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ABSTRACT 
Paper prototyping offers unique affordances for interface 
design. However, due to its spontaneous nature and the 
limitations of paper, it is difficult to distill and 
communicate a paper prototype design and its user test 
findings to a wide audience. To address these issues, we 
created FrameWire, a computer vision-based system that 
automatically extracts interaction flows from the video 
recording of paper prototype user tests. Based on the 
extracted logic, FrameWire offers two distinct benefits for 
designers: a structural view of the video recording that 
allows a designer or a stakeholder to easily distill and 
understand the design concept and user interaction 
behaviors, and automatic generation of interactive HTML-
based prototypes that can be easily tested with a larger 
group of users as well as “walked through” by other 
stakeholders. The extraction is achieved by automatically 
aggregating video frame sequences into an interaction flow 
graph based on frame similarities and a designer-guided 
clustering process. The results of evaluating FrameWire 
with realistic paper prototyping tests show that our 
extraction approach is feasible and FrameWire is a 
promising tool for enhancing existing prototyping practice. 
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INTRODUCTION 
Paper prototyping is a widely used technique for the early 
stages of user interface design. It allows a designer to 
acquire early user feedback about a design. A designer can 
create an interface mockup using paper artifacts such as 
hand drawings and test an early-stage idea with a user in a 
visual and tangible way [18, 19]. During a test, a designer, 

playing the role of the “computer”, presents an interface 
screen (e.g., drawn on a piece of paper) to a user according 
to the user’s actions. The user interacts with the interface 
by pointing at elements they would use as if it were a real 
system, and the designer reacts by changing the paper 
screens that reflect the interface. By asking the user to 
think aloud about their actions and the interface design as 
the test proceeds, a designer can get qualitative feedback as 
well as see how users will use the design.  
Although paper prototyping allows fluid and rapid iteration 
on a design, its spontaneous and physical nature makes it 
difficult to analyze and communicate a design and test 
findings to a wider audience. Designers often videotape a 
test to capture rich interaction scenarios and the 
conversation with a user [16]. In practice, seeing the users 
get confused and voice their concerns has more impact than 
simply hearing someone describe what happened [19].  
However, it can be time-consuming to watch and edit the 
resulting video clips, and there are no tools for analyzing 
the tests and distilling interaction flows and scenarios of 
interest. This is why designers are quite willing to 
videotape a test but reluctant to review recorded video 
clips. For example, a designer might want to find out how 
much time is spent on each interface screen or quickly 
retrieve and replay what a user said when a particular 
screen was presented. Currently, a designer would have to 
manually scan through a video clip to locate a segment of 

                                                           
* Yang Li is now a Research Scientist at Google Research. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA. 
Copyright 2010 ACM  978-1-60558-929-9/10/04....$10.00. 

 
Figure 1. A sequence of video frames (top). If Frame 1 shows 

the same or a similar interface screen to Frame 4, we consider 
them repetitions of the same screen and “wire” them together. 
The wiring results in the bottom graph, which generalizes the 
sequence above and illustrates the interaction flow of a paper 
prototyping test. When multiple sequences are available, this 

process is likely to produce a more complete graph. 
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interest, or manually compute the time spent on each 
screen. 
In addition, although a paper prototyping test allows a rich, 
situated communication between a designer and a user, its 
manual, face-to-face nature makes it difficult to scale to 
more extensive user testing. As a design idea matures, an 
interactive, more automated prototype is often needed so 
that a more extensive user test is affordable, user feedback 
can be more detailed, and testing in a more realistic situa-
tion can occur. The current process of transitioning from a 
paper prototype to an interactive prototype requires addi-
tional technical skills and effort on the part of the designer. 
To address these two issues, we created FrameWire, a 
system that provides a high level, structural view over one 
or more paper prototype test video clips and generates 
interactive HTML-based prototypes from these clips. These 
features are realized using automatic extraction of 
interaction logic from raw video clips of multiple paper 
prototyping tests. The name of the system comes from our 
approach of “wiring” video frames together to reflect the 
interaction flow of the design that is demonstrated in these 
clips, which are sequences of frames (see Figure 1). 

Research Challenges and Contributions 
Much of the prior work in rapid prototyping support has 
focused on electronic prototyping tools [3, 7, 12, 17], 
which often require designers to either give up the familiar 
practice of paper prototyping or manually bridge the gap 
between paper and electronic prototyping themselves. 
Although there are many electronic tools intended to 
imitate the paper prototyping experience, the affordances 
of physical paper prototyping is still irreplaceable. 
In our early exploration, seven interaction designers were 
asked to use an electronic tool we developed that closely 
replicated physical paper prototyping concepts. However, 
although our participants liked the advanced editing and 
analysis features of the tool, it was observed that they still 
preferred to start a design on paper. These observations 
motivated us to build a tool to enhance paper prototyping 
while preserving the existing practice as much as possible. 

To this end, our goal was to provide a tool to help design-
ers to analyze existing paper prototyping tests, to create a 
structural, easy-to-grasp view of the resulting video record-
ing and to transform a paper design into an electronic, in-
teractive form. To preserve the flexibility of paper proto-
typing practices, we also chose not to resort to additional 
sensors or special devices such as digital pens [2]. We rely 
only on a regular video camera that is already used in exist-
ing paper prototype tests. This goal poses the technical 
challenge of understanding interaction logic from video 
clips that merely consist of streams of raw image frames. 
FrameWire contributes a novel approach for extracting in-
teraction logic from video streams that combines computer 
vision processing and automatic clustering with human-
driven interactive refinement. The extracted information 
includes interface screens, aggregated transitions, and their 
associations with the original video streams. Once a de-
signer imports the video recording of one or more tests (see 
Figure 2), the interaction logic is automatically extracted 
and presented as an editable interaction flow graph (see 
Figure 3). FrameWire’s interaction flow graphs consist of 
screens and transitions. A screen represents a state of the 
target interface. A transition specifies what state becomes 
current when an event occurs, e.g., on a button click. 
With these extracted structures, FrameWire allows a 
designer to directly index, replay and annotate the video 
frames associated with each interface screen or transition, 
and understand how the user’s time is spent during each 
session. This feature is also useful for others in addition to 
the designer herself to easily understand the design and 
observations from user tests. FrameWire works differently 
and addresses different issues than prior work such as 
d.Tools [7], which also provides rich features for analyzing 
test video. For example, both FrameWire and d.Tools allow 
a user to index video frames in a structured way. However, 
d.Tools correlates a test video stream to predefined 
interaction logic that a designer has to specify explicitly 
before a test, while FrameWire automatically derives the 
logic and its association with video frames from the video 
itself. This feature required solving additional technical 
challenges beyond the prior work. 
FrameWire also contributes a new feature for turning a 
paper prototype into an interactive electronic prototype in 
the form of a set of linked HTML pages. Together, these 
two features allow a designer to analyze and present a set 
of raw video clips in an efficient, structured manner and to 
easily take a paper prototype design farther into extensive 
or remote user tests using the generated HTML pages.  
In the remainder of the paper, we first describe FrameWire 
from an interface designer’s point of view. We next de-
scribe how FrameWire extracts interaction logic from a set 
of video clips and generates interactive prototypes. We 
then report on the studies we conducted to understand the 
feasibility of our approach and how designers would react 
to FrameWire. This is followed by a discussion of the limi-

 
Figure 2. A user clicks on an interface component by tapping 
her finger on the paper drawing. The blue finger tip distin-

guishes the user’s action finger from other objects in the scene. 
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tations of FrameWire and plans for future work. We finish 
with a discussion of related work and our conclusions. 

THE FRAMEWIRE SYSTEM 
Here we describe how a designer would use FrameWire to 
analyze one or more tests of a paper prototype design to 
create a structural, communicative view of the test results, 
and to extract an interactive prototype from these tests.  

Paper Prototyping 
FrameWire does not require designers to modify their 
current paper prototyping practices. To use FrameWire, 
they create interface mockups with physical paper by hand 
drawing, cutting, copying and pasting. They test a design 
by presenting different paper sheets of interface 
components on a table in front of a user, in response to the 
user’s actions. A single video camera mounted above the 
table captures the interface screens (i.e., paper sheets) 
presented, the user’s and the designer’s hand activities on 
the table, and what is said during the test. 
To simplify the detection of the user’s input on each screen 
with a single camera, FrameWire requires a user to wear an 
inexpensive, commercially available, blue rubber finger tip 
to indicate the cursor (see Figure 2), and to dwell for a 
short period of time for a click action. Currently, this is the 
only special requirement of FrameWire. The use of the 
blue fingertip avoids multi-finger confusion and is more 

robust than using skin detection alone. As we found in our 
user studies, this requirement did not bother the users. 

Importing Video Clips for Analysis & Authoring 
Once a test is videotaped, a designer can import the video 
clip into FrameWire for analysis. FrameWire can load vid-
eo clips from multiple tests of a design, each of which may 
have followed different paths through the design. The tool 
automatically extracts interface screens, user clicks and the 
transitions between screens from the clips (see Figure 3).  
In the main canvas, FrameWire shows the extracted logic 
as an interaction flow graph. Each screen is labeled by a 
screen name that corresponds to its occurrences in the vid-
eo clips at the bottom, and a duration that shows the aver-
age amount of time spent on the screen during user tests. 
Each transition is represented by an arrow between screens. 
A transition that starts with a blue translucent patch over a 
screen element indicates an inferred interface component 
that a user has clicked on (e.g., a button or an icon). Be-
cause not every path of a design might have been covered 
during paper prototype tests, these functional transitions 
may only capture a subset of the transitions in a design. To 
address this issue, in addition to these functional transi-
tions, FrameWire also proposes suggestive transitions 
(shown as dark arrows). FrameWire adds a suggestive tran-
sition based on the assumption that if there are transitions 
from screen A to B, there might be a need to have at least 

 
Figure 3. FrameWire extracts an interaction flow graph from the video recording of paper prototype tests. The bottom pane shows 

all the occurrences of the extracted screens in the video clips. The interface also shows the statistics of a test, such as the total 
duration, the number of screen changes and user clicks, and the minimum and the maximum duration spent on a screen.  
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one transition from screen B to A to allow a user to go 
back to the previous screen. A designer can choose to add a 
functional transition based on a suggestion (by drawing a 
line between screens) or simply ignore it. A designer can 
also decide to add functional transitions herself. At a high 
level, the graph is constructed based on combining similar 
frames as illustrated in Figure 1. We will elaborate on the 
extraction details in the Algorithms section.  
Imported video clips are displayed in the bottom pane of 
the FrameWire interface in one of two forms. In the 
Segment View, FrameWire only shows video segments that 
contribute to extracted screens and transitions (see Figures 
3 & 4). In the Timeline View, FrameWire shows the entire 
clip, including the frames in which a designer adds, 
removes and positions paper mockups, which do not 
contribute to the extraction. Each segment is represented by 
a thumbnail showing the first video frame of the segment. 
The screen that each video segment contributes to as well 
as the time spent in that segment during the test is dis-
played above the segment. As a result, a designer can easi-
ly discover which screens have appeared in a test, the se-
quence of their occurrences, and the time spent on each oc-
currence.  
A designer can right click on any video segment thumbnail 
to retrieve and replay it. Thus, a designer can easily find 
and view the video segment that is associated with a screen 
occurrence and watch what a user did and said.  
Selecting a screen in the graph will also highlight all the 
occurrences (segments) of the screen in the video clips at 
the bottom, e.g., Screen 4 is selected in Figure 3. The red 

bars beneath the scrollbar indicate the temporal distribution 
of these occurrences within the entire clip. A designer can 
quickly locate a highlighted segment by clicking on a red 
bar. This is useful when the segment is not on screen. 
Similarly, selecting a video segment at the bottom will 
highlight the corresponding screen in the graph.  

Refining & Communicating Extractions 
If the automatic extraction does not fully capture the 
designer’s intent, the designer can interactively refine and 
annotate the extracted logic. The value of the Extract slider 
(Figure 4, top) globally determines how similar two frames 
must be to be considered repetitions of the same screen, 
which influences how FrameWire should “wire” frames. A 
designer can also choose to refine a specific set of screens 
to merge or reveal minor changes such as popup menus. 
Designers can move or resize the extracted blue patches to 
correct the inferred components that users can click on (in 
the interactive HTML prototype exported later) to trigger a 
transition. Designers can also add or delete transitions and 
screens to illustrate a desired flow. 
Once a designer is satisfied with the interaction flow graph, 
she can save the graph and easily send the results to her 
colleagues who can view the interaction flow graph along 
with the video recording and make further edits. 

Generating Interactive HTML Prototypes 
In addition, a designer can export a graph as an interactive 
prototype. FrameWire parses an interaction flow graph and 
renders it into HTML pages (see Figure 5). A generated 
HTML prototype uses each screen as the background 
image of an HTML page and overlays clickable “hot areas” 

 
Figure 4. A designer can adjust the Extract slider to have FrameWire generate more or fewer screens. This figure shows that some 

similar screens in Figure 3 are merged as the designer drags the slider towards “fewer screens”.  
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of hyperlinks for the transitions, which correspond to the 
blue patches generated in FrameWire. The generated 
HTML pages can be tested in any web browser. As a 
result, with a small amount of editing, a designer can easily 
create an interactive prototype from recorded video clips. 

ALGORITHMS 
In this section, we describe how FrameWire extracts an in-
teraction flow graph from a set of video clips.  

Our Intuition 
An interaction flow graph is computationally equivalent to 
a State-Transition Diagram (STD), where each screen in 
the graph is identical to a state in a STD and a click on an 
interface component represents the event that triggers the 
transition between states. If we know the STD for a design, 
we can generate valid interaction sequences. Note that 
there could be an infinite number of possible sequences 
when there are loops in a STD. However, the problem that 
we address here is the reverse. We intend to uncover an 
unknown STD from a finite set of known sequences. 
Since a designer can reuse screens during a paper prototype 
test, there can be many similar frames in a set of imported 
video clips. If we consider those similar frames as 
repetitions of a single interface screen, we can then easily 
fold sequences of frames into a graph. The graph represents 
interaction flows manifested by these tests (see Figure 1). 
Although this approach does not allow us to recover all the 
transitions of a hypothetical graph (as some transitions may 
never happen during a test), we are able to extract a 
skeleton of a graph, which can then be completed by the 
designer. In the rest of the section, we discuss the process 
of extracting such a graph from video. 

Preprocessing a Video Clip 
The preprocessing stage performs several computer vision 
analyses to extract the interface screens and user clicks in 
one or more video clips, and generates a similarity matrix 
that describes the similarities between each pair of 
extracted frames. These intermediate results are used as 
input for the later stages of processing. 

Initialization. Having loaded a clip, the system first semi-
automatically learns the setting under which the clip was 
taken. This involves two steps. First, FrameWire records 
the background scene, i.e., an image without any paper 
sheets or hands. This is by default the first frame of the 
clip, or it can be chosen by the designer. Second, 
FrameWire calibrates the camera settings using a frame 
chosen by a designer that contains an interface screen sheet 
but no hands. After the designer specifies the size of the 
screen sheet for calibration (e.g., A4), the system finds the 
optimal perspective and color transform that makes the 
sheet appear upright, of the desired size, and white-
balanced. This corrects the perspective and color distortion 
caused by the camera angle and environmental lighting for 
any planar objects placed on the table. 
Extracting Interface Screen Frames. The system then 
analyzes each frame in a clip in order (see Figure 6a). After 
perspective and color correction, a background subtraction 
step extracts the foreground scene. If the foreground region 
is large enough, the system searches for a rectangular shape 
with a feasible size for a screen sheet by examining the 
geometric layouts of corner features detected in the 
foreground. If such a rectangular shape is found, it 
concludes there is an interface screen in the frame (Figure 
6b). The system extracts the detected screen by cropping 
and rotating the rectangle to an upright orientation (Figure 
6c). Finally, we generate a line drawing of the elements on 
the screen using an adaptive thresholding algorithm on the 
extracted screen image (Figure 6d). 
Since we only need one representative frame for each time 
a screen is presented in the clip, the system ignores 
adjacent frames1 that contain very similar screens. This 
significantly reduces the size of the similarity matrix 
                                                           
1 Notice that the preprocessing evaluates the similarity between 

frames in a local, greedy way. As a result, it only considers two 
frames the same when they are extremely similar. A designer-
driven, high-level clustering is followed after the preprocessing. 

       
         
 

(a) (b) 

(c) (d)
 

Figure 6. Screen frame extraction steps. (a) Original video 
frame. (b) After perspective/color correction & screen detec-
tion. (c) Extracted screen image. (d) Generated line drawing. 

 
Figure 5. An HTML page generated from the video recording 

of a paper prototype test is loaded in a web browser. 
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needed for the next stage, which makes the computation of 
the latter high-level extraction tractable. As a result, each 
extracted screen frame corresponds to a range of video 
frames and represents an occurrence of an interface screen. 
The system ignores frames with hands inside the screen 
boundary (detected by skin color), since they correspond to 
either the designer updating the screens, or the user 
clicking on the screen (detected separately as below). 
Detecting User Clicks. If the current frame contains an 
interface screen, the system also attempts to detect the 
user’s blue finger tip by searching for a blue-colored region 
within the screen boundary. If the finger tip is present and 
has been static for a period of time, e.g., 0.2 seconds by 
default, a click is recorded, and the finger tip position is 
translated into a position in the current extracted screen. 
Calculating Screen Frame Similarities. After all of the 
screens are extracted, the system generates a similarity 
matrix across all of the imported clips. To calculate the 
similarity between two screen frames, the system compares 
the line drawings that it has generated for both, which have 
been geometrically aligned and are insensitive to lighting 
conditions. To compensate for slight misalignment caused 
during extraction, both line drawings are first blurred using 
a Gaussian filter. The similarity metric (ranging between 0 
and 1) is then defined as the percentage of corresponding 
pixels that have similar values in both images. 
Many of the analysis parameters, such as the screen sheet 
size and the finger dwelling period, can be adjusted by the 
designer to suit the specific environment of the user test. 
Note that the perspective transformation is calculated once 
for an entire video clip while the rotation of paper sheets is 
continuously computed for each frame. If the camera hap-
pens to be moved significantly during a test session, a reca-
libration from that point might be needed. 

Extracting Unique Interface Screens 
Based on the similarity matrix of screen frames generated 
by the preprocessing, FrameWire clusters all the frames 

into groups, and the frames in each group are considered 
repetitions of the same screen. Hereafter, we use “frame” 
for “screen frame” for brevity. Notice that frames are a 
subset of the original raw video frames selected for 
clustering. 
An important question here is to answer how similar a set 
of frames must be for them to be considered repetitions of 
the same screen. It is challenging to determine an 
appropriate threshold in a completely automatic way, 
because an optimal threshold may be design specific. For 
example, when the only difference between two frames is 
whether a checkbox is selected or not, a designer can 
consider them either as the same screen or different 
depending on the granularity of the analysis she wants. As 
a result, our design principle in FrameWire is to first 
automatically identify a potentially optimal threshold for 
generating an initial extraction. We then allow designers 
the option to choose an appropriate threshold for their 
design by adjusting the Extract slider shown in Figure 4.  
We employ hierarchical clustering [20] to group frames 
into a tree structure (see Figure 7). In each step of a 
hierarchical clustering process, the most similar frames are 
clustered. The leaf nodes are frames that can come from 
one or more video clips. Each internal node represents a 
group of frames. Each node has an average similarity S (0 
≤ S ≤ 1) that indicates how similar the frames in the group 
are, where S = 1 for a leaf node. As the designer drags the 
Extract slider, FrameWire locates a level in the cluster tree 
(see the dashed line in Figure 7) in a top-down manner 
based on whether the S of a node is larger than the 
threshold specified by the designer. 
We currently identify an initial threshold using a simple 
heuristic. We search through the space of all possible 
thresholds given a cluster hierarchy, and select a threshold 
that will cause the most significant increase in S averaged 
across all the candidate groups, e.g., the four gray nodes in 
Figure 7. The intuition behind this heuristic is to keep the S 
of each group as large as possible, i.e., the frames in each 
group should be as similar as possible, while at the same 
time allowing as few groups (unique screens shown in an 
interaction flow graph) as possible. 
The cluster hierarchy, an internal structure, maintains the 
association between the extracted graph and frames. It 
enables designers to easily select a set of similar frames. If 
a designer clicks on a frame that is already selected, the 
most similar frames will be selected as well and each 
additional click will move the selected group node up one 
level in the hierarchy. For example, in Figure 7, if Frame 1 
is selected, clicking on Frame 1 will also select Frame 4.  

Extracting Transitions 
Once all the unique screens are identified, FrameWire 
extracts the transitions based on the temporal adjacency of 
their occurrences in the video clips. For example, if Screen 
A appears right before Screen B in the video, we assume 

1 4 

5 6 

2 

3 

 
Figure 7. An illustration of a possible cluster hierarchy for the 

example in Figure 1. Frames are clustered hierarchically 
based on their similarity. Leaf nodes (numbered with frame 
indices) represent frames. The nodes below the dashed line 

have an average similarity larger than the threshold specified 
by the designer. Here four unique screens are extracted based 

on four groups of frames (represented by the gray nodes). 
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there should be a transition from A to B, although there is 
no guarantee that a user click will be detected on Screen A. 
A transition might, for example, be triggered by a timer. 

Although the preprocessing identifies user click positions, 
it does not analyze the higher level semantics of what 
interface components a user has clicked on. The motivation 
for identifying these interface components is for generating 
interactive prototypes. For example, in a generated HTML 
prototype, a user should be able to trigger a transition by 
clicking on any part of a target component instead of the 
specific click point acquired by tracking the blue finger tip. 

In general, it is challenging to recognize a hand-drawn 
interface without human intervention [1, 12]. Instead of 
parsing the entire screen to recognize all the interface 
components, we conduct parsing in a lazy, local processing 
manner. FrameWire first clusters user clicks that are close 
to each other and detected in the occurrences of the same 
screen. FrameWire then treats each cluster as a seed region 
and incrementally expands the region to search for a 
surrounding interface component. A blue patch is then 
generated to cover the inferred component, indicating a 
clickable area on the screen. As this greedy search can be 
error-prone, FrameWire allows a designer to easily modify 
the parsing result by adding, deleting, moving or resizing a 
blue patch to indicate a desired clickable region. 

EVALUATIONS 
To understand whether our interaction logic extraction 
algorithms were feasible and how designers would react to 
such a tool, we evaluated FrameWire in three stages, in 
settings ranging from idealistic to realistic.  

Initial Trials  
Before analyzing realistic paper prototype tests, we tested 
the performance of FrameWire on three mockup sessions 
of 1-2 minutes each recorded in our research lab, using 
simple paper prototypes we created. FrameWire achieved 
100% accuracy on detecting all interface screen frames and 
user clicks. The clustering algorithm merged frames that 
had the same screen with 100% accuracy. The ink parsing 
algorithm was able to correctly infer an active interface 
component (i.e., the blue patch) for 76% of the user clicks. 
This encouraged us to examine how our system performed 
with more complex and realistic paper prototypes. 

Feasibility Tests with More Realistic Data  
We collected three paper prototypes developed by 
undergraduate students in a user interface design class. The 
prototypes were a mobile task sharing system, a workout 
tracker, and a mobile ordering system. We then conducted 
and videotaped the tests of these paper prototype designs 
with a user who was not familiar with the project and had 
never participated in a paper prototyping test before. After 
a brief background introduction to each prototype, we 
asked him to perform a given task by clicking on the paper 
interfaces. We instructed him to wear the blue finger tip 
and avoid reaching onto the paper until the screen had 

changed. He had no difficulty following these instructions 
or with the presence of a video camera. The video camera 
was set on a tripod pointed down, and automatic exposure 
adjustment was turned off to maintain consistent brightness 
throughout the video clips. We used FrameWire to analyze 
the results from these three sessions. The sessions ranged 
from 1-2 minutes long and included 9-11 interface screens. 
Results. Here we focus on reporting the objective perfor-
mance of FrameWires’s extraction algorithms and discuss 
the feasibility of extracting interaction logic from video. 
For the preprocessing stage, FrameWire took 187 seconds 
on average to preprocess every minute of video on a 2GHz 
Centrino Core Duo computer. This was slower than real 
time and there is much room for algorithm optimization. 
Nonetheless, the preprocessing only needs to be invoked 
once, i.e., when a video clip is imported into FrameWire.  
Table 1 summarizes the preprocessing results for each 
session. The ground truth (actual #) was obtained from a 
manual analysis of the video clips. In detecting screen 
frames and user clicks, there may be four types of errors:  
• Duplicate: One event instance is detected as multiple 

identical or similar instances. This can occur when the 
paper sheet is somehow crinkled, or when a user dwells 
too long for a click.  

• False-alert: An event is detected when it is not actually 
present, such as when the user pauses her finger but 
does not intend a click.  

• Wrong: The event is correctly identified but the 
extracted information (e.g., click position) is erroneous. 

• Miss: The system fails to identify the event, such as 
when the screen sheet is outside the camera view, or the 
user dwells too short for the click. 

The preprocessing achieved a high rate of correct events on 
both screen frame detection (97%) and user click detection 
(83%), and few false-alert, wrong, and miss events oc-
curred. The screen frame extraction was able to distinguish 
screens differentiated only by ticking a checkbox. Some of 
the reasons that caused the slightly lower rates than the 
mockup sessions may include: user hesitation when select-
ing interface components, more complex interface screens, 
and suboptimal lighting conditions in the test room. 

Session Task sharing 
system 

Workout  
tracker 

Ordering  
system 

Event screen click screen click screen click 

actual # 11 11 9 9 11 10 

correct 10 9 9 8 11 8 

duplicate 6 3 3 3 5 4 
false-
alert 0 3 0 0 0 0 

wrong 0 1 0 0 0 0 

miss 1 1 0 1 0 2 

Table 1: Preprocessing results on user test sessions. 
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We would also like to note that the preprocessing stage 
detects events individually and does not reason about their 
interrelationship. However, in the later stages, many of the 
detection errors can be easily eliminated by considering the 
higher-level structure of the prototype and user behavior. 
For example, the frequently detected duplicate screen 
frames can be naturally grouped into the same screen by 
the frame clustering algorithm. Duplicate clicks can 
provide additional cues in extracting clickable interface 
components on the screen (i.e., blue patches). Missing 
clicks can be compensated for by adding suggestive 
transitions between screens and the designer can specify 
the activation area later. Finally, combining the results 
from multiple test sessions of the same prototype will also 
likely result in more complete coverage of the screens and 
transitions. 
Based on the results of the preprocessing, FrameWire 
performs three major computations for high-level 
processing: hierarchical clustering, transition tracing and 
click clustering. These computations are performed in real 
time. The initial similarity threshold, which FrameWire 
automatically determined based on the cluster hierarchy, 
correctly merged 80% of the frames that showed the same 
screen in these tests. The Extract slider can be used to 
achieve a desired granularity with more or fewer screens. 
Implications of the Performance Results. These results 
showed that although there is still room for improving 
extraction accuracy, it is feasible to extract interaction logic 
from the video recordings of paper prototype tests with 
FrameWire. The performance results indicated that the vast 
majority of interface screens and transitions could be 
extracted correctly by FrameWire. This was further 
confirmed by our participants in the qualitative study 
described in the following section. In addition, FrameWire 
gives a designer the flexibility to control the automatic 
analysis process and to refine the inference results. With 
these positive performance results, we sought to collect 
qualitative feedback on FrameWire from interface 
designers who tried it in more realistic user sessions. 

Acquiring Qualitative Feedback in Realistic Sessions 
We asked four interaction designers to use FrameWire in 
their own paper prototyping projects. The purpose of the 
study was to solicit qualitative feedback from them on 
FrameWire’s design and the new experience that it enables. 
Each trial involved one realistic paper prototype created by 
the designer, who tested the design with three different 
users in separate sessions. All sessions were video-
recorded, resulting in twelve video clips, each 2-3 minutes 
in length. The twelve user participants were recruited from 
a university campus for these tests. The four designs that 
were tested in these experiments included a touch screen 
alarm clock, a control panel to operate a lecture room, a 
video chat tool, and a restaurant ordering system. 
After the designer finished the three user test sessions, the 
video recordings of the tests were imported into Frame-

Wire. Out of the twelve sessions, eight were successfully 
processed by the preprocessor. The other four were af-
fected by non-preferred camera/environment settings, or 
the designer incidentally violated some of the system re-
quirements such as rearranging the table background. This 
showed that our preprocessing algorithm is yet to be per-
fected to adapt to unexpected situations that may exist in 
real life scenarios. Nonetheless, these provided enough da-
ta for each designer to proceed with FrameWire. 
Designers were asked to use FrameWire to analyze their 
tests, edit the results generated by automatic analysis if 
necessary, and export the design as HTML prototypes. 
After each trial, we asked the designer to comment on what 
they liked, and disliked about FrameWire and how they 
would imagine using FrameWire in their design practice. 
What our participants liked the most about FrameWire was 
the extraction of interaction flow graphs, test statistics and 
generating HTML pages. As one designer commented: 

It’s a neat way to make the paper prototype interac-
tive on a computer. It seemed like a nice way to be 
able to view everything at a high level…This seems 
useful for running a user study a few times live, then 
letting many more people use it through the web. 

Our participants’ least favorite issues with FrameWire 
included usability issues, such as “The controls were a 
little confusing. It was hard to tell what the Hand tool was 
exactly pointing at”, and the lack of functionality that they 
needed. The designers requested a way to quickly merge 
redundant arrows and the ability to zoom into the video. 
These issues will be easy to address in a final system. 
In terms of the Extract slider, one designer complained that 
it was difficult to find an ideal number of screens by just 
dragging the slider. We also observed that another 
participant started his search for a desired graph by 
dragging the slider all the way to the fewest screens, and 
then slowly incremented until it was close to what he 
wanted. This inspired the idea that it might be a useful 
feature to animate through the different interaction flow 
graphs that the system could possibly extract. 
Our participants also hoped to use FrameWire in their 
design practice, as one participant commented: 

I would use FrameWire after a few paper iterations, 
when I had a better idea about the design in general 
and needed a lot of feedback from a wider audience 
or to be able to present the prototype to developers to 
explain the concepts. 

However, although all our participants appreciated being 
able to refine extracted contents such as adjusting a click 
area, they did wish the automatic extraction could be more 
accurate and capture more detail about their designs. They 
also wished FrameWire was able to extract multi-finger 
interactions, a recent trend in user interfaces. This raises a 
new research question for future work. 
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DISCUSSION & FUTURE WORK 
FrameWire brings easy-to-create paper prototypes quickly 
into a digital, shareable form and maintains their 
associations with original video recordings. Here we 
discuss its limitation and potential follow-up research. 

Limitations 
The inherent limitation of our approach is that it is not able 
to infer transitions that did not occur during the user tests. 
Although FrameWire uses suggestive transitions to address 
this issue, more sophisticated inference might be necessary 
to further complete the interaction flow graph. This may 
require the semantic analysis of sketches [1, 12], which is 
not our focus with FrameWire. Currently, FrameWire ap-
proaches this issue by leveraging human intelligence. By 
presenting the extracted logic in a human-friendly manner, 
a designer can easily adjust automatic extraction, analyze 
test videos, and modify or complete the extracted logic. 
Another limitation of FrameWire is that it currently only 
detects click events. Nevertheless, user clicks often contri-
bute a major portion of user actions in a paper prototyping 
test, especially for web or desktop interface design. In ad-
dition, FrameWire does not constrain a design or a user test 
in any way. A user can perform any interactions that are 
meaningful to a design such as gesturing or dragging. Fra-
meWire still captures these scenarios in the video clips but 
does not attempt to interpret them. We observed that, al-
though a user may perform various interactions on an inter-
face, most transition-triggering events are still clicks. As a 
result, clicks are reliable delimiters in an event stream. By 
detecting click events, FrameWire can effectively extract 
the interaction flow of a user test, and meanwhile group 
unrecognized interactions (e.g., dragging) into click-
delimited segments that can be indexed and viewed. This 
establishes a solid baseline to which the extraction of other 
interaction events can be added in the future. 

Using Additional Sensors 
Anoto pens [2] have been used in many systems aimed at 
integrating physical and digital workspaces [6, 13, 22]. 
This avoids difficult tasks such as low-level image 
processing. However, using Anoto alone has several se-
rious limitations in our case. First, Anoto requires non-
trivial overhead for designers to make a design and prepare 
a test. All the pages of a design need to be either printed 
using Anoto software or drawn with an Anoto pen before-
hand. If a designer constantly iterates on paper by erasing 
and redrawing things (a common practice), the changes 
have to be tracked and updated with Anoto, which loses the 
fluidity of paper prototyping. Secondly, an Anoto pen 
alone does not provide all of the input needed for our sys-
tem. The Anoto pen detects a page only when it touches or 
hovers on the page. All other contextual information is lost 
such as when a page is presented or removed. This context 
is essential for segmenting and structuring the video 
stream. In addition, pages that are presented, but not 
touched by the user will not be detected by Anoto. These 

are commonplace in paper prototype tests, such as transi-
tion screens, or Post-It notes attached to the main page to 
update part of the screen (e.g., drop-down menus or check-
boxes). In contrast, a video camera is able to continuously 
capture this additional information during a test, and nicely 
integrate into the existing practice of recording user tests. 
In the future, it would be valuable to consider adding other 
sensors, such as an Anoto pen, to the camera to further im-
prove the quality of extraction. 

Robustness & Test Complexity 
A major challenge for most vision-based systems is that the 
parameter setting of the system tends to be ad hoc to 
different environmental factors, e.g., lighting and 
background interference, and is sometimes subject to 
manual adjustment. FrameWire is not immune from these 
issues. However, the process for setting vision parameters 
has been carefully streamlined in FrameWire and requires 
relatively low effort by the designer. These parameters can 
be set up once and used repeatedly for each test setting. 
FrameWire was designed to be robust to several common 
issues that may occur during user tests. It is not sensitive to 
movement of the paper sheet as it continuously detects and 
updates the sheet location in all video frames. With the 
background subtraction of the preprocessing, clutter on the 
desk also does not pose a problem, as long as the irrelevant 
objects remain static. By considering finger orientation, 
click position can be accurately determined regardless of 
which side the user is sitting on. In terms of duplicate 
clicks, FrameWire only considers the last click in each 
screen occurrence to trigger a transition. This improves the 
reliability of the transition extraction.  
The paper prototype tests that we studied so far are short in 
length (1-3 minutes). However, a longer test does not 
necessarily imply a harder task for FrameWire. Short tests 
tend to have few repetitions, if any, which results in sparse 
data. Thus, some interactions reflected in a design do not 
occur or only occur once. This makes interaction logic 
extraction difficult. In fact, the longer a test is, the more 
data is available for FrameWire to use.  

RELATED WORK 
The contributions of FrameWire lie at the intersection of 
several research areas. 

Integrating the Physical & Digital Worlds 
There has been a large body of work in bridging the 
physical and digital worlds [6, 9, 11, 13, 21]. For example, 
Kim et al. developed a system to track paper documents on 
the desk and maintain their linkage with electronic 
documents [10]. However, their SIFT-based similarity 
measure cannot reliably handle documents with too little 
texture, such as the line drawings used in paper 
prototyping. In addition, none of the prior systems address 
the issue of extracting interaction logic from video 
recordings of paper prototyping tests, especially when no 
additional sensors (such as a digital pen) are employed. 
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Our studies with FrameWire show it contributes a feasible 
approach to addressing this problem that can bring new 
knowledge to designers during early stage prototyping. 

Early Stage Prototyping Tools 
A number of tools have been developed for the early stages 
of user interface design for various domains [3, 7, 11, 12, 
15, 17]. The work most closely related to FrameWire is the 
Designers’ Outpost [11], which allows designers to create a 
UI design using physical paper in a vision-based system. 
However, like other prior work, the Designers’ Outpost 
requires a designer to explicitly specify the interaction flow 
of a design beforehand. This is different from the 
prototyping experience that FrameWire supports. 
Traditional paper prototyping has the merit of allowing a 
designer to start a design process by thinking about 
interaction scenarios as opposed to interaction logic, and 
revise the designs on the fly during tests in response to the 
users’ behaviors. FrameWire preserves the practices and 
advantages of traditional paper prototyping and meanwhile 
brings a paper prototype forward into an editable and 
interactive electronic form. 

Programming by Demonstration 
FrameWire generalizes interaction scenarios captured in 
video clips and generates interactive prototypes. It essen-
tially addresses a Programming By Demonstration (PBD) 
problem [5, 14]. In contrast to prior PBD work, FrameWire 
works with a specific kind of input and output: a set of vid-
eo clips of paper prototyping tests and an interaction flow 
graph. A long-standing problem in PBD is how to effec-
tively present inference results to users so that they can 
correct or confirm these results. FrameWire exemplifies 
one solution for this problem by allowing a designer to in-
teractively refine an inferred interaction flow graph and to 
easily retrieve the examples that contribute to an inferred 
component. Video Pupperty [4] allows a user to create se-
quential animation by demonstrating paper drawing in front 
of a camera. In contrast, FrameWire extracts a full interac-
tion flow graph instead of merely sequential steps. 

Interaction Analysis Tools 
Previously, interaction analysis tools were designed for un-
derstanding the usability and the usage of an interface that 
is either a built interface (e.g., [8]) or an interactive elec-
tronic prototype (e.g., [7]). In contrast, FrameWire supports 
a designer in analyzing the video recordings of paper pro-
totypes that include no semantics or interaction logic other 
than sequences of frames. This assists designers in con-
ducting a deeper analysis of user behaviors previously only 
possible with electronic, interactive prototypes. 

CONCLUSIONS 
We presented FrameWire, a tool that extracts a meaningful 
interaction flow graph from raw video clips of paper 
prototyping tests. FrameWire does not limit what can be 
drawn or presented on paper. It contributes a novel method 
for understanding paper prototyping test video clips. This 

innovation makes it possible to 1) allow a designer to 
easily analyze and communicate test video by viewing 
generated statistics and by directly indexing video 
segments related to each interaction behavior, and 2) 
transform a paper prototype into an interactive HTML-
based prototype in a semi-automatic way.  
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