
To appear in the Proceedings of Eurosys 2010

Policy-based Access Control for
Weakly Consistent Replication

Ted Wobber Thomas L. Rodeheffer Douglas B. Terry

Microsoft Research, Silicon Valley

{wobber,tomr,terry}@microsoft.com

Abstract
Combining access control with weakly consistent replica-
tion presents a challenge if the resulting system is to sup-
port eventual consistency. If authorization policy can be tem-
porarily inconsistent, any given operation may be permitted
at one node and yet denied at another. This is especially trou-
blesome when the operation in question involves a change in
policy. Without a careful design, permanently divergent state
can result.

We describe and evaluate the design and implementation
of an access control system for weakly consistent replication
where peers are not uniformly trusted. Our system allows for
the specification of fine-grained access control policy over a
collection of replicated items. Policies are expressed using
a logical assertion framework and access control decisions
are logical proofs. Policy can grow to encompass new nodes
through fine-grain delegation of authority. Eventual consis-
tency of the replicated data is preserved despite the fact that
access control policy can be temporarily inconsistent.

Categories and Subject Descriptors C.2.4 [Computer-
Communication Networks]: Distributed Systems; D.4.5
[Operating Systems]: Security and Protection

General Terms Algorithms, design, security

Keywords Eventual consistency, replication, security logic

1. Introduction
The availability of cheap and portable computing has re-
sulted in a proliferation of computing devices with a pro-
found effect on our personal and professional lives. Al-
though data communications technology has served to con-
nect many such devices at the network level, users continue

This is the author’s version of this work. It is posted here by permission of the ACM
for your personal use.

Copyright c© 2010 ACM 978-1-60558-577-2/10/04. . . $10.00

to be faced with the task of managing their data across multi-
ple devices, and the problem increases with each new device.
While some applications succeed in managing data in a cen-
tralized or well-synchronized fashion, there remain many
which do not. As a result, users routinely deal with data
that is replicated across multiple computing devices with (at
best) weak guarantees about consistency.

Numerous protocols and applications have been proposed
for creating order from distributed disorder. Although tech-
niques for constructing tightly synchronized systems such as
state-machine replication [28] are well understood, many de-
ployed systems have adopted loose synchronization seman-
tics as these have fewer operational constraints. For exam-
ple, tools such as Groove [19] provide file replication be-
tween directories located on multiple machines. Microsoft
Sync Framework [20] offers a general platform for provid-
ing multi-node synchronization of arbitrary datatypes. Di-
rectory services such as Grapevine [8] and Active Direc-
tory [18] support lazy propagation of updates between dis-
tributed servers. Even in the data center, strong consistency
can be an expensive proposition in terms of performance
and geo-location, and more relaxed strategies are often em-
ployed [31]. Many of these systems can be thought of as
peer-to-peer in the sense that updates to replicated state can
propagate through peer nodes; point-to-point links between
all communicants are not required. The systems that we con-
sider are weakly consistent, with no guarantees as to the
temporal replicated state at each node. However, these sys-
tems do support eventual consistency: nodes are guaranteed
to eventually converge to identical states if updates cease.

In this paper, we consider the problem of providing access
control in the context of weakly consistent replication. We
assume that it is desirable for nodes to have different rights in
terms of what data they can receive, change, and propagate.
More succinctly, nodes are not equally trusted. While there
are numerous examples of systems that use replication to
provide a distributed service with restricted access to clients
(including some of the aforementioned systems), we know
of little work that discusses how to support differing levels
of access privilege within such a service so that some peers
have only limited authority to read, author, and propagate

1 2010/2/10

updates. This is an important problem because in real life,
collections of cooperating devices are not homogeneous. A
user may give more rights to his home machine than a cloud
server, or fewer to his web server than the computer where
his finances are kept, or choose to deny most modification
privileges to his cell phone. In a distributed directory service,
a node serving a particular naming domain may be trusted to
update names only within that domain. There may be good
reason to give a photo-sharing service access to only a subset
of a user’s replicated photo collection. And, of course, with
portable devices becoming such an important part of the
digital lifestyle, we must realize that such devices are easily
lost and hence open to compromise. Even as these devices
join in replicated systems, we need techniques to allow trust
in them to be constrained and revoked.

We use the term replica to refer to an active distributed
system element that holds replicated content. We use the
term policy to refer to the shared state that defines the set of
actions replicas can perform during the replication process.
Policy also defines the set of data items to which a replica
may make local modifications. As such, it constrains the
replicas on which data can originate or be modified, and the
paths through which it can flow. Policy must be mutable,
and there is no guarantee that each replica will see the same
policy at any given time.

Providing policy-based access control where there is only
weak consistency presents three primary challenges.

• Policy specification must not depend on implementation
detail.

• Policy must evolve seamlessly as devices and data are
added or deleted.

• Access control must not prevent eventual consistency.

First, it is always desirable to be able to reason about
access control policy without considering the details of a
given implementation, and it’s even more important to do
so in a distributed environment where reasoning about secu-
rity is complex to begin with. Implementation-independence
also permits policy enforcement to be audited after the fact
and facilitates caching of evaluation results and offline pre-
authorization. Second, policy must be able to evolve: by
adding rights for new replicas, by revoking old rights, and
by delegating the right to do both.

The nature of our third challenge about preserving even-
tual consistency can be seen in Figure 1. In a system in which
all nodes trust each other, the access control policy for allow-
ing an update U can be enforced independently by nodes A,
B, and C, even though there might be transient variations in
policy at the three nodes. Because the nodes trust each other
to enforce policy, they will never permanently disagree about
which data items have been accepted. Once an update is ad-
mitted (as in Figure 1a), no further checks are required. Note
that there is no guarantee that the most recent policy is used
for any one access control decision.

A B

C

U

A B

C

U(a)

(b)

Figure 1. Distributed access control with (a) trustful and (b)
distrustful nodes

If, however, A, B, and C are mutually distrustful (as in
Figure 1b), each must evaluate policy on every update to
make sure that updates are compliant with policy. As we
discuss in Section 2.2, the possibility of transient differences
in policy risks permanent divergence in state between nodes.
This would violate eventual consistency.

To further illustrate the problem, in Figure 2, we depict
two replicas that we use to examine what can happen when
nodes are both inconsistent and mutually suspicious. The
solid lines represent update flows. Replication state is de-
picted at four different times. At T0 both replicas initially
have policy P and data item U . Suppose at T1 two concur-
rent updates are introduced into the system: a policy change
P′ and a data update U ′, where U ′ is valid under policy P
but not P′. (A similar problem would arise if U ′ were disal-
lowed by P but allowed by P′.) Since our system places no
constraints on update ordering, B might attempt to propagate
U ′ at T2. In a framework of mutual trust, U ′ would be sub-
sequently accepted at A because the critical access control
check takes place when the update enters the system, at B.
No other access checks are needed. However, in a mutually
distrustful system, there must be an access check at every
hop and U ′ would be rejected at A although it was accepted
at B. Finally, A sends the new policy P′ to B at time T3. B
keeps U ′ since it was accepted under the old policy. Thus,
the replica state at A and B now differs, and lacking other
action, the divergence will be permanent.

This paper presents a new system that, to our knowledge,
is the first to provide an authorization framework for weakly
consistent replication without uniform trust. We specify se-
curity policy using the SecPAL logical policy assertion lan-
guage [7]. Thus, policy is separate from data and policy is
enforced by requiring logical proofs of authorization. Our
logic expressions provide not only a solid foundation for as-
signment and delegation of authority between existing and
new peers, but also a succinct mechanism for propagating
policy and dealing with any potential inconsistencies that
might lead to divergence. We have implemented our system
in the context of a general-purpose replication framework,
Cimbiosys [24]. However, we expect the methods we de-

2 2010/2/10

P, U P, U

BA

T0 T1

U´P´
T2 T3

Time

P´, U P, U´

BA

T

P´, U P, U´

BA

P´, U P´,U´

BA

U´ P´

Figure 2. Concurrent policy (P′) and data (U ′) updates lead to permanent inconsistency

scribe here to be applicable to weakly consistent replication
protocols in general.

The remainder of the paper is organized as follows. Sec-
tion 2 lays out our system model and the threat environment
it tolerates. Section 3 presents our system design and how
it satisfies the first two challenges above. In Section 4 gives
a detailed explanation for how we deal with the third chal-
lenge of maintaining eventual consistency. Section 5 moti-
vates our design and cites some potential limitations. Sec-
tion 6 provides implementation specifics as well as a brief
performance evaluation. Section 7 describes related work,
and Section 8 concludes.

2. System and threat model
We refer to a dataset subject to replication as a collection. In
practice, a collection might be a file system subtree, a SQL
database, a digital calendar, a list of personal contacts, some
other type of shared data, or a combination of the above.
Collections contain sets of items. These sets can appear, in
whole or in part, on one or more collection replicas. Because
of access controls, all data may not appear on all replicas,
thus we rely on the presence of partial replicas, for exam-
ple as implemented in Cimbiosys [24]. In our system, up-
dates operate on whole items and items are independent in
that there are no constraints on replication order between
items. Updates can originate at any replica. Replicas syn-
chronize periodically, that is, a destination replica requests
the enumeration and download of items from a source. We
do not constrain the period or distribution of synchroniza-
tion events and we expect arbitrary communication patterns
between replicas. However, we do assume that the commu-
nication pattern is rich enough so that all updates will reach
all authorized replicas.

We assume that any update to data in a collection takes
place either through direct invocation on the replication
infrastructure or is observed by a helper application (such as
a file system watcher) that can then alert the replication in-
frastructure. Updates can arrive out of order or be superseded
en route by newer updates to the same data. Concurrent up-
dates to a single item, which we call replication conflicts,
may occur and conflict resolution need not be automatic as
long as conflicts are resolved identically at every replica.
Communications failures are tolerated as long as network
partition is not permanent.

2.1 Principals and rights

The security principals in our access control system are
replicas, not users. Several of the applications we are con-
sidering (e.g., productivity and portability applications) typ-
ically involve a single human user per replica. Often a single
user will own all the replicas (e.g., home computers, home
servers, and phones), but also desire these entities to have
different security privileges. However, a multi-user model is
also possible. For example, a collection’s policy might grant
authority to a replica hosted by a server that hosts replicas
for many users, trusting that the server will provide adequate
isolation between them. Alternatively, an application might
build user-level access control on top of our framework.

Since replicas are principals in our system, we associate
a public key with each. Every creation of or modification to
an item at a replica results in a local update that is then prop-
agated to other replicas. We call this originating replica the
author of an update. Each such update bears a public key
signature that guarantees data integrity and identifies the au-
thor replica. The purpose of security policy is to grant appro-
priate rights to replicas by granting authority to their public
keys. In the case of updates, an update is not valid unless
policy states that an update bearing a signature by a given
public key is valid. Since updates are signed, a replica can
forward an update authored elsewhere even if it lacks author-
ship privileges itself. We do not implement cryptographic
privacy, although replica keys could potentially be used for
that purpose.

We insert access control checks into the replication pro-
tocol implementation at the point where replicas synchro-
nize with one another. This mechanism can therefore restrict
the flow of data between replicas: it guards against insertion
of unauthorized updates by malicious replicas, unauthorized
reading of data items, and corrupt operation of the replica-
tion protocol. So in general, we seek to control the ability of
less-trusted replicas to perform certain replication actions,
and thus construct a system that supports weak consistency
without uniform trust.

Figure 3 depicts a possible deployment scenario that ap-
plies to network infrastructure. We consider a naming ser-
vice, for example, Active Directory [18], that implements
a hierarchical name to resource map. In this case, an item
might comprise the map elements corresponding to a sin-
gle name, and a collection might comprise all such items.

3 2010/2/10

Home Office

HR server group

Figure 3. An example distributed name service

Systems of this form often make use of weak consistency
to improve performance and availability. However, it is also
often the case that certain replicas are naturally associated
with specific parts of the naming hierarchy. In our exam-
ple, it may constitute a prudent defense-in-depth strategy to
restrict update authorship within the HomeOffice domain to
servers at the home office’s geographic location. Or, it may
prove valuable to restrict data elements in the HR domain
to those replicas (and thus their clients) that actually require
them. Our system is designed to support just these sorts of
fine-grained security policies.

Our experience is primarily with state-based replication
protocols: those protocols that implement replication by rep-
resenting update propagation as transitions on shared state.
As is common with such protocols, our controls on item read
access and protocol operation depend transitively on the cor-
rect implementation of the guards at each replica through
which protected data can pass or that influence protocol
state. We do detect any unauthorized update by a malicious
replica when it produces an update contrary to policy.

We do not explicitly deal with denial-of-service attacks.

2.2 Policy replication and consistency

As suggested earlier, one difficulty that arises when imple-
menting access control under weakly consistent replication
is that the local view of policy can vary between replicas at
any given time. As we describe later, our system distributes
policy in such a way that it cannot permanently diverge.
However, temporary divergence can occur.

One familiar model of access control posits a reference
monitor that guards security-relevant operations. The refer-
ence monitor checks the requesting principal’s rights by in-
specting an access control matrix. In a strongly consistent
system, each replica sees the same access control matrix and
thus makes the same decision on every update. However, in
a weakly consistent system each replica’s view of the matrix
can differ at any given time. Thus, access control decisions
related to the same update may differ depending on time or
location.

In our system, policy is just a representation of such an
access control matrix and the guards we add to our protocol
implementation are reference monitors that enforce policy.
As described in the next section, the design of our policy
framework ensures that system policy, which is the aggrega-
tion of statements by different principals, is never ambigu-
ous, and this is a prerequisite for distributed consistency. We
address the eventual consistency of both policy and data in
Section 4.

3. System design
In this section we describe the design of our access control
system. We first present another scenario to illustrate our de-
sign, and we use it throughout the remainder of the section.

Figure 4 depicts a small collection with several replicas
in the form of personal computers, business servers, and
consumer electronics. In this scenario, we imagine a house-
hold network that shares photos and contacts with various
other devices, a cloud storage facility, a corporate datacen-
ter, and two cell phones. Elements of the scenario, such as
weakly consistent contact sharing between laptops and cell
phones, and photo sharing between cloud and home, are al-
ready commercially available. The fact that these services
are currently implemented by a disjoint set of device fea-
tures and protocols is perhaps just an historical accident.
Certainly if communications services become better inte-
grated in the fashion implied here, assigning different access
control rights to different devices will become a priority.

The figure also suggests an informal authorization policy
that might govern such a collection. The columns in this
chart represent rights that can be assigned to the principals
represented in the table rows. We consider two classes of
items in this policy: photos and contacts. Rights can apply to
a specific class of items, or to all items. Policy enforcement
is carried out during the synchronization operations implied
by the inter-replica arrows.

We control three primitive operations during replica syn-
chronization: write, read, and sync. When a replica receives
an item during synchronization, we treat it as a write opera-
tion. If the authoring replica is not entitled to write the item,
the operation is denied and the received item is not consid-
ered valid. Given that authorship is conveyed through a pub-
lic key signature on the item, the sending replica need not
have write access for the item to be valid. When a replica
is considering whether to send an item during synchroniza-
tion, we treat it as a read operation. If the receiving replica
is not entitled to read the item, the operation is denied and
the item will not be sent. Finally, as we discuss in Section 5,
replication protocols often require the distribution of certain
protocol-specific metadata both for performance and cor-
rectness. In our case, metadata applies to the collection as
a whole. Thus, when a replica receives protocol metadata
during synchronization, we call it as a sync operation. If the
sending replica does not have sync rights on all the collec-

4 2010/2/10

Cloud

Media PlayerLaptop

Home PC
Work

Spouse’s
Mobile

Mobile

Replica Read Write Sync Control Own
HomePC all all all all all
Laptop all all all contacts contacts
MediaPlayer photos — — — —
Cloud all — all — —
Work contacts contacts — — —
Mobile contacts contacts — contacts —
SpouseMobile contacts — — — —

Figure 4. An example replicated collection and policy

tion, the operation is denied and the received metadata is not
considered valid.

The control and own columns in Figure 4 refer to rights
that govern changes to policy. The control column indicates
the right to grant read or write permissions for a given item
class. The own column represents the right to add new rights
to any of the columns (including the own column) for the
designated item class, as well specifying that the principal
has read, write, sync, and control rights over the class.

In the example, we initially create our collection at the
HomePC and give it rights over all our data. The Laptop is
given read and write permissions on everything, but permis-
sions to set access rights on only the contacts subset of the
collection. Only the HomePC, the Laptop, and the Cloud are
trusted to act as sources of protocol metadata. Other repli-
cas are delegated specific rights as noted. In the following
section, we describe how such a policy can be encoded.

3.1 Labels as protected resources

The resources subject to access control in our system are
policy labels. Labels represent explicit classes of items (for
example photos and contacts in our scenario) and every item
bears an immutable label. Our policy language is composed
of statements that grant replicas rights over labels and hence
over the items bound to those labels. Since we expect large
clusters of items with the same access policy, defining policy
for labels is much more efficient than defining policy indi-
vidually for each item.

Binding an item to a policy label requires care. If it is
possible for a replica to change an item’s policy label, the
replica might thereby be able to obtain more rights to the
item than was intended. We solve this problem by naming

items with identifiers that incorporate the item’s policy label.
Specifically, item identifiers are of the form uniqueId$hash,
where hash is a cryptographic hash of the uniqueId compo-
nent and the item’s policy label. Item identifiers are the pri-
mary means for naming replicated items (both on the wire
and in local storage), so if an identifier changes, this con-
stitutes the creation of a new item not an update to an old
one. Although an item, once created, cannot be re-bound to
a different policy label, the set of policy claims that apply
to a given label can and do change, as discussed in the next
section.

It is convenient to structure policy labels into a hierarchi-
cal namespace. We use the empty string as the root path and
‘.’ as the path arc separator. Rights over a name in the hier-
archy imply rights over its children. We use the special label
all as a synonym for the root path. For example, rights on all
connotes the same rights on all labels, and rights on contacts
connotes rights on contacts.private, but not vice versa.

Our principals are replicas identified by their public keys.
Collection items are signed with the public key of the replica
at which the most recent change occured. That is, when a
user or application issues an update to an item either directly
through the replication framework API or as observed by the
replication software, a new version of the item is generated
and signed with the key of the local replica. The numbering
of item versions and the mechanism for determining dom-
inance between versions is assumed to be a property of the
replication framework, as in Cimbiosys [24]. Thus, item ver-
sion numbers do not appear in access control policy (except
for revocation as discussed in Section 3.6.2).

By signing a labeled item, a replica asserts that it has
write permission on the associated label. A correctly imple-

5 2010/2/10

mented replica will not permit writes if policy prohibits it.
But even if a malicious replica does permit such a write, the
violation will be detected during update propagation.

3.2 Policy claims

We use logic to formalize access control policy and to con-
struct logical proofs that correspond to access control de-
cisions. Numerous logical frameworks have been proposed
in the literature that would suffice for our purposes. We
chose to use the SecPAL framework because it offers par-
ticular flexibility with respect to delegation of authority, and
because there is a publicly available SecPAL toolkit. This
toolkit translates policy and queries written in SecPAL, or
its corresponding XML object model, into Constrained Dat-
alog [25] expressions. In general, access control queries rep-
resent assertions to be proved. Policy consists of a set of log-
ical statements from which SecPAL’s evaluator must prove
the target assertion. The evaluator has been shown to be both
sound and complete, and it always terminates [7].

Claims are policy statements made by principals. Collec-
tion policy is the sum of all claims made by all replicas that
support a collection. A principal is a public key or a spe-
cial hardcoded entity. There are two special principals: LA
and Anonymous. The first is the universally-trusted local au-
thority (e.g., the ground truth). Any direct claim by LA is
believed, and all such claims are hard-coded policy axioms.
Every access control decision is an attempt to deduce, by
chaining together claims, that LA says that the desired action
is permitted. Anonymous is the principal without credentials.
It can be used for giving limited rights to “everyone”.

A claim is a statement by a principal about a fact. A
fact is a statement about a principal, often inferring the
right to perform an action, usually concerning a policy label.
Consider the following claim.

A says B can write contacts

This claim indicates that the principal A says that the
principal B can write items that are bound to the contacts
label.

Facts can be conditional, and such facts contain unbound
variables for either principals or labels. In the following
claim, A indicates that a unbound principal (%p) can write
contacts if that principal can write photos.

A says %p can write contacts if %p can write photos

Each claim bears an optional, author-relative claimId (de-
noted below in brackets below) to permit subsequent re-
vocation. Facts come in four forms and those forms con-
note: grant of authority (“can”); delegation of authority (“can
say”); revocation (“revokes”); and delegation of revocation
authority (“can say ... revokes”).

This is a monotone logic in which new statements, other
than revocations, cannot cause previously true statements to
become false. It is possible for a claim author, or a named

delegate, to revoke a claim, but neither revocations nor del-
egation of revocation rights can be revoked. Since only pos-
itive rights can be added, and the right to revoke cannot be
revoked, policy cannot be ambiguous. Any set of claims that
act as input to an evaluation produces the same yes-or-no
result, and the result does not depend on the order of the
claims. So, for example, it is not possible in our logic to is-
sue negative (denial) rights since the order in which rights
are granted or denied then becomes important. Similarly, it
is not possible to revoke a revocation or a revocation right,
and for the same reason.

Above, we defined rights associated with the read, write,
and sync operations. Here we axiomatically define control
and own. We use the {x,y,z} syntax to connote iteration here.
It is not part of SecPAL.

LA says %p can say %q can {read, write} %l
if %p can control %l

LA says %p can {read, write, sync, control} %l
if %p can own %l

LA says %p can say
%q can {own, read, write, sync, control} %l

if %p can own %l

On other words, if a principal controls a label, he can
say that another principal can read or write it. Similarly, if
a principal owns a label, he can also read, write, sync, or
control. Furthermore, he can say that another principal can
do any of the above (including own) on the label.

SecPAL offers an extensive claim syntax, some of which
is applicable to our system. In brief, it includes a means for
specifying groups of principals, a constraint grammar that
can represent abstractions such as time, pattern matching,
and hierarchical path comparison, and a means for limit-
ing recursion when delegating. The SecPAL reference man-
ual [21] describes this syntax in detail.

3.3 The collection manager

As the root of authority on a collection, we introduce a
collection manager CM and make an axiomatic claim that
grants it complete authority. The collection is named by the
collection manager public key, and, by axiom, every replica
believes this key to have complete authority.

LA says CM can own all

The collection manager secret key can be maintained ei-
ther offline or online. The collection manager is a replica, but
perhaps often a partial replica holding only replicated policy.
In the offline case, the collection manager state resides on
storage media (such as a flash key) that can be secured of-
fline. Initial replica bootstrap (as described in Section 3.6.1)
is performed by a single program that reads both the collec-
tion manager state and the new replica state into memory.
In the online case, the collection manager takes the form of

6 2010/2/10

an online server that accepts requests for bootstrap. In either
case, sufficient authority can be delegated to online entities
to assure progress in the collection manager’s absence.

The collection manager, whether online or offline, can
then write claims concerning collection policy. Following
the example in Figure 4, it gives all rights to the HomePC
by writing:

CM says HomePC can own all [CM.1]

The collection manager can now be taken out of the
picture if desired since it has delegated all its authority. We
use public key cryptography, so the collection manager and
its delegates don’t need to be online services that present
a single-point of failure. However, if a fault-tolerant online
service is needed, the cryptography we require could also be
implemented using secret sharing [29]. Or, more simply, a
single offline collection manager could delegate to multiple
online servers.

3.4 Delegating specific rights

To continue the example, HomePC then mints a new replica
Laptop and gives it control over contacts items. It also cre-
ates replicas for the Cloud store and for the MediaPlayer,
and gives them distinguished rights.

HomePC says Laptop can [PC.1]
{read,write,sync} all

HomePC says Laptop can own contacts [PC.2]
HomePC says Cloud can {read,sync} all [PC.3]
HomePC says MediaPlayer can read photos [PC.4]

At a later time, we let the Laptop create the Work and
Mobile replicas and delegate some of its rights. Note that the
delegation from Laptop to Mobile is an example of a more
limited form of delegation than ownership. In this example,
Mobile is given the right to to change read and write policy,
but not the (recursive) right to delegate ownership.

Laptop says Work can {read,write} contacts [L.1]
Laptop says Mobile can {read,write} contacts [L.2]
Laptop says Mobile can control contacts [L.3]

Summarizing, each replica can issue policy claims grant-
ing authority to other replicas over shared resources. Claims
are signed with the key of the issuing replica and can thus be
verified. Collection policy is the union of all replica claims.
Note that our scenario is but one example. The framework
can specify a wide range of axioms, rights, and policies.

3.4.1 External representation

Policy claims are encoded as XML and stored in collection
items that we call policy items. In fact, these items are no
different from other collection items and are exchanged be-
tween replicas during the normal synchronization process.
Thus, no explicit protocol for propagating policy is needed.
For simplicity, we write all policy claims for a given replica

into a single item. Each replica (that writes claims) is given
its own policy label that is then bound to its policy item. To
continue our example from Figure 4, the collection manager
might enable such labels with the following claims.

CM says Anonymous can read policy [CM.2]
HomePC says Laptop can [PC.5]

write policy.homepc.laptop

Here we invent a label called policy. This label is used
as a prefix for all labels that apply to policy items. The first
statement allows any replica to read any policy. The hier-
archical relationship between labels is used to make chil-
dren of the policy root replica-specific. HomePC already has
own rights on all. However, Laptop needs to be able to write
a piece of the policy namespace if it is also to issue pol-
icy statements. The claim above allows HomePC to grant
Laptop such rights. Note that only Laptop, and the replicas
through which Laptop gained authority (such as HomePC)
can write policy items for Laptop. Note also that HomePC
could instead grant own rights which would allow Laptop to
authorize another replica with its own policy namespace.

Policy claims are signed by their issuers and the items
that contain claims are signed as well. Because the claims
themselves are signed, the outer item signature on policy
items serves only to detect attempts to overwrite legitimate
policy with garbage or old policy.

3.5 Policy enforcement

When a replica makes an access control decision, it must
produce a proof indicating that the requested action is al-
lowed by policy. Such proofs are mechanically generated (or
a decision is made that no proof is possible) using the col-
lection policy currently available at the authorizing replica.
There are three situations in which we perform access con-
trol checks. The logical assertions that represent the condi-
tions we want to prove can be expressed as follows.

LA says R can write Label(Item)
LA says R can read Label(Item)
LA says R can sync all

In the first case, the proof context is that of a replica’s
synchronization engine checking the validity of an updated
item. R is the key that signed the update and the target
is the policy label bound to the item. In the second case,
the prover is a replica attempting to validate that a partner
replica can download an item during synchronization. R
is the key that authenticated the synchronization request,
and again the target is the policy label of the item being
considered. In the last case, the proof context is that of a
replica deciding whether the synchronization partner can be
trusted to supply protocol metadata. The well-known label
all is used, since all of our current examples of protocol
metadata apply to an entire collection, not a specific item.

In all these cases, the party performing the access control
check must prove the corresponding assertion using the cur-

7 2010/2/10

Child Replica Parent Replica

1. Generate key 2. Authenticate child

3. Delegate rights to child

Parent says Child can …

4. Attach existing policy

Parent says … +5. Install policy

Figure 5. Replica bootstrap

rent policy, initially believing that only LA can be trusted.
Policy will not include a direct claim by LA that allows the
desired result since all such claims are axioms, not dynamic
policy. So, the logical prover must search the extant collec-
tion policy to find a set of claims from which the result can
be deduced. The Appendix contains an example proof graph
that lends insight into how the prover operates.

3.6 Policy evolution

Policy claims for a collection will accumulate as new repli-
cas and datatypes are added, and as claims are revoked.
Hence, we must deal appropriately with the bootstrap of new
replicas and revocation of existing policy.

3.6.1 Replica bootstrap

The collection manager defines the initial policy for a col-
lection. We now describe the process of establishing and in-
stalling policy in new replicas. The important steps are de-
picted in Figure 5. We call the replica with existing policy
the parent replica and the new replica to be endowed with
rights the child replica. As we’ve seen, arbitrary replicas can
be given the authority to bootstrap new child replicas. The
same process is used for all bootstraps, whether the first del-
egation by the collection manager or a subsequent delegation
by a one of its descendants.

When a child replica is created, it cannot perform syn-
chronization without an initial policy since there will be no
policy from which to make access control decisions during
synchronization. Therefore, we provide an API call that se-
rializes the parent replica’s policy such that it can be injected
into the child. Before this can be accomplished, a key identi-
fying the new replica must be known to the parent. Once the
new replica key is known, appropriate claims for the new
replica are written to the parent’s policy item.

To complete the example from Figure 4, suppose the
replica Mobile creates a new replica SpouseMobile and gives
it (or rather its replica key) read access on contacts.

Mobile says SpouseMobile can read contacts [M.1]

As in Figure 5, all of the existing policy items as well as
the new claim are then injected into the new replica as its
bootstrap policy.

Secure transport of the child’s public key to the par-
ent replica is handled out-of-band and is not addressed by
our work. However, there are numerous well-known mech-
anisms that can be used. In the consumer environment,
transfers can often be trusted due to physical proximity,
for example by sharing the same physical medium. Over
a network, the situation is similar to PKI certificate re-
quest/response [1]; steps can be taken to authenticate the
new key material. The nature of the authentication protocol
can be deployment-specific (for example, it can be based on
an existing PKI, payment for service, pre-shared passwords,
or knowledge of personal information).

3.6.2 Revocation

Revocation claims are handled in the same fashion as other
policy updates. Imagine that the owner of the collection in
Figure 4 is away from home and the mobile phone to which it
previously delegated authority has been stolen. If that person
has possession of Laptop, he can use it to write:

Laptop says Laptop revokes {L.2,L.3}
Where L.2 and L.3 are identifiers for the claims which

delegated authority to Mobile in the first place. The revoca-
tions are believed in the logic because they are uttered by the
same principal that made the original statement.

However, such claims are tricky in that they can result
in the invalidation of previously valid items. Although it
is sometimes useful to invalidate all items that rely on a
claim, it is more often appropriate to honor historical claims
and disallow only new dependencies on revoked claims.
As with similar replication protocols, Cimbiosys maintains
a monotonically increasing version number per replica. In
order to allow items that depend on historical claims to
remain valid, revocation claims can be issued with respect to
a vector of version numbers, one element per replica. Hence,
a revocation claim need only apply to those versions newer
than the associated version vector.

Although we propagate revocation claims like any other
policy, the effect of discovering a new revocation is purely
local. We invalidate local item versions that are now invalid
according to locally visible policy. Other replicas will even-
tually learn of the revocation and do the same. More gener-
ally, revocations only apply to rights associated with repli-
cas, not items. If a revocation claim includes the issuing
replica’s current version vector, then all versions of items
that the replica currently stores will remain valid, but future
updates to those items from replicas whose rights have been
revoked will be refused.

Our system does not track tainted versions when process-
ing revocations, for example item versions based on revoked
versions, but not authored by a revoked replica. Neither does
it guarantee to restore previous content when an item ver-
sion is revoked. These topics are covered in detail in prior
work, specifically Mahajan et al. [16]. The mechanisms for

8 2010/2/10

provenance tracking and archiving proposed there should be
equally appropriate here.

3.7 Design summary

Recalling the challenges described in the Introduction, our
design succeeds in providing policy specification that is in-
dependent from implementation detail by encoding access
control policy as logical statements that combine without
ambiguity. Not only can we reason about access control de-
cisions in abstract, but we can potentially construct and dis-
tribute access control proofs ahead of time. Secondly, our
design exposition has demonstrated that the delegation prim-
itives available in our logic are sufficient to allow graceful
policy evolution. We discuss eventual consistency next.

4. Maintaining eventual consistency
Let us review what has been said to this point. We assume an
existing system that supports weak replication of a collection
of independent data items, and that replication is eventually
consistent. We have posited a system with the following
additional properties.

• Policy is encoded in a logical language that provides
a means to specify principals, resources (in the form
of labels that apply to data items), and delegations of
authority involving these, as well as a limited ability to
revoke previous statements.

• Authority flows from a single root; policy statements
combine without ambiguity. Two replicas with identical
sets of policy claims will make identical access control
decisions regardless of the order in which they learned of
these claims.

• Access control checks are performed within the opera-
tions that implement data replication. These access con-
trol checks are enforced according to the local policy
state present at the time of enforcement.

• Encoded security policy is replicated as data by the exist-
ing replication framework.

Our stated goal from the Introduction is that adding ac-
cess control will preserve eventual consistency. These first
steps in doing so ensure that policy propagation is eventu-
ally consistent.

1. All policy-relevant state uttered by a given replica propa-
gates in a replica-specific item. Therefore, even if multi-
ple replicas update policy simultaneously, these updates
cannot result in a replication conflict.

2. Read access controls do not apply to policy items, and
therefore cannot prevent policy from propagating.

In a weakly consistent environment, local policy may dif-
fer between replicas at any given time. Thus, we risk the
possibility that access control decisions may have different
results depending on when and where they are performed. If

a failure occurs on a read or sync operation, this doesn’t pose
a problem. Synchronization is periodic. Eventually policy
propagation will complete and subsequent operations will
succeed and produce the same result. However, what hap-
pens if an update fails? If an update succeeds at one replica
but fails at another, we cannot permit the situation to become
permanent. Since items are independent, it is sufficient to
study the single item depicted in Figure 2: if we can show
eventual consistency is preserved for one item in the pres-
ence of access control, the same will be true for all items.

Consider an original version U and an updated version
U ′ of an item. Eventual consistency is violated if U becomes
persistent at one replica while U ′ persists at another. Diver-
gence cannot occur if the same policy is in place at all repli-
cas when the update U ′ is applied: the same access control
decisions will be made in all cases. However, suppose policy
P is in place at one replica while an updated policy P′ pre-
vails at a different replica. Divergence can occur if P′ allows
U ′ when P does not, or if P allows U ′ when P′ does not. The
update U ′ enters a replica either by being created there or via
a synchronization.

3. If U ′ is not authorized at a authoring replica, then the up-
date will not be admitted and there will be no divergence.

4. If U ′ is not authorized at a receiving replica, then trans-
mission of U ′ is retried periodically until P′ arrives at the
destination, allowing U ′ to succeed on the next attempt.

5. Suppose U ′ is inappropriately authorized at the receiving
replica because updated policy P′ has not arrived yet.
If P′ allows fewer rights than P there must have been
a revocation. To handle this case, the replica must re-
evaluate the validity of all previously received items that
might now be invalid.

If the steps above are followed, we argue, eventual con-
sistency will be maintained. If retries of failed updates are
necessary as in Step 4, this situation will not persist. If the
receiver’s policy is up-to-date, then the sender’s policy must
be out-of-date. Retries will cease as soon as the sender’s pol-
icy is updated.

5. Design motivation and limitations
We now discuss several issues that motivate our design
choices and suggest potential limitations.

Single root of authority. The root of authority at each
node of our system is the special principal LA, the local au-
thority. LA axiomatically believes everything the collection
manager says, thus each replica of a collection believes the
same root of authority. Furthermore, our logic is monotone
with limited revocation, and thus absent of any ambiguity
when policy statements are combined. Without these prop-
erties, replicas can engage in policy wars where multiple
authorities issue policy statements that are logically incon-
sistent. For example, one root might choose to revoke the

9 2010/2/10

authority of a second root, and vice versa. The lazy propaga-
tion of policy that our system assumes would exacerbate the
effects of such inconsistencies.

Similarly, distributed trust protocols like SDSI [23] make
it possible to combine disjoint, local roots of authority. These
protocols allow non-transitive patterns such as A trusts B and
B trusts C, but A doesn’t trust A. This sort of system produces
what might be thought of as intentional divergence, and it
runs contrary to our goal of eventual consistency.

Public key infrastructure. In our prototype, we make
statements directly about replica keys. We do so to avoid a
dependency on a specific authentication infrastructure, but
we could just as well add a layer of indirection and name
principals with strings that are authenticated elsewhere (for
example in a PKI or shared-key infrastructure). It is easy,
however, to confuse authentication and authorization. Exist-
ing PKI certificates are not sufficient to express the autho-
rization relationships we provide. For example, PKIs support
only a limited form of delegation, namely the right to make
certificates involving a specific name prefix. Our “can say”
expression is more flexible in what the delegate can say, and
also can grant the ability to make new policy.

Binding of labels and data. We chose to closely bind la-
bels and data items. In the types of applications we imagine,
it is easy enough to create a new item under a different la-
bel if reclassification is necessary. However, using the same
framework we could have allowed labels to vary and set pol-
icy limiting such modifications.

Policy as a first class object. In many systems, such as
file systems, access control policy is deeply encoded in sys-
tem metadata, for example in file system ACLs and group
membership structures. This can make it difficult to deter-
mine or evaluate access control policy out of context. In con-
trast, our policy statements are enumerable and independent
from the details of access-control enforcement. This inde-
pendence makes it easy to transport policy in the replica-
tion protocol it protects, and simple to add constraints that,
for example, ensure that policy propagation will converge.
Moreover, our design for policy representation also allows us
to quickly determine the effect of a revocation on a replica’s
state and thus perform invalidation efficiently.

Item longevity. In our system, items are only valid for as
long as policy permits: a change in policy can result in inval-
idation. Public key certificate stores usually operate in this
manner; file systems do not (the deletion of a user account
does not usually invalidate that user’s files.) There is a le-
gitimate question about where dynamic data invalidation is
appropriate. However, in protocols that attempt to replicate
state, rather than an log of operations, invalidation is the only
plausible option if revocation is supported at all, since there
is no notion of history to help gain consensus about when
an update might have been valid. Even log-based protocols
without global ordering suffer from some of the same prob-
lems, moreover logs must ultimately be truncated.

Replication topology. We want our techniques to apply
to eventually consistent systems in general, and so we wish
to avoid constraints on network topology and update period-
icity in our design. However, it is certainly possible to add
read access controls to an existing topology that interfere
with the intended propagation of updates. Eventual consis-
tency depends on the correct operation of at least one trusted,
transitive propagation path between any pair of replicas that
share updates. We leave it future work to prevent misconfig-
uration of access controls. Existing proposals for compro-
mise recovery [16] can be employed to ensure that damage
caused by a malfunctioning replica can be recovered if de-
tected, so the temporary absence of a propagation path can
be tolerated.

Protocol metadata. Compromised replicas cannot forge
the signature of other replicas and, if item version identi-
fiers increase monotonically, they cannot pass off old content
as new. However, a replica that incorrectly implements the
replication protocol can inhibit update propagation by hid-
ing new versions of items or passing bogus replica metadata
to confuse its sync partners. Learned knowledge, from the
Cimbiosys protocol, is an example of this kind of metadata.
We introduced access controls on the sync operation to spec-
ify whether a replica should be trusted to act as the source
of this kind of metadata. This limits, but does not eliminate,
the impact of protocol corruption.

Complex policy. We have not fully explored the range
of policies that can be implemented using our system. How-
ever, our framework is quite flexible. For example, in order
to model access control on a replicated hierarchical file sys-
tem where a principal’s rights on a directory might differ
from those on the directory’s files, we can easily create new
primitive rights describing actions on a directory. However,
in order to maintain item independence, any ordering depen-
dencies between file system updates must also be eliminated.

6. Implementation
As discussed in Section 2, access control policy is enforced
by monitoring replication protocol operations. We imple-
mented our system within the Cimbiosys [24] replication
framework. A high-level component diagram of Cimbiosys
is given in Figure 6. The Cimbiosys API associates items
and policy and allows applications to access a persistent item
store. The synchronization engine drives the communication
component which implements the replication protocol.

We augmented the existing Cimbiosys framework by
adding the security guards and policy evaluator depicted
in Figure 6. These components monitor the replication pro-
tocol as well as making sure the application cannot violate
security policy. Our modifications consist of roughly 1000
lines of C# code. Access control policy is created and main-
tained in the PolicyMgr component on each replica. This
component is responsible for encoding policy in the form
of SecPAL logical expressions and bootstrapping new repli-

10 2010/2/10

Item Store Communication

SyncUtils

API

Application PolicyMgr

Sync
Protocol

(to sync partner)

Policy
Evaluator

Protocol guard

API guard

Figure 6. Cimbiosys components with security guards in sync protocol and API

cas. Furthermore, the PolicyMgr stores policy statements as
replicable items and retrieves those items from stable storage
when the system restarts.

Because per-replica policy is stored in identifiable items,
it is easy for the replication machinery to tell when policy
changes. This proves useful for checking if a received up-
date has become invalid and for caching of access control
results. The PolicyMgr can be viewed as just another client
of the Cimbiosys API. In particular, the API contains a noti-
fication mechanism that calls clients when an item changes.
This allows the PolicyMgr to be notified when policy items
change so that it can, in turn, inform the security component
of new policy.

We depend heavily on the Microsoft Research SecPAL
release which is a .NET library that we use without mod-
ification. The language parser included in this release can
evaluate statements in the SecPAL grammar, however it does
not support encoding of actual cryptographic keys or sig-
natures on claims. Instead, the SecPAL library provides an
XML object model in which all the claims represented in
the grammar can be expressed. We employ this model since
it provides serialization (to XML) that handles RSA signa-
ture creation, as well as signature checking on deserializa-
tion. Although it should be possible to build a component
that bridges the gap between the SecPAL language gram-
mar and the XML model, for simplicity we chose to use the
XML model directly. Thus, we offer a procedural interface
to policy creation, rather than direct access to the grammar.

6.1 Performance

Other work has evaluated the performance of Cimbiosys [24].
Here we attempt to justify that adding a logical policy
checker does not add excessive overhead. Furthermore, in
many scenarios, evaluation results can be effectively cached,
thus requiring checker overhead only when policy changes.
We discuss this opportunity in the following section.

Assuming policy changes are relatively infrequent, the
most important metric is the cost of deriving an access con-
trol proof, which is almost entirely spent in the SecPAL li-
brary trying to prove logical assertions. We measured the
cost of evaluating various assertions using the policy from
Figure 4. The policy contains 23 claims and we give results
for queries that require different sets of claims. For each
query, Table 1 shows the number of steps in the resulting
proof, the length of the delegation chain from the collection
root, and the average latency over 1000 tries. Our tests were
run under Windows Vista on a HP xw4400 Workstation with
an Intel Core 2 processor at 2.40 GHz.

On modern hardware, 56 ms. is a very long time. How-
ever, there is room for optimism. First, the timings from the
Released column of Table 1 correspond to the released Sec-
PAL implementation which is completely unoptimized. A
later, unreleased version of this code base, for which timings
appear in the Optimized column, includes a collection of per-
formance improvements. These represent more realistic per-
formance expectations. Most significantly, the new library
contains a claim indexing framework that enables the solver
to make better choices about the set of candidate claims for
consideration during proof generation. This gives at least a
factor of 5 improvement in operation speed.

However, at least one important optimization is still un-
tried. As mentioned earlier, there is a conversion from our
policy representation to Datalog. A better implementation
would perform that conversion once for any given policy.
However, the SecPAL release we are using does not cache
the Datalog representation. Nor does it try to avoid redun-
dant transformations on policy in the process of deriving the
Datalog representation (such as those required to implement
hierarchical resources). Code profiling shows three major
components of proving overhead: transformations on policy,
conversion of transformed policy to Datalog, and proof res-
olution of the Datalog representation. The first two of these
consume 40-50% of the overhead for the examples tested

11 2010/2/10

Query Proof steps Delegations Released (ms.) Optimized (ms.)

HomePC can write all 10 1 42 7.5
MediaPlayer can read photos 13 2 43 7.7
Mobile can write contacts 15 3 56 9.2
SpouseMobile can read contacts 20 4 56 9.4

Table 1. Prover performance

here. Thus, an implementation that caches the Datalog rep-
resentation gains at least a further factor of two in perfor-
mance. There are undoubtedly other possible optimizations.

6.1.1 Evaluation caches

Given the nature of our application, we can easily cache not
only Datalog conversions, but entire access control evalua-
tions. Since changes to policy are clearly identifiable when
an update to policy arrives, any cache of previous results
can be accurately invalidated when a claim is revoked. The
prover can be made to output the set of claims involved in
any proof, thus cached results can be indexed by constituent
claims making it easy to identify which results rely on a
revoked claim. With such accurate cache invalidations, the
only reason to perform a new evaluation is to accomodate a
new replica/action/label tuple in an access control request.
Any repeat requests can be resolved from the cache, and in
some scenarios the hit rate can be very large.

A cache of negative results is somewhat more difficult
to manage since the prover cannot tell us which claims
it lacks. Since recovery from spurious access denial due
to stale policy state relies on periodic retry, any cache of
negative results can be invalidated entirely based on time.
We are not sure if a negative cache can be justified.

An evaluation cache will clearly be most effective where
there are relatively few subjects and objects of access con-
trol decisions. Our system was designed with the intent that
policy labels would be relatively few. As more labels are
used, the number of claims that must be represented (and
searched) in replica policy increase and performance will
suffer. Nevertheless, we believe that in any tractable ac-
cess control system, the overall size and scope of policy is
bounded by complexity, which limits the useful number of
claims. Most of the applications we have modeled use only
a handful of labels to represent policy. Similarly, we target
applications with relatively few replicas such as home net-
works and collections of devices used within a family, small
social network, or small business. We also target collections
where many replicas can gain Anonymous access without
needing independent credentials such as large distribution
networks where the integrity of the source is important, and
privacy is not a concern.

7. Related work
There is a wealth of related work in the literature. Much of
this work breaks down into two categories: access control

in distributed systems and logic-based access control. We
discuss the most directly relevant examples.

Grapevine [8] and Bayou [30] are examples of distributed
systems with eventually consistent replication. Microsoft’s
Active Directory [18] is a commercial example of such a
system in widespread deployment. These systems enforce
access controls on clients, however all replicas are equally
trusted as in Figure 1a. In a similar vein, Samarati [26]
studies how access control updates compose when subject
to misordering under weak consistency. As above, in this
setting each node’s updates are equally trusted.

Most distributed file systems, such as AFS [27], FAR-
SITE [2], Taos [32], provide a model of a centralized sys-
tem, even though their implementation can involve multi-
ple servers and replication of data. Their network servers are
equally trusted, or in the case of FARSITE, untrusted. Peer-
to-peer file systems such as Chord/CFS [10] and Ivy [22]
provide distributed or replicated data storage over peer-to-
peer networks, but the replica servers aren’t themselves prin-
cipals in the corresponding access control scheme. Self-
certifying file names [17] underlie both CFS and Ivy, and
also inspire our method for binding policy labels to items.

Our system is perhaps most closely related to UIA [12].
UIA addresses the similar problem of joining cooperating
devices into an ad hoc naming network. It uses a per-device
log to encode, merge, and ultimately gain agreement on
naming across devices. There is no root of authority in this
system, so disputes with revoked principals have to be re-
solved manually. Furthermore, UIA currently only manages
naming elements such as groups, names, and links, but does
not extend to arbitrary data.

There has been much prior work concerning the use of
logic for policy enforcement. Early logical frameworks for
distributed system security [14, 32] used logic to rationalize
system security design. Later work by Appel and Felten [3]
demonstrated that a logical proof checker can be employed
to automate the process of validating encoded credentials.
PolicyMaker [9] showed the value of expressing system pol-
icy, not just authentication credentials, in a precise fashion.
SD3 [13] and Binder [11] joined these threads by expressing
policy in a logic-based language that can be evaluated. Sub-
sequent systems [4, 6, 7, 15], have extended the performance
and expressibility inherent in logical policy frameworks.

Like the Grey system [5] which deployed a logic-based
physical access control system using networks, custom door-
locks and cell phones, our work is a demonstration of the

12 2010/2/10

applicability of logic-based security in a distributed setting.
Although the problem domains are different, by way of com-
parison we are able to take advantage of the more-powerful
logic that SecPAL offers, for example, giving richer control
over delegation of authority. Furthermore, in Grey, consider-
able work must be done to piece together assertions scattered
about a network, while our system is concerned with propa-
gation and consistency.

8. Conclusion
Replicated systems that offer only weak consistency are in-
creasingly common in home settings, the cloud, and mobile
environments. Most obviously, they add value when connec-
tivity is imperfect, but they also can benefit environments
where there are many devices but no management infras-
tructure to coordinate them. Similarly, loosely-organized or
ad hoc systems can be useful for spanning administrative
domains when no formal arrangements exist (for example,
where home computing interacts with work-related infras-
tructure). Data replication with eventual consistency is a fun-
damental tool for such applications.

In this paper we have discussed an access control frame-
work for weakly consistent replication in which replicas
are not equally trusted. We demonstrate that there are se-
rious difficulties in building such systems due to ordering
of updates and the need to maintain eventual consistency.
To address these difficulties, we encode our security pol-
icy in a logical framework where access control decisions
correspond to automatically-generated, logical proofs. This
framework creates a portable and extensible substrate for ex-
pressing security policy in a distributed system. Our policy
statements are self-contained and enumerable items, repli-
cated in the protocol they protect. Rather than enforce a one-
time guard on the admission of valid items, we accept that
policy can be temporarily inconsistent and ensure that the set
of valid items always corresponds to the current policy.

We have shown that our framework of logic-based pol-
icy distribution works well for handling the unpredictable
semantics of weakly consistent replication, and that using
it we have offered solutions to the three-fold challenges of
policy specification, evolution, and consistency.

A. An example SecPAL proof
In this Appendix, we list some example diagnostic output
from the SecPAL prover using the example security policy
from Section 3. The outermost leaves of the proof are state-
ments made by principals, and these are joined into proof
deductions going upwards. The top line is the desired query
result.

LA says SpouseMobile can read "contacts"
|
+-LA says Laptop can say SpouseMobile
| | can read "contacts"
| |
| +-LA says %p can say %q can read %r if

| | %p can own %r
| |
| +-LA says Laptop can own "contacts"
| |
| +-LA says HomePC can say Laptop
| | | can own "contacts"
| | |
| | +-LA says %p can say %q can own %r if
| | | %p can own %r
| | |
| | +-LA says HomePC can own "contacts"
| | |
| | +-LA says CM can say HomePC
| | | | can own "contacts"
| | | |
| | | +-LA says %p can say %q
| | | | can own %r if %p can own %r
| | | |
| | | +-LA says CM can own "contacts"
| | | |
| | | +-LA says CM can own ""
| | |
| | +-CM says HomePC can own "contacts"
| | |
| | +-CM says HomePC can own ""
| |
| +-HomePC says Laptop can own "contacts"
| |
| +-HomePC says Laptop can own "contacts"
|
+-Laptop says SpouseMobile can read "contacts"

|
+-Laptop says Mobile can say SpouseMobile
| | can read "contacts"
| |
| +-Laptop says Mobile can say
| %p can read "contacts"
|
+-Mobile says SpouseMobile can read "contacts"

Acknowledgments
We would like to thank our shepherds, Marc Shapiro and
Ashvin Goel for their help in improving this paper. We also
thank the anonymous reviewers for their insightful com-
ments. Martı́n Abadi made significant contributions to this
work. Rama Kotla, Cathy Marshall, Rama Ramasubrama-
nian, and Úlfar Erlingsson gave us valuable feedback on
early drafts. We also thank Moritz Becker, Jason Mackay,
and the SecPAL team for their patience in helping us under-
stand SecPAL and its prototype implementation.

References
[1] C. Adams, S. Farrell, T. Kause, and T. Mononen. Inter-

net X.509 Public Key Infrastructure Certificate Management
Protocol (CMP). http://tools.ietf.org/html/
rfc4210.

[2] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.
Wattenhofer. FARSITE: Federated, available, and reliable
storage for an incompletely trusted environment. In Proceed-
ing of the 5th Symposium on Operating Systems Design and
Implementation, Boston, MA, USA, pages 1–14, 2002.

13 2010/2/10

[3] A. W. Appel and E. W. Felten. Proof-carrying authentication.
In Proceedings of the 6th Conference on Computer and Com-
munications Security, Singapore, pages 52–62, 1999.

[4] L. Bauer, M. A. Schneider, , and E. W. Felten. A general and
flexible access-control system for the web. In Proceedings
of the 11th USENIX Security Symposium, San Francisco, CA,
USA, 2002.

[5] L. Bauer, S. Garriss, J. M. McCune, M. K. Reiter, J. Rouse,
and P. Rutenbar. Device-enabled authorization in the Grey
system. In Proceedings of the 8th Information Security Con-
ference, Singapore, pages 431–445. Springer Verlag LNCS
3650, 2005.

[6] L. Bauer, S. Garriss, and M. K. Reiter. Distributed proving in
access-control systems. In Proceedings of 2005 IEEE Sym-
posium on Security and Privacy, Oakland, CA, USA, pages
81–95, 2005.

[7] M. Y. Becker, C. Fournet, and A. D. Gordon. Design and
semantics of a decentralized authorization language. In Pro-
ceedings of 20th IEEE Computer Security Foundations Sym-
posium, Venice, Italy, pages 3–16, 2007.

[8] A. D. Birrell, R. Levin, M. Schroeder, and R. Needham.
Grapevine: an exercise in distributed computing. Communi-
cations of the ACM, 25(4):260–274, 1982.

[9] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In Proceedings of the 1996 IEEE Symposium
on Security and Privacy, Oakland, CA, USA, pages 164–173,
1996.

[10] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. In Proceedings of
the 18th ACM Symposium on Operating Systems Principles,
Banff, Canada, pages 202–215, 2001.

[11] J. DeTreville. Binder, a logic-based security language. In Pro-
ceedings of 2002 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, pages 105–113, 2002.

[12] B. Ford, J. Strauss, C. Lesniewski-Laas, S. Rhea, F. Kaashoek,
and R. Morris. Persistent personal names for globally con-
nected mobile devices. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation, Seattle,
WA, USA, pages 233–248, 2006.

[13] T. Jim. SD3: a Trust Management System with Certificate
Evaluation. In Proceedings of 2001 IEEE Symposium on
Security and Privacy, Oakland, CA, USA, pages 106–115,
2001.

[14] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in distributed systems: Theory and practice. ACM
Transactions on Computer Systems, 10(4):265–310, 1992.

[15] C. Lesniewski-laas, B. Ford, J. Strauss, R. Morris, and M. F.
Kaashoek. Alpaca: extensible authorization for distributed
services. In Proceedings of the 14th ACM Conference on
Computer and Communications Security, Alexandria, VA,
USA, pages 432–444, 2007.

[16] P. Mahajan, R. Kotla, C. Marshall, V. Ramasubramanian,
T. Rodeheffer, D. Terry, and T. Wobber. Effective and Efficient
Compromise Recovery for Weakly Consistent Replication. In
Proceedings of the Fourth EuroSys Conference, Nuremburg,
Germany, pages 131–144, 2009.

[17] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating key management from file system security. In
Proceedings of 17th ACM Symposium on Operating Systems
Principles, Kiawah Island Resort, SC, USA, pages 124–139,
1999.

[18] Microsoft Corporation. About Active Directory Domain
Services. http://msdn.microsoft.com/en-us/
library/aa772142(VS.85).aspx.

[19] Microsoft Corporation. Office Groove 2007 Devel-
oper Portal. http://msdn.microsoft.com/en-us/
office/bb308957.aspx.

[20] Microsoft Corporation. Microsoft Sync Framework. http:
//code.msdn.microsoft.com/sync.

[21] Microsoft Corporation. Security Policy Assertion Language
(SecPAL), .NET Developer Documentation. http://
research.microsoft.com/projects/SecPAL/,
2007.

[22] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy:
A read/write peer-to-peer file system. In Proceedings of the
5th Symposium on Operating Systems Design and Implemen-
tation, Boston, MA, USA, pages 31–44, 2002.

[23] R. Rivest and B. Lampson. A Simple Distributed Security
Infrastructure (SDSI). http://groups.csail.mit.
edu/cis/sdsi.html, 1996.

[24] V. Ramasubramanian, T. Rodeheffer, D. Terry, M. Walraed-
Sullivan, T. Wobber, C. Marshall, and A. Vahdat. Cimbiosys:
A platform for content-based partial replication. In Proceed-
ings of 6th USENIX Symposium on Networked Systems Design
and Implementation, Boston, MA, USA, 2009.

[25] P. Z. Revesz. Constraint databases: a survey. Semantics and
Databases, 1358:209–246, 1995.

[26] P. Samarati, P. Ammann, and S. Jajodia. Maintaining repli-
cated authorizations in distributed database systems. Data and
Knowledge Engineering, 1(18):55–84, 1996.

[27] M. Satyanarayanan. Integrating security in a large distributed
system. ACM Transactions on Computer Systems, 7(3):247–
280, 1989.

[28] F. Schneider. Implementing fault-tolerant services using the
state machine approach: a tutorial. ACM Computing Surveys,
22(299), 1990.

[29] A. Shamir. How to share a secret. Communications of the
ACM, 11(22):612–613, 1979.

[30] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
Bayou, a weakly connected replicated storage system. In
Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, Copper Mountain Resort, CO, USA, pages
172–182, 1995.

[31] W. Vogels. Eventually consistent. ACM Queue, 6(6):14–19,
2008.

[32] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Authen-
tication in the Taos operating system. ACM Transactions on
Computer Systems, 12(1):3–32, 1994.

14 2010/2/10

