

FrameWire: A Tool for Automatically Extracting Interaction
Logic from Paper Prototyping Tests

Yang Li 1* Xiang Cao 2 Katherine Everitt 1 Morgan Dixon 1 James A. Landay 1
1 DUB Institute, University of Washington, Seattle, WA 2 Microsoft Research Cambridge, UK

{yangli, xiangcao}@acm.org, katherine.everitt@gmail.com, {mdixon, landay}@cs.washington.edu

ABSTRACT
Paper prototyping offers unique affordances for interface
design. However, due to its spontaneous nature and the
limitations of paper, it is difficult to distill and
communicate a paper prototype design and its user test
findings to a wide audience. To address these issues, we
created FrameWire, a computer vision-based system that
automatically extracts interaction flows from the video
recording of paper prototype user tests. Based on the
extracted logic, FrameWire offers two distinct benefits for
designers: a structural view of the video recording that
allows a designer or a stakeholder to easily distill and
understand the design concept and user interaction
behaviors, and automatic generation of interactive HTML-
based prototypes that can be easily tested with a larger
group of users as well as “walked through” by other
stakeholders. The extraction is achieved by automatically
aggregating video frame sequences into an interaction flow
graph based on frame similarities and a designer-guided
clustering process. The results of evaluating FrameWire
with realistic paper prototyping tests show that our
extraction approach is feasible and FrameWire is a
promising tool for enhancing existing prototyping practice.

Author Keywords
Paper prototyping, programming by demonstration.

ACM Classification Keywords
H.5.2 [User Interfaces]: Prototyping; D.2.2 [Design Tools
and Techniques]: User interfaces.

General Terms
Design, Human Factors.

INTRODUCTION
Paper prototyping is a widely used technique for the early
stages of user interface design. It allows a designer to
acquire early user feedback about a design. A designer can
create an interface mockup using paper artifacts such as
hand drawings and test an early-stage idea with a user in a
visual and tangible way [18, 19]. During a test, a designer,

playing the role of the “computer”, presents an interface
screen (e.g., drawn on a piece of paper) to a user according
to the user’s actions. The user interacts with the interface
by pointing at elements they would use as if it were a real
system, and the designer reacts by changing the paper
screens that reflect the interface. By asking the user to
think aloud about their actions and the interface design as
the test proceeds, a designer can get qualitative feedback as
well as see how users will use the design.
Although paper prototyping allows fluid and rapid iteration
on a design, its spontaneous and physical nature makes it
difficult to analyze and communicate a design and test
findings to a wider audience. Designers often videotape a
test to capture rich interaction scenarios and the
conversation with a user [16]. In practice, seeing the users
get confused and voice their concerns has more impact than
simply hearing someone describe what happened [19].
However, it can be time-consuming to watch and edit the
resulting video clips, and there are no tools for analyzing
the tests and distilling interaction flows and scenarios of
interest. This is why designers are quite willing to
videotape a test but reluctant to review recorded video
clips. For example, a designer might want to find out how
much time is spent on each interface screen or quickly
retrieve and replay what a user said when a particular
screen was presented. Currently, a designer would have to
manually scan through a video clip to locate a segment of

* Yang Li is now a Research Scientist at Google Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

Figure 1. A sequence of video frames (top). If Frame 1 shows

the same or a similar interface screen to Frame 4, we consider
them repetitions of the same screen and “wire” them together.
The wiring results in the bottom graph, which generalizes the
sequence above and illustrates the interaction flow of a paper
prototyping test. When multiple sequences are available, this

process is likely to produce a more complete graph.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

503

interest, or manually compute the time spent on each
screen.
In addition, although a paper prototyping test allows a rich,
situated communication between a designer and a user, its
manual, face-to-face nature makes it difficult to scale to
more extensive user testing. As a design idea matures, an
interactive, more automated prototype is often needed so
that a more extensive user test is affordable, user feedback
can be more detailed, and testing in a more realistic situa-
tion can occur. The current process of transitioning from a
paper prototype to an interactive prototype requires addi-
tional technical skills and effort on the part of the designer.
To address these two issues, we created FrameWire, a
system that provides a high level, structural view over one
or more paper prototype test video clips and generates
interactive HTML-based prototypes from these clips. These
features are realized using automatic extraction of
interaction logic from raw video clips of multiple paper
prototyping tests. The name of the system comes from our
approach of “wiring” video frames together to reflect the
interaction flow of the design that is demonstrated in these
clips, which are sequences of frames (see Figure 1).

Research Challenges and Contributions
Much of the prior work in rapid prototyping support has
focused on electronic prototyping tools [3, 7, 12, 17],
which often require designers to either give up the familiar
practice of paper prototyping or manually bridge the gap
between paper and electronic prototyping themselves.
Although there are many electronic tools intended to
imitate the paper prototyping experience, the affordances
of physical paper prototyping is still irreplaceable.
In our early exploration, seven interaction designers were
asked to use an electronic tool we developed that closely
replicated physical paper prototyping concepts. However,
although our participants liked the advanced editing and
analysis features of the tool, it was observed that they still
preferred to start a design on paper. These observations
motivated us to build a tool to enhance paper prototyping
while preserving the existing practice as much as possible.

To this end, our goal was to provide a tool to help design-
ers to analyze existing paper prototyping tests, to create a
structural, easy-to-grasp view of the resulting video record-
ing and to transform a paper design into an electronic, in-
teractive form. To preserve the flexibility of paper proto-
typing practices, we also chose not to resort to additional
sensors or special devices such as digital pens [2]. We rely
only on a regular video camera that is already used in exist-
ing paper prototype tests. This goal poses the technical
challenge of understanding interaction logic from video
clips that merely consist of streams of raw image frames.
FrameWire contributes a novel approach for extracting in-
teraction logic from video streams that combines computer
vision processing and automatic clustering with human-
driven interactive refinement. The extracted information
includes interface screens, aggregated transitions, and their
associations with the original video streams. Once a de-
signer imports the video recording of one or more tests (see
Figure 2), the interaction logic is automatically extracted
and presented as an editable interaction flow graph (see
Figure 3). FrameWire’s interaction flow graphs consist of
screens and transitions. A screen represents a state of the
target interface. A transition specifies what state becomes
current when an event occurs, e.g., on a button click.
With these extracted structures, FrameWire allows a
designer to directly index, replay and annotate the video
frames associated with each interface screen or transition,
and understand how the user’s time is spent during each
session. This feature is also useful for others in addition to
the designer herself to easily understand the design and
observations from user tests. FrameWire works differently
and addresses different issues than prior work such as
d.Tools [7], which also provides rich features for analyzing
test video. For example, both FrameWire and d.Tools allow
a user to index video frames in a structured way. However,
d.Tools correlates a test video stream to predefined
interaction logic that a designer has to specify explicitly
before a test, while FrameWire automatically derives the
logic and its association with video frames from the video
itself. This feature required solving additional technical
challenges beyond the prior work.
FrameWire also contributes a new feature for turning a
paper prototype into an interactive electronic prototype in
the form of a set of linked HTML pages. Together, these
two features allow a designer to analyze and present a set
of raw video clips in an efficient, structured manner and to
easily take a paper prototype design farther into extensive
or remote user tests using the generated HTML pages.
In the remainder of the paper, we first describe FrameWire
from an interface designer’s point of view. We next de-
scribe how FrameWire extracts interaction logic from a set
of video clips and generates interactive prototypes. We
then report on the studies we conducted to understand the
feasibility of our approach and how designers would react
to FrameWire. This is followed by a discussion of the limi-

Figure 2. A user clicks on an interface component by tapping
her finger on the paper drawing. The blue finger tip distin-

guishes the user’s action finger from other objects in the scene.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

504

tations of FrameWire and plans for future work. We finish
with a discussion of related work and our conclusions.

THE FRAMEWIRE SYSTEM
Here we describe how a designer would use FrameWire to
analyze one or more tests of a paper prototype design to
create a structural, communicative view of the test results,
and to extract an interactive prototype from these tests.

Paper Prototyping
FrameWire does not require designers to modify their
current paper prototyping practices. To use FrameWire,
they create interface mockups with physical paper by hand
drawing, cutting, copying and pasting. They test a design
by presenting different paper sheets of interface
components on a table in front of a user, in response to the
user’s actions. A single video camera mounted above the
table captures the interface screens (i.e., paper sheets)
presented, the user’s and the designer’s hand activities on
the table, and what is said during the test.
To simplify the detection of the user’s input on each screen
with a single camera, FrameWire requires a user to wear an
inexpensive, commercially available, blue rubber finger tip
to indicate the cursor (see Figure 2), and to dwell for a
short period of time for a click action. Currently, this is the
only special requirement of FrameWire. The use of the
blue fingertip avoids multi-finger confusion and is more

robust than using skin detection alone. As we found in our
user studies, this requirement did not bother the users.

Importing Video Clips for Analysis & Authoring
Once a test is videotaped, a designer can import the video
clip into FrameWire for analysis. FrameWire can load vid-
eo clips from multiple tests of a design, each of which may
have followed different paths through the design. The tool
automatically extracts interface screens, user clicks and the
transitions between screens from the clips (see Figure 3).
In the main canvas, FrameWire shows the extracted logic
as an interaction flow graph. Each screen is labeled by a
screen name that corresponds to its occurrences in the vid-
eo clips at the bottom, and a duration that shows the aver-
age amount of time spent on the screen during user tests.
Each transition is represented by an arrow between screens.
A transition that starts with a blue translucent patch over a
screen element indicates an inferred interface component
that a user has clicked on (e.g., a button or an icon). Be-
cause not every path of a design might have been covered
during paper prototype tests, these functional transitions
may only capture a subset of the transitions in a design. To
address this issue, in addition to these functional transi-
tions, FrameWire also proposes suggestive transitions
(shown as dark arrows). FrameWire adds a suggestive tran-
sition based on the assumption that if there are transitions
from screen A to B, there might be a need to have at least

Figure 3. FrameWire extracts an interaction flow graph from the video recording of paper prototype tests. The bottom pane shows

all the occurrences of the extracted screens in the video clips. The interface also shows the statistics of a test, such as the total
duration, the number of screen changes and user clicks, and the minimum and the maximum duration spent on a screen.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

505

one transition from screen B to A to allow a user to go
back to the previous screen. A designer can choose to add a
functional transition based on a suggestion (by drawing a
line between screens) or simply ignore it. A designer can
also decide to add functional transitions herself. At a high
level, the graph is constructed based on combining similar
frames as illustrated in Figure 1. We will elaborate on the
extraction details in the Algorithms section.
Imported video clips are displayed in the bottom pane of
the FrameWire interface in one of two forms. In the
Segment View, FrameWire only shows video segments that
contribute to extracted screens and transitions (see Figures
3 & 4). In the Timeline View, FrameWire shows the entire
clip, including the frames in which a designer adds,
removes and positions paper mockups, which do not
contribute to the extraction. Each segment is represented by
a thumbnail showing the first video frame of the segment.
The screen that each video segment contributes to as well
as the time spent in that segment during the test is dis-
played above the segment. As a result, a designer can easi-
ly discover which screens have appeared in a test, the se-
quence of their occurrences, and the time spent on each oc-
currence.
A designer can right click on any video segment thumbnail
to retrieve and replay it. Thus, a designer can easily find
and view the video segment that is associated with a screen
occurrence and watch what a user did and said.
Selecting a screen in the graph will also highlight all the
occurrences (segments) of the screen in the video clips at
the bottom, e.g., Screen 4 is selected in Figure 3. The red

bars beneath the scrollbar indicate the temporal distribution
of these occurrences within the entire clip. A designer can
quickly locate a highlighted segment by clicking on a red
bar. This is useful when the segment is not on screen.
Similarly, selecting a video segment at the bottom will
highlight the corresponding screen in the graph.

Refining & Communicating Extractions
If the automatic extraction does not fully capture the
designer’s intent, the designer can interactively refine and
annotate the extracted logic. The value of the Extract slider
(Figure 4, top) globally determines how similar two frames
must be to be considered repetitions of the same screen,
which influences how FrameWire should “wire” frames. A
designer can also choose to refine a specific set of screens
to merge or reveal minor changes such as popup menus.
Designers can move or resize the extracted blue patches to
correct the inferred components that users can click on (in
the interactive HTML prototype exported later) to trigger a
transition. Designers can also add or delete transitions and
screens to illustrate a desired flow.
Once a designer is satisfied with the interaction flow graph,
she can save the graph and easily send the results to her
colleagues who can view the interaction flow graph along
with the video recording and make further edits.

Generating Interactive HTML Prototypes
In addition, a designer can export a graph as an interactive
prototype. FrameWire parses an interaction flow graph and
renders it into HTML pages (see Figure 5). A generated
HTML prototype uses each screen as the background
image of an HTML page and overlays clickable “hot areas”

Figure 4. A designer can adjust the Extract slider to have FrameWire generate more or fewer screens. This figure shows that some

similar screens in Figure 3 are merged as the designer drags the slider towards “fewer screens”.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

506

of hyperlinks for the transitions, which correspond to the
blue patches generated in FrameWire. The generated
HTML pages can be tested in any web browser. As a
result, with a small amount of editing, a designer can easily
create an interactive prototype from recorded video clips.

ALGORITHMS
In this section, we describe how FrameWire extracts an in-
teraction flow graph from a set of video clips.

Our Intuition
An interaction flow graph is computationally equivalent to
a State-Transition Diagram (STD), where each screen in
the graph is identical to a state in a STD and a click on an
interface component represents the event that triggers the
transition between states. If we know the STD for a design,
we can generate valid interaction sequences. Note that
there could be an infinite number of possible sequences
when there are loops in a STD. However, the problem that
we address here is the reverse. We intend to uncover an
unknown STD from a finite set of known sequences.
Since a designer can reuse screens during a paper prototype
test, there can be many similar frames in a set of imported
video clips. If we consider those similar frames as
repetitions of a single interface screen, we can then easily
fold sequences of frames into a graph. The graph represents
interaction flows manifested by these tests (see Figure 1).
Although this approach does not allow us to recover all the
transitions of a hypothetical graph (as some transitions may
never happen during a test), we are able to extract a
skeleton of a graph, which can then be completed by the
designer. In the rest of the section, we discuss the process
of extracting such a graph from video.

Preprocessing a Video Clip
The preprocessing stage performs several computer vision
analyses to extract the interface screens and user clicks in
one or more video clips, and generates a similarity matrix
that describes the similarities between each pair of
extracted frames. These intermediate results are used as
input for the later stages of processing.

Initialization. Having loaded a clip, the system first semi-
automatically learns the setting under which the clip was
taken. This involves two steps. First, FrameWire records
the background scene, i.e., an image without any paper
sheets or hands. This is by default the first frame of the
clip, or it can be chosen by the designer. Second,
FrameWire calibrates the camera settings using a frame
chosen by a designer that contains an interface screen sheet
but no hands. After the designer specifies the size of the
screen sheet for calibration (e.g., A4), the system finds the
optimal perspective and color transform that makes the
sheet appear upright, of the desired size, and white-
balanced. This corrects the perspective and color distortion
caused by the camera angle and environmental lighting for
any planar objects placed on the table.
Extracting Interface Screen Frames. The system then
analyzes each frame in a clip in order (see Figure 6a). After
perspective and color correction, a background subtraction
step extracts the foreground scene. If the foreground region
is large enough, the system searches for a rectangular shape
with a feasible size for a screen sheet by examining the
geometric layouts of corner features detected in the
foreground. If such a rectangular shape is found, it
concludes there is an interface screen in the frame (Figure
6b). The system extracts the detected screen by cropping
and rotating the rectangle to an upright orientation (Figure
6c). Finally, we generate a line drawing of the elements on
the screen using an adaptive thresholding algorithm on the
extracted screen image (Figure 6d).
Since we only need one representative frame for each time
a screen is presented in the clip, the system ignores
adjacent frames1 that contain very similar screens. This
significantly reduces the size of the similarity matrix

1 Notice that the preprocessing evaluates the similarity between

frames in a local, greedy way. As a result, it only considers two
frames the same when they are extremely similar. A designer-
driven, high-level clustering is followed after the preprocessing.

(a) (b)

(c) (d)

Figure 6. Screen frame extraction steps. (a) Original video
frame. (b) After perspective/color correction & screen detec-
tion. (c) Extracted screen image. (d) Generated line drawing.

Figure 5. An HTML page generated from the video recording

of a paper prototype test is loaded in a web browser.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

507

needed for the next stage, which makes the computation of
the latter high-level extraction tractable. As a result, each
extracted screen frame corresponds to a range of video
frames and represents an occurrence of an interface screen.
The system ignores frames with hands inside the screen
boundary (detected by skin color), since they correspond to
either the designer updating the screens, or the user
clicking on the screen (detected separately as below).
Detecting User Clicks. If the current frame contains an
interface screen, the system also attempts to detect the
user’s blue finger tip by searching for a blue-colored region
within the screen boundary. If the finger tip is present and
has been static for a period of time, e.g., 0.2 seconds by
default, a click is recorded, and the finger tip position is
translated into a position in the current extracted screen.
Calculating Screen Frame Similarities. After all of the
screens are extracted, the system generates a similarity
matrix across all of the imported clips. To calculate the
similarity between two screen frames, the system compares
the line drawings that it has generated for both, which have
been geometrically aligned and are insensitive to lighting
conditions. To compensate for slight misalignment caused
during extraction, both line drawings are first blurred using
a Gaussian filter. The similarity metric (ranging between 0
and 1) is then defined as the percentage of corresponding
pixels that have similar values in both images.
Many of the analysis parameters, such as the screen sheet
size and the finger dwelling period, can be adjusted by the
designer to suit the specific environment of the user test.
Note that the perspective transformation is calculated once
for an entire video clip while the rotation of paper sheets is
continuously computed for each frame. If the camera hap-
pens to be moved significantly during a test session, a reca-
libration from that point might be needed.

Extracting Unique Interface Screens
Based on the similarity matrix of screen frames generated
by the preprocessing, FrameWire clusters all the frames

into groups, and the frames in each group are considered
repetitions of the same screen. Hereafter, we use “frame”
for “screen frame” for brevity. Notice that frames are a
subset of the original raw video frames selected for
clustering.
An important question here is to answer how similar a set
of frames must be for them to be considered repetitions of
the same screen. It is challenging to determine an
appropriate threshold in a completely automatic way,
because an optimal threshold may be design specific. For
example, when the only difference between two frames is
whether a checkbox is selected or not, a designer can
consider them either as the same screen or different
depending on the granularity of the analysis she wants. As
a result, our design principle in FrameWire is to first
automatically identify a potentially optimal threshold for
generating an initial extraction. We then allow designers
the option to choose an appropriate threshold for their
design by adjusting the Extract slider shown in Figure 4.
We employ hierarchical clustering [20] to group frames
into a tree structure (see Figure 7). In each step of a
hierarchical clustering process, the most similar frames are
clustered. The leaf nodes are frames that can come from
one or more video clips. Each internal node represents a
group of frames. Each node has an average similarity S (0
≤ S ≤ 1) that indicates how similar the frames in the group
are, where S = 1 for a leaf node. As the designer drags the
Extract slider, FrameWire locates a level in the cluster tree
(see the dashed line in Figure 7) in a top-down manner
based on whether the S of a node is larger than the
threshold specified by the designer.
We currently identify an initial threshold using a simple
heuristic. We search through the space of all possible
thresholds given a cluster hierarchy, and select a threshold
that will cause the most significant increase in S averaged
across all the candidate groups, e.g., the four gray nodes in
Figure 7. The intuition behind this heuristic is to keep the S
of each group as large as possible, i.e., the frames in each
group should be as similar as possible, while at the same
time allowing as few groups (unique screens shown in an
interaction flow graph) as possible.
The cluster hierarchy, an internal structure, maintains the
association between the extracted graph and frames. It
enables designers to easily select a set of similar frames. If
a designer clicks on a frame that is already selected, the
most similar frames will be selected as well and each
additional click will move the selected group node up one
level in the hierarchy. For example, in Figure 7, if Frame 1
is selected, clicking on Frame 1 will also select Frame 4.

Extracting Transitions
Once all the unique screens are identified, FrameWire
extracts the transitions based on the temporal adjacency of
their occurrences in the video clips. For example, if Screen
A appears right before Screen B in the video, we assume

1 4

5 6

2

3

Figure 7. An illustration of a possible cluster hierarchy for the

example in Figure 1. Frames are clustered hierarchically
based on their similarity. Leaf nodes (numbered with frame
indices) represent frames. The nodes below the dashed line

have an average similarity larger than the threshold specified
by the designer. Here four unique screens are extracted based

on four groups of frames (represented by the gray nodes).

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

508

there should be a transition from A to B, although there is
no guarantee that a user click will be detected on Screen A.
A transition might, for example, be triggered by a timer.

Although the preprocessing identifies user click positions,
it does not analyze the higher level semantics of what
interface components a user has clicked on. The motivation
for identifying these interface components is for generating
interactive prototypes. For example, in a generated HTML
prototype, a user should be able to trigger a transition by
clicking on any part of a target component instead of the
specific click point acquired by tracking the blue finger tip.

In general, it is challenging to recognize a hand-drawn
interface without human intervention [1, 12]. Instead of
parsing the entire screen to recognize all the interface
components, we conduct parsing in a lazy, local processing
manner. FrameWire first clusters user clicks that are close
to each other and detected in the occurrences of the same
screen. FrameWire then treats each cluster as a seed region
and incrementally expands the region to search for a
surrounding interface component. A blue patch is then
generated to cover the inferred component, indicating a
clickable area on the screen. As this greedy search can be
error-prone, FrameWire allows a designer to easily modify
the parsing result by adding, deleting, moving or resizing a
blue patch to indicate a desired clickable region.

EVALUATIONS
To understand whether our interaction logic extraction
algorithms were feasible and how designers would react to
such a tool, we evaluated FrameWire in three stages, in
settings ranging from idealistic to realistic.

Initial Trials
Before analyzing realistic paper prototype tests, we tested
the performance of FrameWire on three mockup sessions
of 1-2 minutes each recorded in our research lab, using
simple paper prototypes we created. FrameWire achieved
100% accuracy on detecting all interface screen frames and
user clicks. The clustering algorithm merged frames that
had the same screen with 100% accuracy. The ink parsing
algorithm was able to correctly infer an active interface
component (i.e., the blue patch) for 76% of the user clicks.
This encouraged us to examine how our system performed
with more complex and realistic paper prototypes.

Feasibility Tests with More Realistic Data
We collected three paper prototypes developed by
undergraduate students in a user interface design class. The
prototypes were a mobile task sharing system, a workout
tracker, and a mobile ordering system. We then conducted
and videotaped the tests of these paper prototype designs
with a user who was not familiar with the project and had
never participated in a paper prototyping test before. After
a brief background introduction to each prototype, we
asked him to perform a given task by clicking on the paper
interfaces. We instructed him to wear the blue finger tip
and avoid reaching onto the paper until the screen had

changed. He had no difficulty following these instructions
or with the presence of a video camera. The video camera
was set on a tripod pointed down, and automatic exposure
adjustment was turned off to maintain consistent brightness
throughout the video clips. We used FrameWire to analyze
the results from these three sessions. The sessions ranged
from 1-2 minutes long and included 9-11 interface screens.
Results. Here we focus on reporting the objective perfor-
mance of FrameWires’s extraction algorithms and discuss
the feasibility of extracting interaction logic from video.
For the preprocessing stage, FrameWire took 187 seconds
on average to preprocess every minute of video on a 2GHz
Centrino Core Duo computer. This was slower than real
time and there is much room for algorithm optimization.
Nonetheless, the preprocessing only needs to be invoked
once, i.e., when a video clip is imported into FrameWire.
Table 1 summarizes the preprocessing results for each
session. The ground truth (actual #) was obtained from a
manual analysis of the video clips. In detecting screen
frames and user clicks, there may be four types of errors:
• Duplicate: One event instance is detected as multiple

identical or similar instances. This can occur when the
paper sheet is somehow crinkled, or when a user dwells
too long for a click.

• False-alert: An event is detected when it is not actually
present, such as when the user pauses her finger but
does not intend a click.

• Wrong: The event is correctly identified but the
extracted information (e.g., click position) is erroneous.

• Miss: The system fails to identify the event, such as
when the screen sheet is outside the camera view, or the
user dwells too short for the click.

The preprocessing achieved a high rate of correct events on
both screen frame detection (97%) and user click detection
(83%), and few false-alert, wrong, and miss events oc-
curred. The screen frame extraction was able to distinguish
screens differentiated only by ticking a checkbox. Some of
the reasons that caused the slightly lower rates than the
mockup sessions may include: user hesitation when select-
ing interface components, more complex interface screens,
and suboptimal lighting conditions in the test room.

Session Task sharing
system

Workout
tracker

Ordering
system

Event screen click screen click screen click

actual # 11 11 9 9 11 10

correct 10 9 9 8 11 8

duplicate 6 3 3 3 5 4
false-
alert 0 3 0 0 0 0

wrong 0 1 0 0 0 0

miss 1 1 0 1 0 2

Table 1: Preprocessing results on user test sessions.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

509

We would also like to note that the preprocessing stage
detects events individually and does not reason about their
interrelationship. However, in the later stages, many of the
detection errors can be easily eliminated by considering the
higher-level structure of the prototype and user behavior.
For example, the frequently detected duplicate screen
frames can be naturally grouped into the same screen by
the frame clustering algorithm. Duplicate clicks can
provide additional cues in extracting clickable interface
components on the screen (i.e., blue patches). Missing
clicks can be compensated for by adding suggestive
transitions between screens and the designer can specify
the activation area later. Finally, combining the results
from multiple test sessions of the same prototype will also
likely result in more complete coverage of the screens and
transitions.
Based on the results of the preprocessing, FrameWire
performs three major computations for high-level
processing: hierarchical clustering, transition tracing and
click clustering. These computations are performed in real
time. The initial similarity threshold, which FrameWire
automatically determined based on the cluster hierarchy,
correctly merged 80% of the frames that showed the same
screen in these tests. The Extract slider can be used to
achieve a desired granularity with more or fewer screens.
Implications of the Performance Results. These results
showed that although there is still room for improving
extraction accuracy, it is feasible to extract interaction logic
from the video recordings of paper prototype tests with
FrameWire. The performance results indicated that the vast
majority of interface screens and transitions could be
extracted correctly by FrameWire. This was further
confirmed by our participants in the qualitative study
described in the following section. In addition, FrameWire
gives a designer the flexibility to control the automatic
analysis process and to refine the inference results. With
these positive performance results, we sought to collect
qualitative feedback on FrameWire from interface
designers who tried it in more realistic user sessions.

Acquiring Qualitative Feedback in Realistic Sessions
We asked four interaction designers to use FrameWire in
their own paper prototyping projects. The purpose of the
study was to solicit qualitative feedback from them on
FrameWire’s design and the new experience that it enables.
Each trial involved one realistic paper prototype created by
the designer, who tested the design with three different
users in separate sessions. All sessions were video-
recorded, resulting in twelve video clips, each 2-3 minutes
in length. The twelve user participants were recruited from
a university campus for these tests. The four designs that
were tested in these experiments included a touch screen
alarm clock, a control panel to operate a lecture room, a
video chat tool, and a restaurant ordering system.
After the designer finished the three user test sessions, the
video recordings of the tests were imported into Frame-

Wire. Out of the twelve sessions, eight were successfully
processed by the preprocessor. The other four were af-
fected by non-preferred camera/environment settings, or
the designer incidentally violated some of the system re-
quirements such as rearranging the table background. This
showed that our preprocessing algorithm is yet to be per-
fected to adapt to unexpected situations that may exist in
real life scenarios. Nonetheless, these provided enough da-
ta for each designer to proceed with FrameWire.
Designers were asked to use FrameWire to analyze their
tests, edit the results generated by automatic analysis if
necessary, and export the design as HTML prototypes.
After each trial, we asked the designer to comment on what
they liked, and disliked about FrameWire and how they
would imagine using FrameWire in their design practice.
What our participants liked the most about FrameWire was
the extraction of interaction flow graphs, test statistics and
generating HTML pages. As one designer commented:

It’s a neat way to make the paper prototype interac-
tive on a computer. It seemed like a nice way to be
able to view everything at a high level…This seems
useful for running a user study a few times live, then
letting many more people use it through the web.

Our participants’ least favorite issues with FrameWire
included usability issues, such as “The controls were a
little confusing. It was hard to tell what the Hand tool was
exactly pointing at”, and the lack of functionality that they
needed. The designers requested a way to quickly merge
redundant arrows and the ability to zoom into the video.
These issues will be easy to address in a final system.
In terms of the Extract slider, one designer complained that
it was difficult to find an ideal number of screens by just
dragging the slider. We also observed that another
participant started his search for a desired graph by
dragging the slider all the way to the fewest screens, and
then slowly incremented until it was close to what he
wanted. This inspired the idea that it might be a useful
feature to animate through the different interaction flow
graphs that the system could possibly extract.
Our participants also hoped to use FrameWire in their
design practice, as one participant commented:

I would use FrameWire after a few paper iterations,
when I had a better idea about the design in general
and needed a lot of feedback from a wider audience
or to be able to present the prototype to developers to
explain the concepts.

However, although all our participants appreciated being
able to refine extracted contents such as adjusting a click
area, they did wish the automatic extraction could be more
accurate and capture more detail about their designs. They
also wished FrameWire was able to extract multi-finger
interactions, a recent trend in user interfaces. This raises a
new research question for future work.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

510

DISCUSSION & FUTURE WORK
FrameWire brings easy-to-create paper prototypes quickly
into a digital, shareable form and maintains their
associations with original video recordings. Here we
discuss its limitation and potential follow-up research.

Limitations
The inherent limitation of our approach is that it is not able
to infer transitions that did not occur during the user tests.
Although FrameWire uses suggestive transitions to address
this issue, more sophisticated inference might be necessary
to further complete the interaction flow graph. This may
require the semantic analysis of sketches [1, 12], which is
not our focus with FrameWire. Currently, FrameWire ap-
proaches this issue by leveraging human intelligence. By
presenting the extracted logic in a human-friendly manner,
a designer can easily adjust automatic extraction, analyze
test videos, and modify or complete the extracted logic.
Another limitation of FrameWire is that it currently only
detects click events. Nevertheless, user clicks often contri-
bute a major portion of user actions in a paper prototyping
test, especially for web or desktop interface design. In ad-
dition, FrameWire does not constrain a design or a user test
in any way. A user can perform any interactions that are
meaningful to a design such as gesturing or dragging. Fra-
meWire still captures these scenarios in the video clips but
does not attempt to interpret them. We observed that, al-
though a user may perform various interactions on an inter-
face, most transition-triggering events are still clicks. As a
result, clicks are reliable delimiters in an event stream. By
detecting click events, FrameWire can effectively extract
the interaction flow of a user test, and meanwhile group
unrecognized interactions (e.g., dragging) into click-
delimited segments that can be indexed and viewed. This
establishes a solid baseline to which the extraction of other
interaction events can be added in the future.

Using Additional Sensors
Anoto pens [2] have been used in many systems aimed at
integrating physical and digital workspaces [6, 13, 22].
This avoids difficult tasks such as low-level image
processing. However, using Anoto alone has several se-
rious limitations in our case. First, Anoto requires non-
trivial overhead for designers to make a design and prepare
a test. All the pages of a design need to be either printed
using Anoto software or drawn with an Anoto pen before-
hand. If a designer constantly iterates on paper by erasing
and redrawing things (a common practice), the changes
have to be tracked and updated with Anoto, which loses the
fluidity of paper prototyping. Secondly, an Anoto pen
alone does not provide all of the input needed for our sys-
tem. The Anoto pen detects a page only when it touches or
hovers on the page. All other contextual information is lost
such as when a page is presented or removed. This context
is essential for segmenting and structuring the video
stream. In addition, pages that are presented, but not
touched by the user will not be detected by Anoto. These

are commonplace in paper prototype tests, such as transi-
tion screens, or Post-It notes attached to the main page to
update part of the screen (e.g., drop-down menus or check-
boxes). In contrast, a video camera is able to continuously
capture this additional information during a test, and nicely
integrate into the existing practice of recording user tests.
In the future, it would be valuable to consider adding other
sensors, such as an Anoto pen, to the camera to further im-
prove the quality of extraction.

Robustness & Test Complexity
A major challenge for most vision-based systems is that the
parameter setting of the system tends to be ad hoc to
different environmental factors, e.g., lighting and
background interference, and is sometimes subject to
manual adjustment. FrameWire is not immune from these
issues. However, the process for setting vision parameters
has been carefully streamlined in FrameWire and requires
relatively low effort by the designer. These parameters can
be set up once and used repeatedly for each test setting.
FrameWire was designed to be robust to several common
issues that may occur during user tests. It is not sensitive to
movement of the paper sheet as it continuously detects and
updates the sheet location in all video frames. With the
background subtraction of the preprocessing, clutter on the
desk also does not pose a problem, as long as the irrelevant
objects remain static. By considering finger orientation,
click position can be accurately determined regardless of
which side the user is sitting on. In terms of duplicate
clicks, FrameWire only considers the last click in each
screen occurrence to trigger a transition. This improves the
reliability of the transition extraction.
The paper prototype tests that we studied so far are short in
length (1-3 minutes). However, a longer test does not
necessarily imply a harder task for FrameWire. Short tests
tend to have few repetitions, if any, which results in sparse
data. Thus, some interactions reflected in a design do not
occur or only occur once. This makes interaction logic
extraction difficult. In fact, the longer a test is, the more
data is available for FrameWire to use.

RELATED WORK
The contributions of FrameWire lie at the intersection of
several research areas.

Integrating the Physical & Digital Worlds
There has been a large body of work in bridging the
physical and digital worlds [6, 9, 11, 13, 21]. For example,
Kim et al. developed a system to track paper documents on
the desk and maintain their linkage with electronic
documents [10]. However, their SIFT-based similarity
measure cannot reliably handle documents with too little
texture, such as the line drawings used in paper
prototyping. In addition, none of the prior systems address
the issue of extracting interaction logic from video
recordings of paper prototyping tests, especially when no
additional sensors (such as a digital pen) are employed.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

511

Our studies with FrameWire show it contributes a feasible
approach to addressing this problem that can bring new
knowledge to designers during early stage prototyping.

Early Stage Prototyping Tools
A number of tools have been developed for the early stages
of user interface design for various domains [3, 7, 11, 12,
15, 17]. The work most closely related to FrameWire is the
Designers’ Outpost [11], which allows designers to create a
UI design using physical paper in a vision-based system.
However, like other prior work, the Designers’ Outpost
requires a designer to explicitly specify the interaction flow
of a design beforehand. This is different from the
prototyping experience that FrameWire supports.
Traditional paper prototyping has the merit of allowing a
designer to start a design process by thinking about
interaction scenarios as opposed to interaction logic, and
revise the designs on the fly during tests in response to the
users’ behaviors. FrameWire preserves the practices and
advantages of traditional paper prototyping and meanwhile
brings a paper prototype forward into an editable and
interactive electronic form.

Programming by Demonstration
FrameWire generalizes interaction scenarios captured in
video clips and generates interactive prototypes. It essen-
tially addresses a Programming By Demonstration (PBD)
problem [5, 14]. In contrast to prior PBD work, FrameWire
works with a specific kind of input and output: a set of vid-
eo clips of paper prototyping tests and an interaction flow
graph. A long-standing problem in PBD is how to effec-
tively present inference results to users so that they can
correct or confirm these results. FrameWire exemplifies
one solution for this problem by allowing a designer to in-
teractively refine an inferred interaction flow graph and to
easily retrieve the examples that contribute to an inferred
component. Video Pupperty [4] allows a user to create se-
quential animation by demonstrating paper drawing in front
of a camera. In contrast, FrameWire extracts a full interac-
tion flow graph instead of merely sequential steps.

Interaction Analysis Tools
Previously, interaction analysis tools were designed for un-
derstanding the usability and the usage of an interface that
is either a built interface (e.g., [8]) or an interactive elec-
tronic prototype (e.g., [7]). In contrast, FrameWire supports
a designer in analyzing the video recordings of paper pro-
totypes that include no semantics or interaction logic other
than sequences of frames. This assists designers in con-
ducting a deeper analysis of user behaviors previously only
possible with electronic, interactive prototypes.

CONCLUSIONS
We presented FrameWire, a tool that extracts a meaningful
interaction flow graph from raw video clips of paper
prototyping tests. FrameWire does not limit what can be
drawn or presented on paper. It contributes a novel method
for understanding paper prototyping test video clips. This

innovation makes it possible to 1) allow a designer to
easily analyze and communicate test video by viewing
generated statistics and by directly indexing video
segments related to each interaction behavior, and 2)
transform a paper prototype into an interactive HTML-
based prototype in a semi-automatic way.

REFERENCES
1. Alvarado, C. and Davis, R. SketchREAD: a multi-domain

sketch recognition engine. UIST'04. p. 23-32.
2. Anoto. http://www.anoto.com.
3. Bailey, B.P., et al. DEMAIS: designing multimedia

applications with interactive storyboards. ACM
Multimedia'01. p. 241-250.

4. Barnes, C., et al. Video puppetry: a performative interface for
cutout animation. ACM Trans. Graph. 27, 5 (Dec. 2008), 1-9.

5. Cypher, A., ed. Watch What I Do: Programming by
Demonstration. 1993, MIT Press.

6. Guimbretière, F. Paper Augmented Digital Documents.
UIST'03. p. 51-60.

7. Hartmann, B., et al. Reflective physical prototyping through
integrated design, test, and analysis. UIST'06. p. 299-308.

8. Hong, J.I. and Landay, J.A. WebQuilt: a framework for
capturing and visualizing the web experience. WWW'01. p.
717-724.

9. Johnson, W., et al. Bridging the paper and electronic worlds:
the paper user interface. CHI'93. p. 507-512.

10. Kim, J., et al. Video-based document tracking: unifying your
physical and electronic desktops. UIST'04. p. 99-107.

11. Klemmer, S.R., et al. Integrating Physical and Digital
Interactions on Walls for Fluid Design Collaboration. Human-
Computer Interaction, 23: p. 138-213.

12. Landay, J.A. and Myers, B.A. Sketching Interfaces: Toward
More Human Interface Design. IEEE Computer, 2001. 34(3):
p. 56-64.

13. Liao, C., et al. Papiercraft: A gesture-based command system
for interactive paper. TOCHI, 2008. 14(4): p. 1073-0516.

14. Lieberman, H., ed. Your Wish Is My Command: Programming
by Example. 2001, Morgan Kaufmann.

15. MacIntyre, B., et al. DART: A Toolkit for Rapid Design
Exploration of Augmented Reality Experiences. UIST'04. p.
197-206.

16. Mackay, W. E. and Fayard, A. L. Video brainstorming and
prototyping: techniques for participatory design. In CHI '99
Extended Abstracts. CHI '99. p. 118-119.

17. Newman, M.W., et al. DENIM: An Informal Web Site Design
Tool Inspired by Observations of Practice. Human-Computer
Interaction, 2003. 18(3): p. 259-324.

18. Rettig, M. Prototyping for Tiny Fingers. Communications of
the ACM, 1994. 37(4): p. 21-27.

19. Snyder, C. Paper Prototyping: The Fast and Easy Way to
Design and Refine User Interfaces. 2003, Morgan Kaufmann.

20. Ward, J.H. Hierarchical Grouping to Optimize an Objective
Function. J. Am. Statist. Assoc., 1963. 58: p. 236-244.

21. Wellner, P. Interacting with paper on the DigitalDesk.
Communications of the ACM, 1993. 36(7): p. 87-96.

22. Yeh, R., et al. ButterflyNet: a mobile capture and access
system for field biology research. CHI'06. p. 571-580.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

512

