
RATA: Rapid Atomic Type Analysis by
Abstract Interpretation. Application to

JavaScript optimization.

Francesco Logozzo and Herman Venter

Microsoft Research, Redmond, WA (USA)
{logozzo, hermanv}@microsoft.com

Abstract. We introduce RATA, a static analysis based on abstract in-
terpretation for the rapid inference of atomic types in JavaScript pro-
grams. RATA enables aggressive type specialization optimizations in dy-
namic languages. RATA is a combination of an interval analysis (to de-
termine the range of variables), a kind analysis (to determine if a variable
may assume fractional values, or NaN), and a variation analysis (to relate
the values of variables). The combination of those three analyses allows
our compiler to specialize Float64 variables (the only numerical type in
JavaScript) to Int32 variables, providing large performance improve-
ments (up to 7.7×) in some of our benchmarks.

1 Introduction

JavaScript is probably the most widespread programming platform in the
world. JavaScript is an object-oriented, dynamically typed language with clo-
sures and higher-order functions. JavaScript runtimes can be found in every
WEB browser (e.g., Internet Explorer,Firefox, Safari and so on) and in pop-
ular software such as Adobe Acrobat and Adobe Flash. Large and complex
WEB applications such as Microsoft Office WEB Apps or Google Mail, rely on
JavaScript to run inside every browser on the planet.

A fast JavaScript implementation is crucial to provide a good user expe-
rience for rich WEB applications and hence enabling their success. Because of
its dynamic nature, a JavaScript program cannot statically be compiled to
efficient machine code. A fully interpreted solution for JavaScript runtime is
generally acknowledged to be too slow for the new generation of web applica-
tions. Modern implementations rely on Just-in-time (JIT) techniques: When a
function f is invoked at runtime, f is compiled to a function f′ in machine code,
and it is then executed. The performance gain of executing f′ pays off the extra
time spent in the compilation of f. The quality of the code that the JIT gen-
erates for f′ depends on the amount of dynamic and static information that is
available to it at the moment of the invocation of f. For instance, if the JIT
knows that a certain variable is of an atomic type then it generates specialized
machine instructions (e.g., incr for an Int32) instead of relying on expensive
boxing/unboxing operations.

Motivating Example Let us consider the nestedLoops function in Fig. 1.
Without any knowledge of the concrete types of i and j, the JIT should generate
a value wrapper containing: (i) a tag with the dynamic type of the value, and
(ii) the value. Value wrappers are disastrous for performance. For instance, the
execution of nestedLoops takes 310ms on our laptop. 1 In fact, the dynamic
execution of the statement i++ involves: (i) an “unbox” operation to fetch the old
value of i and check that it is a numerical type; (ii) incrementing i; (iii) a “box”
operation to update the wrapper with the new value. The JIT can specialize the
function if it knows that i and j are numerical values. In JavaScript, the only
numerical type is a 64 bits floating point (Float64) which follows the IEEE754
standard [16, 19]. In our case, a simple type inference can determine that i and
j are Float64: they are initialized to zero and only incremented by one. The
execution time then goes down to 180ms.

The JIT may do a better job if it knows that i and j are Int32: floating
point comparisons are quite inefficient and they usually requires twice or more
instructions to perform than integer comparisons on a x86 architecture. A simple
type inference does not help, as it cannot infer that i and j are bounded by
10000. In fact, it is safe to specialize a numerical variable x with type Int32

when one can prove that for all possible executions:

(i) x never assumes values outside of the range [−231, 231 − 1]; and
(ii) x is never assigned a fractional value (e.g., 0.5).

Contribution We introduce RATA, Rapid Atomic Type Analysis, a new static
analysis based on abstract interpretation, to quickly and precisely infer the nu-
merical types of variables. RATA is based on a combination of an interval anal-
ysis (to determine the range of variables), a kind analysis (to determine if a
variable may assume fractional values, or NaN) and a variation analysis (to re-
late the values of variables). In our example, the first analysis discovers that
i ∈ [0, 10000], j ∈ [0, 10000] and the second that i, j ∈ ℤ. Using this informa-
tion, the JIT can further specialize the code so that i and j are allocated in
integer registers, and as a matter of fact the execution time (inclusive of the
analysis time) drops to 31ms!

The function bitsinbyte in Fig. 1 (extracted from the SunSpider bench-
marks [31]) illustrates the need for the variation analysis. The interval analysis
determines that m ∈ [1, 256], c ∈ [0,+∞]. The kind analysis determines that
m, c ∈ ℤ. If we infer that c ≤ m then we can conclude that c is an Int32. In
general, we can solve this problem using a relational, or weakly relational ab-
stract domain, such as Polyhedra [12], Subpolyhedra [23], Octagons [26], or Pen-
tagons [24]. However, all those abstract domains have a cost which is quadratic
(Pentagons), cubic (Octagons), polynomial (Subpolyhedra) or exponential (Poly-
hedra) and hence we rejected their use, as non-linear costs are simply not tol-
erable at runtime. Our variation analysis infers that: (i) m and c differ by one

1 The data we report is based on the experience with our own implementation of a
JavaScript interpreter for .Net. More details will be given in Sect. 6.

2

function nestedLoops()

{

var i, j;

for(i = 0; i < 10000; i++)

for(j = 0; j < i; j++) {

// do nothing...

}

}

function bitsinbyte(b) {

var m = 1, c = 0;

while(m<0x100) {

if(b & m) c++;

m <<= 1;

}

return c;

}

Fig. 1. Two small JavaScript functions showing the impact of type specialization on
performance. With no type information the execution of nestedLoops takes 310ms,
when i and j are treated as Float64 it takes 180ms and when they are treated as
Int32 it only takes 31ms. To infer i, j to be Int32, one needs a more powerful analysis
than a simple type inference. In bitsinbyte one needs to discover that c is bounded
by m in order to determine thas is an Int32.

at the entry of the loop; (ii) c is incremented by 0 or 1 at each loop iteration;
and (iii) m, the guard variable of the loop, monotonically increases at each loop
iteration (even if non-linearly). As a consequence, m ≤ 256 implies that c ≤ 256,
which combined with the interval and kind information allows the analysis to
conclude that c is a Int32.

The precision of RATA is in between Intervals [10] and Octagons. It is more
precise than Intervals, as it can express kind information and relative variable
growth. It is less precise than Octagons, for whereas the Octagon abastract
domain can exactly represent relations such as c ≤ m ∧ m ≤ 256 our analysis
considers the weaker property ∃x ∈ Vars.c ∕= x ∧ c ≤ x ∧ x ≤ 256. It is worth
remarking that RATA is designed to be very fast, to be invoked by the JIT at
runtime, and to be used for program optimization.

2 The JavaScript= Language

We illustrate our analysis using a small untyped imperative language, JavaScript=,
defined in Fig. 2, which models the subset of JavaScript we consider in our
analysis. A program is a sequence of function declarations and a statement (the
global statement). For simplicity we assume functions to have only one param-
eter. Local (global) variables are declared with the var (global) keyword. The
JavaScript language does not provide immediate syntax to differentiate glob-
als from locals, which can be easily determined by the parser. The difference is
relevant for the soundness of our analysis, so we make the distinction explicit in
the syntax of JavaScript=. Variable assignment, function invocation, statement
concatenation, loop, conditional are as usual. The statement IgnoredC abstracts
the language statements which do not affect locals such as object creation, clo-
sures and so on. The statement HavocC models any statement that we do not
consider in the analysis, and that may have some effect of locals, e.g. throw and
eval. To ease the presentation we admit only strict inequalities and equalities
for guards. Expressions can be constants or variables, and they are combined

3

Prog ::= F C

F ::= function f(x) {C} F ∣ �
C ::= var x; ∣ global x; ∣ x = e; ∣ x = f(e); ∣ C C ∣ while(b) {C};

∣ if(b) {C }else {C }; ∣ HavocC; ∣ IgnoredC
b ::= e < e ∣ e ≤ e ∣ e == e

e ::= k ∣ x ∣ e + e ∣ e opnume ∣ e opinte ∣ Ignorede
k ::= NumericalConstant ∣ StringConstant ∣ Ignoredk

opint ::= <<∣>>∣ & ∣ˆ opnum ::= / ∣ ∗ ∣ % ∣ −

Fig. 2. The syntax of the JavaScript= language.

with binary operators. We distinguish three kinds of binary operators : (i) sum,
+, which can be either the usual IEEE754 addition when its operands are nu-
merical values or string concatenation otherwise; (ii) numerical operations which
return a numerical value (or NaN if the operation is undefined, e.g. 0/0); (iii) int
operations, which always return a Int32 value. The expression Ignorede ab-
stracts the expressions that we do not consider here such as Boolean operators
and casting. A constant can either be an IEEE754 64-bits numerical constant, a
string literal or some constant we do not deal with (e.g., Boolean constants).

It is worth mentioning that even if in the definition of JavaScript= we ignore
some language constructs, our implementation takes care of them e.g. by syntax
rewriting (“x+ = 2” → “x = x + 2”).

3 Background

3.1 IEEE754 Standard

The IEEE754 standard defines, among other things, the arithmetic format for
floating point computations. When using 64-bits (Float64), the standard format
allows numbers as large as±1.7976931348623157⋅10308 and as small as±5⋅10−324

to be represented. All the integers between −253 and 253 are exactly represented.
Outside of this interval, one may lose precision in the trailing digits. Unlike
machine integers: (i) Float64 numbers do not overflow, and (ii) two special
values represent infinities: ±∞. For instance, 1/0 = +∞ = +∞ + 10. The
Float64 format also specifies a special value NaN (Not-a-Number) as the result
of invalid operations, e.g.,∞/∞. A peculiar property of NaN is that NaN ∕= NaN.

One can specialize a Float64 variable x to a Int32 without changing the
semantics of the program if one can prove that x will never assume: (i) a fractional
value, a NaN or an infinity; and (ii) a value outside of the range [−231, 231 − 1].
The goal of RATA is to enable such specialization.

3.2 Abstract Interpretation

Abstract interpretation [10, 11] is a general theory of semantic approximations.
Its more interesting application is to define and prove soundness of program anal-
yses. From the abstract interpretation perspective, a static analysis is a program

4

semantics that is coarse enough to be computable and precise enough to capture
the properties of interests. The concrete semantics of a program is defined over
a complete lattice ⟨C,⊑⟩. The abstract semantics is defined as a fixpoint over a
complete lattice ⟨A, ⊑̄⟩, which is related to C by a Galois connection, i.e., a pair of
monotonic functions ⟨�, ⟩ such that ∀c ∈ C. c ⊑ ∘�(c) and ∀ā ∈ A. �∘(ā)⊑̄ā.

We write ⟨C,⊑⟩ −−−→←−−−�

⟨A, ⊑̄⟩ to denote that. An abstract transfer function �̄ is

a sound approximation of a concrete � if ∀ā ∈ A. � ∘ � ∘ (ā)⊑̄�̄(ā). In general,
the abstract domain A may contain strictly increasing infinite (or very long)
chain. Hence, to ensure the convergence of fixpoint iterations one should use a
widening operator, which extrapolates the limit of the sequence. Precision lost
by the widening can be recovered using a narrowing operator.

4 Numerical Abstract Domains

The Rapid Atomic Type Analysis (RATA) is meant to be used in an online
context, as an oracle for the JIT that can use the inferred types to generate
more specialized code. RATA is a combination of three different static analyses.
An interval analysis to determine the range of the variables. A kind analysis to
infer if a variable can assume a fractional or a NaN value. A variation analysis
to infer loose relationships about program variables, and hence refine the ranges
and the kinds. The analysis should be very fast, to avoid causing untoward pauses
in normal program execution. We rejected the use of expressive yet expensive
numerical abstract domains. For instance, Octagons have a cubic complexity (in
the number of program variables), Polyhedra are exponential, and Subpolyhedra
lay in between.

4.1 Extended Intervals

The interval abstract domain was introduced by Cousot & Cousot in [10] as
example of the application of Abstract Interpretation to program optimization
(specifically array bounds check removal). Inspired by this idea, we use it for type
specialization. Our extended intervals are a little bit different from the originals,
in that we also consider intervals potentially containing NaN, intervals abstracting
non-numerical values, intervals abstracting floats and intervals bounded only by
Int32 values. An interval can either be the empty interval, the interval containing
only NaN, a Int32-bounded interval, an open interval or the unknown interval
(⊤i):

Intv = ⊥i ∣ NaN ∣ Normal(a, b) ∣ OpenLeft(b) ∣ OpenRight(a) ∣ ⊤i
a, b ∈ Int32

More formally, the meaning of an interval is given by the concretization function
i ∈ [Intv→ P(Val)]. The set Val is the set of concrete JavaScript= values. We
are interested only in numerical values, so we let Val = IgnoredVal∪ℝ∪{±∞, NaN}.
For simplicity, we let ℝ∗ = ℝ∪{±∞, NaN}, and we extend the usual axioms over

5

i(⊥i) = ∅
i(NaN) = {NaN}
i(Normal(a, b)) = {r ∣ r ∈ ℝ, a ≤ r ≤ b} ∪ {NaN}
i(OpenLeft(b)) = {r ∣ r ∈ ℝ, r ≤ b} ∪ {NaN}
i(OpenRight(a)) = {r ∣ r ∈ ℝ, a ≤ r} ∪ {NaN}
i(⊤i) = Val

⊤i

OpenLeft(b′)

77nnnnnnnnnnnnn
OpenRight(a′)

hhQQQQQQQQQQQQQQ

OpenLeft(b)

OO

Normal(a′, b′)

ggPPPPPPPPPPPP

66nnnnnnnnnnnn
OpenRight(a)

OO

Normal(a, b)

ggPPPPPPPPPPPP

OO 66nnnnnnnnnnnn

NaN

OO

⊥i

OO

Fig. 3. The concretization i and the order ⊑i on the extended intervals. We assume
that a′ ≤ a ≤ b ≤ b′.

reals so that ∀r ∈ ℝ.−∞ < r < +∞ and ∀r ∈ ℝ∗. r ∕= NaN. The concretization
function and the induced order ⊑i are in Fig. 3.

Example 1. i(OpenRight(10)) = {10 . . . 11 ⋅ ⋅ ⋅+∞} ∪ {NaN}.

The abstraction function �i ∈ [P(Val)→ Intv] is defined as

�i(R) =
⊔
i{�̇i(r) ∣ r ∈ R} where

�̇i(r) =

⎧⎨⎩

NaN r is NaN

OpenRight(231 − 1) 231 − 1 < r ≤ +∞
OpenLeft(−231) −∞ ≤ r < −231

Normal(floor(r), ceiling(r)) −231 ≤ r ≤ 231 − 1

⊤i otherwise

(floor(r) = max{x ∈ ℤ ∣ x ≤ r} and ceiling(r) = min{x ∈ ℤ ∣ r ≤ x}).

Example 2. �i({10.3,+∞, NaN}) = OpenRight(10), �i({3.14}) = Normal(3, 4).

Theorem 1. ⟨P(Val),⊆⟩ −−−→←−−−
�i

i ⟨Intv,⊑i⟩.

It is worth noting that for Th. 1 to hold we need to map ±∞ to the smallest
abstract element containing ±∞.

The abstract domain Intv is precise enough to capture that the value of a
variable is always within the Int32 range, but it cannot capture the fact that a
variable never assumes fractional values, crucial for soundness : e.g., 1/2 is 0.5
with Float64 semantics and 0 with Int32 semantics.

Example 3. For the function bitsinbyte, the analysis with Intv infers that m :
Normal(0, 512), c : OpenRight(0), b : ⊤i.

6

k(⊥k) = ∅
i(Int32) = {r ∣ r ∈ ℤ,−231 ≤ r ≤ 231 − 1}
i(Float64) = {r ∣ r ∈ ℝ∗, r is a 64 bits IEEE 754 number}
i(⊤k) = Val

⊤k

Float64

OO

Int32

OO

⊥k

OO

Fig. 4. The concretization k and the order ⊑k of the Kinds.

4.2 Kinds

The elements of the Kind abstract domain are either the empty kind, a 32-bits
integer, a 64-bit floating point number or an unknown kind of value:

Kind = ⊥k ∣ Int32 ∣ Float64 ∣ ⊤k.

The meaning function k ∈ [Kind → P(Val)] and the induced order ⊑k are in
Fig. 4. The abstraction function �k ∈ [P(Val)→ Kind] is

�k(R) =
⊔
k{�̇k(r) ∣ r ∈ R} where �̇k(r) =

⎧⎨⎩
Int32 r is a Int32

Float64 r is a Float64

⊤k r otherwise

Example 4. �k({10.3,+∞, NaN}) = �k({3.14}) = Float64.

Theorem 2. ⟨P(Val),⊆⟩ −−−−→←−−−−
�k

k ⟨Kind,⊑k⟩.

The abstract domain of Kind in isolation is of almost no use (maybe except
for trivial, loop free programs). In the nestedloops example, knowing that i is
initialized to a Int32, it is compared to a Int32, and only incremented by one
it is not enough to deduce that i is an Int32. In fact if the loop guard were
instead i≤231, then after the last iteration of the loop i = 231 + 1 which is a
fine Float64 value, but not an Int32.

4.3 K-Intervals

The combination of extended intervals and kinds allow the derivation of very
powerful yet rapid analyses. We call the reduced product of Kind and Intv a
k-interval. The elements of the abstract domain are pairs in Intv × Kind , and
the concretization ki ∈ [Intv × Kind → P(Val)] is ki(⟨i, k⟩) = i(i) ∩ k(k).
The abstraction �ki ∈ [P(Val)→ Intv×Kind] is the simple pairwise abstraction:
�ki(R) = ⟨�i(R), �k(R)⟩. The order ⊑ki is the pairwise extension of the order on
the basic domains. We write x : t to denote that the variable x has a k-interval
t.

7

function loop() {

var x;

x = 0;

while(x < 10000) {

x = x + 1;

}

}

function loopToN(n) {

var x;

x = 0;

while(x < n) {

x = x + 1;

}

}

loopToN(99999);

loopToN(1234);

Fig. 5. In order to infer that x : Int32, in the first example RATA uses a widening
with a threshold, and in the second a narrowing as re-execution. The function loopToN

is analyzed at the first invocation, it is specialized for Int32, and the specialization is
re-used at the second invocation.

Theorem 3. ⟨P(Val),⊆⟩ −−−−→←−−−−
�ki

ki ⟨Intv × Kind,⊑ki⟩.

K-Intervals are more expressive than the single domains and can represent
addition information, crucial to type specialization:

Example 5. The k-interval t = ⟨OpenRight(10), Int32⟩ represents the set of
Int32 larger than or equal to 10:

ki(t) = {10 . . . 11 ⋅ ⋅ ⋅+∞, NaN} ∩ {r ∣ r ∈ ℤ,−231 ≤ r ≤ 231 − 1}
= {10, 11 . . . 231 − 1}.

It is worth noting that t′ = ⟨Normal(10, 231 − 1), Int32⟩ is such that ki(t
′) =

ki(t), so that t and t′ are two abstract elements with the same concretization.
To keep a low analysis overhead, we do not impose a canonical form for abstract
elements.

Roughly, if the analysis determines that x : t then there exists a variable y,
which is known to be an Int32, such that x ≤ y. This information is weaker
than that one gets for instance with Octagons, which automatically discovers
the particular y and v ≥ 0 such that x ≤ y− v.

5 Rapid Atomic Type Analysis

The Rapid Atomic Type Analysis is defined by structural induction on the pro-
gram syntax. It has two main phases: (i) numerical invariant inference with
Intv × Kind ; and (ii) type refinement via variation analysis.

5.1 Numerical analysis

The numerical invariant analysis ℕJ⋅K infers, for each program point an abstract
state � ∈ � = [Vars→ Intv×Kind], that is a map from variables to k-intervals.

8

Invocation of the Analysis When the JIT encounters a function call f(v),
where v is a value of dynamic type t, it first searches the cache to see if it has
already specialized f for the type t. If this is not the case, it invokes RATA to
infer the atomic numerical types for f’s locals, to be used for type specialization.

Initial State At the entry point of f, the global values are set to ⟨⊤i,⊤k⟩ (any
value), the local values are set to ⟨⊥i,⊥k⟩ (uninitialized), and the actual value
v of the parameter x is generalized to ⟨⊤i, �k({v})⟩. We generalize the actual
value of the parameter so that the result of the analyses can be re-used.

Example 6. The initial abstract state for the analysis of loopToN(99999) in Fig. 5
is �0 = [n 7→ ⟨⊤i, Int32⟩, x 7→ ⟨⊥i,⊥k⟩]. The specialization of loopToN can be
cached and reused for loopToN(1234) as �0 is an over-approximation of [n 7→
⟨Normal(1234, 1234), Int32⟩, x 7→ ⟨⊥i,⊥k⟩].

Variables RATA is a modular analysis, run on a per-method basis. In the
general case, at the moment of the invocation of RATA, we have not seen all
the assignments to globals, so that the only sound assumption for globals is the
open-world assumption, i.e., they can assume any value.

Assignment An assignment x = e in a pre-state �0, updates the entry for x with
eval(e, �0) if x is a local variable (or a parameter) or it does nothing otherwise.
The evaluation function eval ∈ [e×� → Intv×Kind] is in Fig. 6. The k-interval
for a constant is assigned according to its type. The “+” operator is polymorphic
in JavaScript: it can either be string concatenation or numerical addition. As
a consequence, if no information on the operands is available, nothing can be
inferred on the result. Otherwise, we know that it is at least a Float64. The
result of a opnum (opint) is at least a Float64 (an Int32). The return value
of a function call is ignored: to statically determine which function is invoked
requires a quite complex global program analysis, out of the scope of this paper.

Test A precise handling of tests enables the refinement of the abstract states,
and hence a more precise analysis. A too precise analysis of tests (e.g., using
forward/backwards iterations [9]) may cause slowdowns unacceptable for an on-
line analysis. In our implementation we only consider comparisons between a
variable and an expression, or between two variables. For equalities, we have
that:

ℕJx == eK(�0) = �0[x 7→ �0(x) ⊓ki eval(e, �0)], and
ℕJx == yK(�0) = �0[x, y 7→ �0(x) ⊓ki �0(y)].

For an inequality x < e, the upper bound of x is refined by the upper bound of
eval(e, �0) (upp(⟨i, t⟩) is the open k-interval bounded by the upper bound of i,
it can be +∞):

ℕJx < eK(�0) = �0[x 7→ �0(x) ⊓ki upp(eval(e, �0))].

9

eval(k, �) =

⎧⎨⎩
⟨Normal(k, k), Int32⟩ k is Int32

⟨⊤i, Float64⟩ k is Float64

⟨⊤i,⊤k⟩ otherwise

eval(x, �) = �(x)
eval(e1 + e2, �) = let v1 = eval(e1, �), v2 = eval(e2, �) in

if v1 == ⟨⊤i,⊤k⟩ ∨ v2 == ⟨⊤i,⊤k⟩then ⟨⊤i,⊤k⟩
else (v1+̄v2) ⊓ki ⟨⊤i, Float64⟩

eval(e1 opnum e2, �) = (eval(e1, �)ōpnum eval(e2, �)) ⊓ki ⟨⊤i, Float64⟩
eval(e1 opint e2, �) = (eval(e1, �)ōpint eval(e2, �)) ⊓ki ⟨⊤i, Int32⟩
eval(f(e)) = ⊤i

Fig. 6. The abstract evaluation of expressions. The abstract operators +̄, ōpnum , ōpint
are the abstract counterparts of concrete the concrete operators.

Similarly for an inequality x < y, the upper bound for x can be refined by the
upper bound of y, and the lower bound of y can be refined by the lower bound
of x:

ℕJx < yK(�0) = �0[x 7→ �0(x)⊓kiupp(eval(y, �0)), y 7→ �0(y)⊓ki low(eval(x, �0))].

Example 7. Let us assume that �0 = [x 7→ ⟨OpenRight(10),⊤i⟩]. Then:

ℕJx < 1000K(�0) = [x 7→ ⟨Normal(10, 1000),⊤i⟩].

Note that it would be unsound to assume that x is an Int32 or that x :
Normal(10, 999).

Sequence The analysis of a sequence of statements is the composition of the
analyses: ℕJC1 C2K(�0) = ℕJC2K(ℕJC1K(�0)).

Conditional For a conditional the analysis first refines the pre-state with the
guards, and then joins the results (the function Not negates the Boolean expres-
sion b):

ℕJif(b) {C1}else {C2};K(�0) = ℕJC1K(ℕJbK(�0)) ⊔ki ℕJC2K(ℕJNot(b)K(�0)).

Loop A loop invariant for while(b) {C}; is a fixpoint of the functional F ∈
[� → �]:

F (X) = �0⊔̇kiℕJCK(ℕJbK(X)),

where �0 is the abstract state at the entry point of the loop and ⊔̇ki is the point-
wise extension of ⊔ki. An invariant can be computed with the usual fixpoint
iteration techniques. The abstract domain Intv×Kind does not contain infinite
ascending chains, but it contains very very long chains (up to 232 + 3 elements).
We need a widening operator to speed up the convergence of the iterations to

10

a post-fixpoint. A widening with thresholds [6, 22], and the re-execution from a
post-fixpoint (a form of narrowing [22]) guarantee a good precision yet providing
good performance. We illustrate those two techniques with examples.

Example 8. The iterations with the classical widening for the loop function of
Fig. 5 produce the following sequence of abstract values for x:

⟨Normal(0, 0), Int32⟩ ⊑ki ⟨Normal(0, 1), Int32⟩ ⊑ki ⟨OpenRight(0), Float64⟩,

as the upper bound for x is extrapolated to +∞. The threshold (or staged)
widening tries to extrapolate the upper bound to constants appearing in guards,
producing the sequence:

⟨Normal(0, 0), Int32⟩ ⊑ki ⟨Normal(0, 1), Int32⟩ ⊑ki ⟨Normal(0, 10000), Int32⟩.

In general, during the analysis we collect all the constants that appear in the
tests, and we use them as steps for widening with a threshold.

Example 9. The type of x in function loopToN of Fig. 5 depends on the input
parameter. When it is invoked with an Int32 value, then we would like RATA to
discover that x is an Int32. Widening with thresholds is of no help here (there are
no constants in guards) so the iterations stabilize at I = ⟨OpenRight(0), Float64⟩.
A re-execution of the loop with initial state I will refine the abstract state to
⟨OpenRight(0), Int32⟩.

Re-execution is justified by Tarski’s fixpoint theorem [29], which states that
in a partial order lfp(F) = ⊓{I ∣ F (I) ⊑ I}. So, if I is a post-fixpoint for F , then
F (I) is still above the least fixpoint lfp(F), and hence it is a sound approximation
of the loop invariant. During re-execution, we refine the abstract semantics of
the tests appearing in loops which involve inequalities where one of the operands
is an Int32. For instance in the loopToN example:

ℕJx < nK([x 7→ ⟨OpenRight(0), Float64⟩]) = [x 7→ ⟨Normal(0, 231 − 2), Int32⟩].

In Ex. 7 we pointed out that in general it is not sound to assume x : Int32 after
a test x < y when y : Int32. However during re-execution this is sound as there
are essentially three cases why x : Float64 in I: (i) x was a Float64 at the loop
entry; (ii) x may be assigned a fractional value (or NaN or an infinite) in the loop
body; or (iii) the analysis of the loop could not figure out that x : Int32. In the
first two cases, F (I) will imply that x : Float64 (because of the definition of
F). In the third case one may hope to recover some of the lost precision. In our
running example:

F (I) = [x 7→ ⟨Normal(0, 0), Int32⟩]⊔̇ki[x 7→ ⟨Normal(1, 231 − 1), Int32⟩]
= [x 7→ ⟨Normal(0, 231 − 1), Int32⟩] ⊑̇ki I.

(Recall that ki(⟨Normal(0, 231 − 1), Int32⟩) = ki(⟨OpenRight(0), Int32⟩)).

11

Ignored Statements and Havoc Ignored statements have no effect on the
local state, so the analysis treats them as the identity : ℕJIgnoredCK(�0) = �0.
Havoc statements may have some side-effect on local variables. We abstract them
by ℕJHavocCK(�0) = ⟨⊤i,⊤k⟩.

5.2 Variation Analysis

The numerical analysis alone cannot determine that c : Int32 in bitsinbyte

(Fig. 1). It discovers the loop invariant �L = [m 7→ ⟨Normal(1, 512), Int32⟩, c 7→
⟨OpenRight(0), Float64⟩] (we omit b). The invariant �L can be refined by the
variation analysis. At the loop entry, c and m differ by one. At each iteration
c is either incremented by one or it remains the same, whereas m is multiplied
by 2, thus m grows faster than c. However, m bounded implies that c should be
bounded too, thus we can safely refine �L to �L[c 7→ ⟨Normal(0, 512), Int32⟩].

We run the variation analysis VJ⋅K on a per-loop basis. The goal of the analy-
sis is to compute, for each loop and each variable an interval over-approximating
the increment of a variable in a single loop iteration. The variation analysis is
similar in many aspects to the numerical analysis above, with the major dif-
ference that the initialization and the assignments are re-interpreted. An ab-
stract state is a map from local variables to intervals. At the loop entry point,
all the local variables are set to the interval [0, 0] 2 (no increment). For as-
signments, we compute variable increments. We consider simple forms of incre-
ments and decrements, and we abstract away all the other expressions. So, we let
VJx = x± kK(�0) = �0[x 7→ ±[k , k]], and VJx = eK(�0) = �0[x 7→ [−∞,+∞]].

Once we have computed �, the increment ranges for the variables in the loop,
we use this information to refine the numerical loop invariant �L to �′L according
to refinement rules that looks like:

∀x, y. x ∕= y ∧ �0 ∣= x < y ∧ y is upper-bounded by b ∧ � ∣= x < y

=⇒ �′L(x) = �L(x)⊓̇ki⟨OpenLeft(b),⊤k⟩,

(the intuitive meaning of �0 ∣= x < y is that in the k-interval �0, x < y and
the meaning of � ∣= x < y is that according to �, x grows slower than y). The
rule above essentially states that if y is an upper bound for x at the entry of the
loop, and y is bounded by b during all the executions of the loop, and x does not
grow more than y in the loop, then b should be an upper bound for x too. We
omit all the other (tedious) refinement rules, which consider the combination of
the other cases (e.g., �0 ∣= x ≤ y, lower bounds, decrements and so on).

5.3 Atomic Types

The atomic types T for a function are obtained by joining together the post-
states of all the statements in the function body. The reason for that is that we

2 We use the notation [a, b] to avoid confusion between the range intervals of the
previous sections and the increment intervals. In the implementation we share the
code, though.

12

0

100

200

300

400

500

600

700

Fig. 7. The results of the optimizations enabled by a text-book type inference algorithm
(blue/light bars) and RATA (red/dark bars). Times are expressed in milliseconds. On
numerical intensive benchmarks RATA enables up to a 7.7× speed-up.

want to assign a unique atomic type at each local variable. One may wonder why
we designed a flow-sensitive analysis if we were interested in a flow-insensitive
property (the type of a local variable through all the function’s body). Actually,
in an early stage of this project we tried to avoid the joining phase by designing
a flow-insensitive analysis. For instance, the abstract semantics of the sequence
was ℕJC1 C2K(�0) = let � = ℕJC1K(�0)in ℕJC2K(�)⊔̇ki�. We immediately realized
that a flow-insensitive analysis was too imprecise for handling loops, and in
particular it voided the advantages of the re-execution step and the variation
analysis which we found crucial for precision. Therefore, we rejected the flow-
insensitive analysis for a flow-sensitive followed by a join-all step.

6 Experiments

We have implemented RATA in our JavaScript engine for .Net. The engine
itself is written in C#. It parses the JavaScript source, it compiles the main
(global) function and it generates proxies for function invocations. When the

13

execution encounters a function proxy, the JavaScript engine resolves it, and
it checks if it has a specialized version in the cache which matches the actual
parameters. If this is the case, then it executes the cached version. Otherwise:
(i) it runs the RATA to infer the atomic types for the locals of the variables;
(ii) it compiles the function in memory, performing atomic type specialization;
(iii) executes the specialized function, and caches it for future needs. It is worth
noting that the specialization is polymorphic: If the same function is invoked
at two points of time with two actual parameters of different types, then it is
analyzed and specialized twice.

We report the experience of applying RATA on the SunSpider JavaScript

benchmarks [31]. The SunSpider benchmarks measure JavaScript performance
for problems that presents difficulties to JavaScript implementations. They are
designed to be balanced and to stress different areas of the language. They are
commonly used to compare the JavaScript performance of different browsers,
or different versions of the same browser. We run the experiments on a 2.1GHz
Centrino Duo Laptop, 4Gbyte, under Windows 7 and .Net v3.5. We compared a
text-book type inference algorithm [2] with RATA. The type inference algorithm
determines which locals are definitely doubles, and for some expressions it can
also infer that a local is an Int32.

The results of our experiments are in Fig. 7. Measuring the performances of
managed programs is quite complex, as their runtime behavior depends on too
many variables [18]. In general, when the execution time is too low, it is impos-
sible to distinguish the effective time spent in computation from the external
noise (e.g., the garbage collector, the thread scheduler, network traffic, back-
ground services and so on). We run each JavaScript program in the SunSpider
suite 80 times choosing the best execution time. The execution times of Fig. 7 do
not include the compilation and the type inference/RATA time. The reason for
that is that we observed the analysis time to be of the same order of magnitude
of the experiment noise (few tenths of milliseconds). We also observed that the
runtime costs of the type inference and RATA were comparable. We modified
some tests so to have them run longer, reducing the external noise, and hence
obtaining more meaningful measurements.

The results of Fig. 7 show that in 12 tests RATA enables the JIT to generate
more optimized code, and hence to obtain significant performance improvements.

Most of the benchmarks in the 3d family benefit from Int32 type infer-
ence. The tests themselves manipulate many doubles (and arrays of doubles),
but RATA manages to discover that 20 locals in 3d-cube and 11 locals in
3d-raytrace are Int32 which convey respectively a 1.75× and 1.1× speed-up
over the double-only version. We inspected the results of the analysis, and we
found that in the first test RATA found all the Int32 variables one may expect,
and in the second test it missed three. The reason for that was in an imprecision
of handling the return statement. Finally, the locals on 3d-morph depends on
some global values, so nothing can be inferred about them.

The best performance improvements are in the bitops family benchmarks.
RATA discovers that all the local variables are Int32 in the test bitops-bits

14

global x;

x = 0;

while(x < 4) {

foo(x);

x = x + 1;

}

function zeroarray(arr) {

var x; x = 0;

while(x < arr.length) {

arr[x] = 0; x = x + 1; }

}

global a; a = new Array(10);

zeroarray(a)

Fig. 8. Two code snippets in which it would be unsound to infer that x : Int32. In
the first case, x is declared in the global scope and its value can be changed by foo. In
the second case, x depends on the property arr.length which in general is a UInt32.
Furthermore, JavaScript allows the user-redefinition of Array, so that we need a global
analysis to determine that a is an array.

-in-byte, which provides a 6.6× speed-up with respect to the same test when
all the locals are inferred to be doubles. Similar results are observed in the
bitops-3bit-bits-in-byte (2.8×) and the bitops-nsieve-bits (2×) tests,
where RATA is again precise enough to infer all the Int32 locals. The test
bitops-bitwise-and contains only globals, so there is no hope to statically
optimize it.

Example 10. The test bitops-bitwise-and contains a main loop that looks like
the first code snippet of Ex. 8. In general, it is unsound to infer that x : Int32 as
foo may change the value of x. Functions are analyzed top-down: first the JIT
runs RATA on the global statement, and then, at the first concrete occurrence,
it invokes RATA on foo. As a consequence when inferring the type of x, RATA
assumes the worst case for foo. Determining x : Int32 requires a bottom-up
purity analysis or an effect analysis [4], which are out-of-the scope of the paper,
and in general too expensive to be performed online.

In the access-nsieve benchmark, RATA local inference enables a significant
speedup (7.7×) over the Float64-specialized version. In particular, the inner
function contains two nested loops and a counter variable. Fixpoint computation
with re-execution and variation analysis are cardinal to infer that all the locals
involved are indeed Int32. The other two benchmarks of the access family
benchmarks perform computations which either depend on globals or on very
short loops.

The controlflow-recursive benchmark stresses JavaScript implementa-
tions with standard recursive-function benckmarks such as fibonacci or ackerman.
RATA infers that the variables inside those functions are Int32 and thus achieves
a slight performance improvement (1.12×).

The cryptographic benchmarks benefit by an aggressive type specialization.
RATA infers all the Int32 locals for the crypto-aes and the crypto-sha1

benchmarks, enabling a 2.3× and 1.5× speedup. The crypto-md5 benchmark
contains many functions taking an array as parameter, and iterating over its

15

elements. The next example shows that it would be unsound to infer those locals
to be Int32.

Example 11. Let us consider the zeroarray function of Fig. 8. In JavaScript,
the length property of Array is a UInt32, i.e., it can assume values as large
as 232 − 1. As a consequence, even if we know that arr is an array, we cannot
conclude x : Int32. In general, to infer that x : Int32, we should refine RATA to
track that arr is an array and that arr.length < 231−1. The JavaScript lan-
guages allows the redefinition of Array, so we need a global analysis to guarantee
that the value of a is actually an array.

The execution time of date and string manipulating benchmarks is heavily
dominated by the interaction with the object model, and by other non-numerical
computations so that RATA is of no help here.

Math benchmarks manipulate double values, but the inference of some Int32
locals enable up to a 2× speedup in math-cordic, a slight improvement in
math-partialsums. For atomic type inference, the test math-spectral-norm

looks like crypto-md5, and as a consequence nothing can be statically inferred.
To sum up, RATA is precise enough to infer all (but 3) of the local variables

which are Int32 in the SunSpider benchmarks. One may wonder if broaden-
ing the analysis to also consider Int64, UInt32 and so on may provide further
performance gains. According to the previous experience of the second author
with JScript.NET, those cases are so rare, and they complicate so much the
implementation and the JIT code generation, that it seems not worthwhile to
try.

7 Related Work

Just-in-time compilation is known at least from 1960. In his LISP paper [25],
McCarthy sketches the dynamic compilation of functions into machine code,
a process fast enough that the compiler’s output does not need to be saved.
Deutsch and Schiffman introduced in [14] lazy JIT compilation for Smalltalk,
where functions were compiled at the first usage, and cached for further usage.
The Self programming language influenced the JavaScript design. The first
Self compiler used a data-flow analysis (“Class analysis”) to compute an over-
approximation of the set of possible classes that variables might hold instances
of and hence to optimize dynamic dispatching [8]. Further versions of the Self
compiler introduced more aggressive type analyses [30], but they did not consider
the specialization of atomic types as here [1].

The implementation of popular dynamic languages as Python try to optimize
the generated code by performing some kind of online static analysis. The JIT
compiler of the PyPy system [28] uses “flexswitches” to perform type special-
ization [13]. Flexswitches are essentially a form of online partial evaluation [21].
Psyco [27] is another implementation of Python which tries to guess Int32 vari-
ables at runtime. The tracing JIT generalizes the ideas of Psyco and PyPy. A
tracing JIT essentially identifies frequently executed loop traces at runtime, and

16

it dynamically generates specialized machine code [17]. RATA is complemen-
tary to a tracing JIT. In his master thesis, Cannon presented a localized atomic
type inference algorithm for Python [7]. His analysis is based on the Cartesian
product algorithm, and it is less precise than ours. As a consequence, it is not
a surprise that his experimental results are less satisfactory than ours. In [3],
Anderson et al. introduced an algorithm for type inference of JavaScript to
derive the types of objects. It is unclear if their algorithm is fast enough to be
used in dynamic compilation. They did not consider the inference of Int32 vari-
ables which require reasoning on the values of variables. In this sense, our work
is then complementary to theirs. In [20], Jensen et al. presented an abstract
interpretation based static analysis to check the absence of common errors in
JavaScript programs. Their analysis is more oriented to program verification
than optimization. However, for numerical values their abstract domain is less
precise than ours and so they are not likely to discover all the numerical prop-
erties that RATA can discover.

Abstract Interpretation is mainly applied to program verification (e.g., [6,
15]) and offline program optimization (e.g., [10, 5]). To the best of our knowl-
edge this is the first work which applies full-powered Abstract Interpretation
techniques (e.g., infinite lattices, widenings and narrowings) to online program
optimization. We believe that this is a promising line of work.

8 Conclusions

We have presented RATA, a new static analysis, based on abstract interpreta-
tion, for the rapid inference of atomic types in dynamic languages. The analysis is
a combination of three analyses: a range analysis, a kind analysis and a variation
analysis. We formalized the underlying abstract domains and we related them to
the concrete values via Galois connections. We described the analysis, and we re-
ported the results of the atomic type specialization on the SunSpider JavaScript
benchmarks (the industrial standard for comparing JavaScript implementa-
tions). We observed that: (i) RATA is precise enough to infer all the Int32

locals that one may hope to infer statically; and (ii) the Int32-specialization
produces remarkable performance improvements in most tests (up to a 7.7×
speed-up for numerical intensive ones).

For the future, we plan to extend RATA to whole program analysis, and in
particular to apply it to the wider goal of program verification.

References

1. O. Agesen and U. Hölzle. Type feedback vs. concrete type inference: A comparison
of optimization techniques for object-oriented languages. In OOPSLA’95. ACM
Press.

2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison Wesley, 1986.

3. C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference for
javascript. In ECOOP’05. Springer-Verlag.

17

4. M. Barnett, M. Fähndrich, D. Garbervetsky, and F. Logozzo. Annotations for
(more) precise points-to analysis. In IWACO’07.

5. B. Blanchet. Escape Analysis: Correctness proof, implementation and experimental
results. In POPL’98.

6. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In PLDI’03. ACM
Press.

7. B. Cannon. Localized type inference of atomic types in Python. Master’s thesis,
California Polytechnic State University, 2005.

8. C. Chambers and D. Ungar. Customization: Optimizing compiler technology for
self, a dynamically-typed object-oriented programming language. In PLDI’89.
ACM Press.

9. P. Cousot. The calculational design of a generic abstract interpreter. In Calcula-
tional System Design. NATO ASI Series F. IOS Press, Amsterdam, 1999.

10. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL’77.

11. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL ’79.

12. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL ’78.

13. A. Cuni, D. Ancona, and A. Rigo. Faster than C#: Efficient implementation of
dynamic languages on .NET. In ICOOOLPS’09. ACM Press.

14. L. P. Deutsch and A. M. Schiffman. Efficient implementation of the smalltalk-80
system. In POPL’80. ACM Press.

15. P. Ferrara, F. Logozzo, and M. A. Fähndrich. Safer unsafe code in .Net. In
OOPSLA’08.

16. D. Flanagan. JavaScript, the definitive guide. O’Reilly, 2009.
17. A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. Haghighat, B. Kaplan,

G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. Smith, R. Reitmaier, M.
Bebenita, M. Chang, and M. Franz. Trace-based just-in-time type specialization
for dynamic languages. In PLDI’09.

18. A. Georges, L. Eeckhout, and D. Buytaert. Java performance evaluation through
rigorous replay compilation. In OOPSLA’08.

19. IEEE. IEEE standard for floating-point arithmetic. Technical report, IEEE, 2008.
20. S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for javascript. In SAS’09.
21. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial evaluation and automatic

program generation. Prentice Hall, 1993.
22. V. Laviron and F. Logozzo. Refining abstract interpretation-based static analyses

with hints. In APLAS’09.
23. V. Laviron and F. Logozzo. Subpolyhedra: a (more) scalable approach to infer

linear inequalities. In VMCAI’09.
24. F. Logozzo and M. A. Fähndrich. Pentagons: A weakly relational abstract domain

for the efficient validation of array accesses. In SAC’08.
25. J. McCarthy. Recursive functions of symbolic expressions and their computation

by machine, part i. Commun. ACM, 3(4):184–195, 1960.
26. A. Miné. A new numerical abstract domain based on difference-bounds matrices.

In PADO’01.
27. A. Rigo. Representation-based just-in-time specialization and the psyco prototype

for Python. In PEPM’04. ACM Press.
28. A. Rigo and S. Pedroni. PyPy’s approach to virtual machine construction. In

OOPSLA Companion 2006. ACM Press.

18

29. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

30. D. Ungar, R. B. Smith, C. Chambers, and U. Hölzle. Object, message, and per-
formance: How they coexist in self. IEEE Computer, 25(10):53–64, 1992.

31. WebKit. SunSpider JavaScript benchmarks.
http://www2.webkit.org/perf/sunspider-0.9/sunspider.html.

19

