
Automatic Parallelization of Programming Languages:
Past, Present and Future

[Extended Abstract]

Wolfram Schulte, Nikolai Tillmann
Microsoft Research

Redmond, WA 98052, USA
schulte@microsoft.com, nikolait@microsoft.com

Automatic parallelization of modern object-oriented lan-
guages, like Java, C#, Python or JavaScript, is considered
to be a grand challenge. But what is the challenge exactly?
Let us simplify the discussion by focusing on loop paralleliza-
tion only. As usual loop parallelization requires answering
two questions: (1) is it worthwhile to parallelize a loop? (2)
is it safe to parallelize a loop?

In the past, automatic parallelization has mainly focused
on parallelizing loops of imperative programs at compile
time. Answering (2) needs accurate information about which
locations are read and written in each iteration. The good
news is that for numeric algorithms, ie. algorithms which
only operate on non-heap allocated collections of numeric
values, we have a range of reasonable precise dependency
analyses and tests. For present object-oriented languages
these analyses, however, are not useful, since they do not
capture the possible aliasing relationships between heap allo-
cated objects. For understanding those relationships pointer
analyses have been developed, but their results are usually
too coarse grained to allow for safe auto-parallelization at
compile time, or, if their result is fine grained enough, they
do not scale.

Answering (1) at compile time is an even more difficult
proposition: for instance we have to know how often a loop
iterates, how the workload of the machine at runtime looks
like, or whether the different iterations take the same amount
of time. In the past, ie. when vector machines or SIMD
machines were king, we auto-parallelized programs that had
fixed inputs, statically bound methods, and fixed workloads.
As a consequence, auto-parallelization was doable and partly
successful. Today we would like to parallelize arbitrary object-
oriented programs with unknown input sizes on standard
multicore-machines with varying workloads.

Since auto-parallelization efforts seemed hopeless, the com-
munity moved on to make parallel programming explicit:
many modern object-oriented languages introduce data and/or
task parallelism, threads and/or actors, locks and/or mes-
sage passing. But while this hardly addresses the writing of
bug-free new concurrent programs, billions of lines of exist-
ing programs still await to be rewritten to exploit the new
hardware. Furthermore there are millions of new programs
in dynamic languages, like JavaScript, which are written to-
day that cannot even express concurrency.

But what would change if we would auto-parallelize at run-

Copyright is held by the author/owner(s).
IWMSE’10, May 1, 2010, Cape Town, South Africa.
ACM 978-1-60558-964-0/10/05.

time instead of at compile-time, ie. if we would use a tracing
just-in-time (JIT) compiler?

A tracing JIT compiler has almost perfect information
to answer (1). After collecting program traces at runtime,
the JIT compiler knows which loop is hot, the worst case
execution time of a single iteration, and dependencies of this
iteration on global resources like IO; in addition it can ask
the OS at runtime for the number of available processors and
the current workload of the machine. A tracing JIT can thus
start executing a loop sequentially. Provided a loop is hot
and safe to parallelize, it can generate code for the parallel
loop in a background thread. As soon as the parallel version
is available, execution can switch from the sequential loop
to its parallelized loop.

The opportunity to re-compile different versions at run-
time also helps with addressing (2). By generating addi-
tional guards, a tracing JIT can safely parallelize a loop. Let
us assume that we execute the loop in two phases. Phase
one checks sequentially whether there are any dependen-
cies between objects, expressed as potential write/write or
read/write conflicts, which are extracted from previously
gathered sequential traces. The iteration stops with index n
as soon as a conflict is detected. After phase one, we know
that the first n − 1 iterations have no conflict, so we can
safely execute them in parallel. After having finished these
iterations, we run the same two phases for the second stride,
and so on until the loop bound is reached. In the extreme
case where there is a sequential dependency between the first
and second iteration, n is 1, resulting in sequential execu-
tion. Thus this parallelization is always safe. Of course this
scheme can be optimized: statically gathered dependency
information can be exploited to minimize the conflict check-
ing at run-time; automated theorem provers such as SMT
solvers can be used at recompile time to further reduce the
number potential conflicts by eliminating implied facts; the
checking for possible conflicts, i.e. phase one, can not only
be done sequentially but also in parallel; conflicts can also
be scheduled as dependencies between tasks making the two
phase protocol much more dynamic; the computed access
paths can be stored instead of being recomputed, etc.

Are auto-parallelization JIT compilers the panacea for
the future? We will report on our experience with auto-
parallelized C# and JavaScript programs at the talk.


