the exception of clean speech in which the performance is identical.
Note that both VTS and LSI outperform the ETSI Advanced Front
End, which achieves an average accuracy of 88.6% on this task.

The relative improvement in word error rate of LSI adaptation
over VTS is shown in Figure 2. As the figure shows, LSI provides
the most gain at the moderate SNRs (10-15 dB). This is significant
because it is speech at these SNRs that the our algorithm is directly
trying to improve. In speech with high SNR, most of the spectral
components will lie in the upper right portion of Figure 1, whereas in
speech with low SNR, many of the components will lie in the lower
left corner of Figure 1. In both these regions, the function is linear
and the variance is low. However, at moderate SNRs, more spectral
components are concentrated around 0 dB which is the portion of
the curve that has the highest variance and is the most nonlinear.
We believe that the improvements obtained at these SNRs are due to
the proposed algorithm’s ability to 1) explicitly model the variance
of the transformation from clean to noisy speech, and 2) produce a
more accurate linearization compared to VTS whose linearization is

Accuracy (%) Relative
Iter VTS LSI Imp (%)

0 88.3 89.2 8.2

1 89.9 90.7 8.6

2 90.2 91.0 7.9

Table 2. Accuracy obtained by LSI and VTS as a function of itera-
tions of noise and channel parameter re-estimation

forced to be tangent to the function in (2).
Finally, Table 2 shows the effect of additional iterations of re-

estimation of the noise and channel parameters. As the table shows,
additional accuracy is obtained for both VTS and LSI, and the rela-
tive improvement of LSI over VTS is maintained at each iteration.

7. CONCLUSIONS

In this paper, we proposed a novel method for acoustic model adap-
tation called Linear Spline Interpolation. In LSI, the relationship be-
tween the a priori and a posteriori SNRs in the log mel spectral do-
main is modeled using linear spline regression. The spline is learned
from training data and the resulting parameters are interpolated at
runtime to adapt the HMM parameters in order to compensate for
additive noise and linear filtering. We demonstrated how the noise
and channel parameters can be updated in an unsupervised manner
during decoding. Using the proposed LSI algorithm, we obtained
a significant improvement over VTS adaptation at all SNRs with a
maximum gain of 18.6% at 10 dB. In the future, we plan to inves-
tigate improvements to the training of the linear spline, including
automatic selection of the knot locations and HMM-based learning
of the spline parameters.
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