
Hardware Subdivision and Tessellation
of

Catmull-Clark Surfaces

Charles Loop

11 May 2010

Technical Report
MSR-TR-2010-163

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052



Abstract

We present a table driven approach to performing Catmull-Clark sub-
division in parallel utilizing one thread per output mesh vertex. We apply
the procedure one or two times in order to isolate extraordinary vertices
and simplify the input patch structures consumed by the hardware unit
responsible for adaptive tessellation. From this simplified mesh, we evalu-
ate the performance Stam’s direct evaluation procedure, a curvature con-
tinuous patching scheme, and a tangent plane continuous approximation
suitable for displacement mapping.

1 Introduction

We consider the problem of utilizing the hardware tessellator for adaptively
rendering Catmull-Clark subdivision surfaces, and two related spline approxi-
mations. All of these surfaces approximate an arbitrary two-manifold control
mesh (possible with boundary); all are equivalent to bicubic B-Splines over
regular parts of the control mesh; and all require some amount of control mesh
subdivision to regularize the inputs consumed by the hardware tessellator. Each
generates a different surface corresponding to the extraordinary vertices of the
control mesh, with different shape characteristics and cost. We examine these
trade offs in this paper.

We first present a table driven approach to parallel Catmull-Clark subdivi-
sion on the GPU, utilizing one thread per output mesh vertex. This is done so
the control mesh has isolated extraordinary vertices; that is, exclusively quad
faces with no quad incident on more than one extraordinary vertex. A quad
mesh will require one Catmull-Clark subdivision step, while one with faces other
than quads will require two. This is necessary in order to implement Stam’s di-
rect evaluation procedure [18]; we show that this algorithm can be the basis of
an adaptive real-time Catmull-Clark surface renderer. The advantages of doing
the subdivision step on the GPU are that only the vertices of the coarsest con-
trol mesh need be transfered from CPU to GPU and skinned (animated). Our
implementation utilizes device independent DirectX 11 compute shaders and
hardware tessellator pipeline. We measure the performance of our approach on
both the ATI Radeon 5870 and the nVidia GTX 480; the highest end consumer
grade GPUs from both major vendors, at the time of this writing.

The Catmull-Clark limit surface is not curvature continuous at extraordinary
vertices. This can lead to shading and reflection mapping artifacts. A possible
solution to this problem would be to use curvature continuous patches [7]. This
algorithm also requires isolated extraordinary vertices, and generates a single
biseptic (bidegree 7) Bézier patch for each quad of the input mesh. We show
that the cost of evaluating these patches using tessellation hardware is about
the same as Stam’s algorithm.

For applications involving displacement mapping, computing the exact limit
surface or a curvature continuous spline will expend more resources than are

1



necessary to achieve the desired effect. That is, to generate a tangent plane
continuous base surface whose tessellation can be offset in the direction of each
surface normal. To this end, we verify that an approximation based on Gregory
patches [8] will be significantly faster than direct evaluation of the limit sur-
face. This is not surprising as fewer, less costly patches are used to cover the
surface. None-the-less, subdividing the control mesh prior to tessellation can be
advantageous even for an approximate Catmull-Clark scheme.

The approximation will be more accurate since more interpolation con-
straints will be satisfied over the refined mesh. The tessellation will have better
adaptivity (more uniformly sized triangles), since it will be based on smaller,
flatter, more uniform patches; i.e. more information will be considered in de-
termining patch sampling rates. Subdivision increases the regular regions while
decreasing the extraordinary regions. This means that for the same sampling
rate, more of the samples will come from less costly regular patches and fewer
will come from more costly extraordinary patches; by a ratio of 3 to 1. While
there are more patches to process, the savings dues to less extraordinary evalua-
tions will pay off for dense triangulations; our experimental results confirm this.
This suggests that as traditional triangle rasterization is supplanted by microp-
olygon rendering, subdivision should become a preprocess to tessellation.

Regardless of the surface scheme used, extraordinary vertex isolation greatly
simplifies tessellator pipeline implementation since the combinatorial complexity
of extraordinary patch input is reduced from thousands of cases [8] to at most 9
(assuming a maximum valence of n = 12) that are identical up valence n. Each
surface scheme requires its own evaluation routine that could, in principle, be
compiled without valence dependent loops or branches.

2 Previous Work

Early GPU surface subdivision schemes were mostly concerned with finding
ways of taking advantage of the graphics-centric programmability of vertex and
pixel shaders, randomly accessing memory via texture maps; [2, 3, 17] are no-
table examples.

In anticipation of hardware tessellation and noting the high cost of direct
evaluation and the need for a subdivision step Loop and Schaefer[7] proposed
an approximation to a quads only Catmull-Clark limit surface based on bicubic
Bézier patches. Several variants along these lines have appeared with various
improvements to the restrictions on mesh connectivity or underlying surface
algorithm; quads only [12, 14], tris and quads [9] or tris, quads, and pents [11].

The introduction of of CUDA in the fall of 2006, allowed for general purpose
programming of the GPU. Subdivision of bicubic patches using a breadth-first
paradigm was pioneered by Patney and Owens[16]. Later, they applied these
ideas to the problem of crack-free breadth-first parallel subdivision of Catmull-
Clark surfaces [15]. The idea behind breadth-first parallel subdivision is to

2



perform a subdivision pass over the entire mesh, emitting the possibly adapted
subdivided mesh. This is similar to our approach, but since we let the hardware
tessellator handle adaptivity, we can know a priori the indices and storage re-
quirements for the subdivided mesh. [15] use book keeping data structures and
parallel scan operations with unpredictable memory requirements to manage the
subdivided mesh. Furthermore, they invoke one thread per input mesh vertex,
making a weighted contribution to all new mesh vertices that are influenced.
Since multiple vertices may contribute to the same target location at the same
time, atomic adds are need to serialize memory collisions. We use one thread
per output vertex, so no such collisions can occur.

Breadth-first parallel subdivision represents a global approach, were the en-
tire mesh is processed over multiple passes until the resulting polygons are small.
Hardware tessellation on the other hand localizes the problem into patches that
can be processed in a single pass [10]. To overcome the limitations on the adap-
tivity of current hardware tessellation algorithms, a recursive non-isoparametric
patch subdivision scheme called DiagSplit was developed to produce uniform mi-
cropolygon output [5]. The work presented in this paper should work well with
this approach.

3 Data Parallel Catmull-Clark Subdivision

Catmull-Clark subdivision [4] is an algorithm that takes as input an arbitrary
topology 2-manifold control mesh and outputs a new refined mesh with more
vertices, faces, and edges than the input mesh. The algorithm can be stated as
a set of three simple rules for finding a new point corresponding to each face,
edge, and vertex of the input mesh.

1) Face points - the average of all old points defining a face.

2) Edge points - the average of the two old vertex points and two new face
points incident on the edge.

3) Vertex points - the average n−2
n V + 1

nP + 1
nQ where V is the old vertex

point, P is the average of the all old vertex points adjacent to the old
vertex, and Q is the average of the new face points of all faces incident to
the old vertex.

While the refinement rules themselves are simple, the non-trivial aspect of im-
plementing this algorithm is managing the adjacency relationships among the
vertices, faces, and edges of the control mesh. A mesh is typically specified
by an ordered collection of vertex coordinates, followed by a collection of faces
consisting of 3 or more oriented vertex indices. From this, the adjacency rela-
tions needed to apply the Catmull-Clark refinement rules are inferred. The data
structures and algorithms needed for this do not map well to the data parallel
GPU environment. Fortunately, as long as control mesh connectivity remains

3



static, as is generally the case at runtime, then these adjacency relations can be
precomputed for efficient processing on the GPU.

From rule 1) above, we see that new face points only depend on old vertices.
We can therefore compute all the new face points in parallel provided the old
vertex points are known. Similarly, from rule 2) we have that new edge points
only depend on old vertices and new face points. So we can also compute all the
new edge points in parallel once all the new face points have been computed.
Finally, from rule 3) we can compute all the new vertex points in parallel as
soon as the new face points have been computed.

We propose three GPU kernels (DX11 compute shaders) that execute in
series, to compute in parallel all of the new face points, edge points, and vertex
points respectively of the refined mesh. Each of these kernels is about as simple
as the corresponding refinement rule; though each must access index tables that
encode the necessary adjacency information. These tables are described next.

3.1 Subdivision Tables

The nature of our subdivision tables is best conveyed via example. Consider
a simple pyramid control mesh with V = 5 vertices, F = 5 faces, and E = 8
edges, see Figure 1. We allocate a single vertex buffer large enough to hold both

Figure 1: A pyramid control mesh (wire frame), and the result of one level of
Catmull-Clark subdivision (shaded).

the old and new vertices; while not essential, this simplification lets us avoid
having to specify which buffer to read from. For our pyramid mesh (assuming
one level of subdivision), the vertex buffer would have 5 + 18 = 23 entries; note
that the number of new vertices computed is F +E + V . Column a in Figure 2
represents this vertex buffer, the entries in columns b and c illustrate the five

4



tables used by our subdivision kernels.

Figure 2: Catmull-Clark subdivision tables for the pyramid model.Column a
represents the vertex buffer containing both old and new vertices, column b
(rows F and V ) shows entries in the offset-valence tables, and column c shows
the entries of the vertex index tables.

In order to compute the new face points we must know the valence of each
old face, as well as the indices of all incident old vertices. We encode this
information in a pair of tables. One is an offset and valence table that contains
two entries for each old face, see Figure 2, row F , column b. The first entry is
the offset into the second table indicating the location of the first incident old
vertex index. The second entry is the valence of the old face; this tells us how
many indices to read from the second table. Figure 2, row F , column c shows
this table for our pyramid mesh.

To compute the new edge points we only need a single index table since a new
edge point is always determined by exactly four points. Each entry contains the
indices of the two old vertex points and the two new face points, see Figure 2,
row E, column c.

For the new vertex points we again need two tables. The first contains offset
and valence pairs, see Figure 2, row V , column b. The second contains the
indices of all incident old vertex points and new face points, see Figure 2, row
V , column c. In this case the index table contains 2n entries for each old valence

5



n vertex. Also, note that the index of the corresponding old vertex is a constant
offset of F +E+V from the index of the new vertex being constructed. We store
the values of F , E, and V in constant memory before executing the subdivision
kernels,

Note that for a mesh containing only quads (any mesh that has been subdi-
vided at least once), we no longer need the valence and offset table to construct
new face points since all faces will have valence 4 and the offsets can be found
as 4*fidx, where fidx is the thread id of the new face point. In fact, for a quad
only mesh we can find the new face points by running the new edge point kernel
using the face index table since, for the quad only case, both kernels compute
the average of 4 points. The new edge point kernel is more efficient since it
requires fewer memory reads and does not contain a loop. Unfortunately, we
can’t combine the new quad face and edge point kernels into a single invocation
due to the dependence of edge points on face points requiring intra processor
synchronization; separate kernel invocations serves this purpose for us.

We handle meshes with boundary by treating boundary edges as the control
polygon of a B-spline curve [13]. During table construction, when a boundary
edge is encountered, the indices of the endpoints are each written twice into
the new edge index table. At runtime, the new edge point will be found as the
midpoint of the old edge. For boundary vertices there are two cases: the vertex
is shared by two or more faces (a boundary vertex) or belongs to a single face
(a corner). For a boundary vertex, we write n = 1 into the vertex valence and
offset table, and the indices of of the two adjacent boundary vertices into the
index table. At runtime, when valence n = 1 is encountered, we gather the
boundary vertex and its two neighbors and apply the 1 : 6 : 1 cubic B-spline
subdivision rule for the new vertex point. For a corner vertex, we write n = 0
into the vertex valence and offset table. At runtime, we set the new vertex point
to the old vertex point.

An obvious optimization for our approach would be to sort vertices and faces
according to valence prior to table construction. This will mitigate the diver-
gence created by different valences belonging to the same SIMD execution unit
(a.k.a. warp). In practice however, we do not detect a noticeable performance
gain from this optimization.

4 Hardware Tessellation Stage

Hardware tessellation of parametric surfaces is now part of the rendering pipeline
supported by commodity graphics cards. It can amplify geometry, conserving
animation and CPU/GPU bus overhead, by taking a compact parametric patch
description and producing a dense triangulation of the patch. The algorithm is
adaptive, so that the amount of tessellation can be adjusted each frame to avoid
faceting artifacts (under sampling) or saturating the rasterizer (over sampling).
Within a patch, a watertight (crack-free) triangulation is guaranteed. The pro-

6



cess has excellent locality; that is, each patch can be processed independently,
in parallel, entirely within the on-chip caches of the GPU.

On the other hand, the adaptivity, or sample rate estimation, is based solely
on patch coefficients. Therefore, precise output triangle size criteria cannot be
achieved. Crack-free joins between patches can be difficult to maintain unless
the floating point numerics of boundary evaluations are careful considered. This
problem becomes even more difficult when displacement maps are used since, in
addition to bitwise consistent positions, bitwise consistent normals are required.

The hardware tessellation pipeline fits logically between vertex and pixel
shading. It consists of a programmable hull shader, a fix function tessellator
unit, and a programmable domain shader. The hull shader takes as input a
fixed size array of vertices and outputs a fixed (possibly different) size array
of vertices. The hull shader execution model invokes one thread per output
vertex to run a user specified program. The hull shader is used for change of
basis operations. A matrix multiplication of the input vertices can be used to
generate the output vertices. Additional execution happens in the hull shader
patch constant function. This executes once per patch to determine tessellation
factors, indicating the amount to tessellate each patch edge. The fixed function
tessellator unit creates a patch domain tessellation based on the tessellation
factors; this allows the hardware to adaptively tessellate each patch. The domain
shader executes one thread per vertex generated by the tessellator. The user
specified domain shader program evaluates the patch output by the hull shader
at the u, v coordinates of each tessellated vertex to generate an output vertex.
The output vertex should contain a position and optionally normal, color, etc.
The resulting patch triangulation is rasterized and shaded in a conventional
manner.

Performing a step or two of Catmull-Clark subdivision on the GPU will iso-
late extraordinary vertices, simplifying the input types consumed by the hull
shader. This input can be characterized by the valence n of the single extraor-
dinary vertex in an extraordinary net, or regular net when n = 4, see Figure 3.
These nets contain 2n + 8 vertices.

Figure 3: a) regular net, b) extraordinary net

7



The upper limit on hull shader input is currently primitives with 32 points.
This means we can support valence 3 up to 12 (solving 2n + 8 = 32); there
are exactly 9 such extraordinary nets. These can be batched by valence and,
in principle, processed without valence dependent loops or branches; though in
practice, loop unrolling does not always produce faster code.

4.1 Regular Patches

Over regions of the mesh corresponding to each regular net, the Catmull-Clark
limit surface is equivalent to a bicubic B-spline patch. These 16 point primitives
are batched in a single draw call to be processed by the graphics pipeline.

In our implementation, we use the hull shader to transform these patches
into Bézier form. Rather than using a 16 × 16 change of basis matrix, we take
advantage of the tensor product form of bicubic polynomials. If we treat the 16
B-spline control points as 4× 4 matrix with vector valued (x, y, z) elements, we
can multiply on the right and left by the univariate B-spline to Bézier change
of basis matrix and its transpose. Each thread will compute a single output
vertex using approximately 60 FLOPS (floating point operations); we general
do not count additions in our estimates as these can often be fused into a single
multiply-add (MADD) instruction.

In the domain shader, we implement tensor product bicubic Bézier evalua-
tion. Note that in addition to position,we must also evaluate partial derivatives
(whose normalized cross product is the surface normal). This is straightforward
within the tensor product framework. Our approach requires 162 FLOPS per
evaluation thread.

Note that by maintaining the B-spline basis through to the domain shader,
we can avoid the cost of hull shading; since no change of basis is needed. How-
ever, evaluating the B-spline basis is slightly more expensive than Bézier (by 24
FLOPS). So we see some benefit to this idea for low tessellation rates, it does
not pay off as tessellation rate increases. All of our surface implementations
utilize the same code path for regular patches.

4.2 Exact Evaluation of the Limit Surface

The Catmull-Clark limit surface is represented by an infinite collection of bicubic
patches that become infinitesimally small near extraordinary vertices. For any
point of the control mesh, a correspond patch and domain location can be
found to evaluate this surface. Stam’s algorithm reduces the complexity of this
approach to constant time. The idea is to find the eigen decomposition of the
subdivision matrix (a matrix whose entries correspond the refinement rules),
and convert k iterations of subdivision into raising the eigen values to the ktℎ

power. For a complete description, see [18].
The hull shader is used to project the extraordinary net to eigen space. Each

hull shader thread takes the dot product of a row of the precomputed inverse

8



eigen value matrix with the extraordinary net. For vector valued (x, y, z) control
point, each of 2n + 8 threads must perform 6n + 24 FLOPS. One drawback of
Stam’s direct evaluation procedure is that the eigen space transformation does
not maintain the equivalence of adjacent patch boundary curve coefficients. Due
to floating point inaccuracies, it is not possible produce watertight joins between
adjacent patches.

In the domain shader, given a u, v coordinate, the value of k is determined,
the 2n + 8 precomputed eigen values are raised to the ktℎ power, and one of
three sets of 2n + 8 bicubic eigen basis functions are evaluated after a linear
remapping of u, v. Finally, the sum of products of the scaled eigen values,
the value of the eigen basis functions, and the eigen space extraordinary net
is computed. The partial derivatives are similarly computed using the partial
derivatives of the eigen basis functions in order to compute a surface normal.
Each evaluation thread will do about 108n+534 FLOPS; this a is gross estimate
ignoring some fine details, intended to give a sense of the expected performance
of the algorithm.

4.3 Curvature Continuous Patching

Similar to direct evaluation of Catmull-Clark subdivision surfaces using Stam’s
algorithm, the curvature continuous patching scheme of [8] also requires a mesh
with isolated extraordinary vertices. This algorithm generates a single polyno-
mial patch for each extraordinary net. This patch is bidegree 7 represented by
an 8 × 8 Bézier control net.

The surface is defined by a set of precomputed basis functions encoded in a
64× (2n+ 8) matrix for each valence n. Ideally, the hull shader would compute
the product of this matrix and the extraordinary net vertices generating 64
output patch vertices. However, since the hull shader output can be at most
32 vertices, we must pack two control points into each output vertex, and then
separate these in the domain shader; while trivial from a coding standpoint, this
limitation may adversely impact performance. Each of 32 hull shader threads
performs 12n + 48 FLOPS.

Since the hull shader output is uniformly a biseptic patch independent of
valence, the same domain shader can be shared by all input patch types. We
leverage the tensor product structure of the biseptic patch, similar to the regular
case. We estimate each evaluation thread will execute 568 FLOPS.

In joins between biseptic and bicubic patches, the shared boundary control
points will not coincide; preventing a watertight join. A possible solution to
this problem would be to use a Hermite basis where the extra coefficients of the
degree 7 boundary would vanish, while the position and derivative coefficients
at the endpoints would be identical. We leave this engineering detail to future
work.

9



4.4 Gregory Patch Approximation

We consider two scenarios based on the Gregory patch approximation scheme
of [9]. Gregory patches are used to increase the degrees of freedom necessary
to form a tangent plane smooth surface with collection of patches surrounding
an extraordinary vertex. A bicubic Gregory patch has 20 control points that
interpolate the corner control points and form cubic Bézier boundaries. There
are 8 additional interior control points that are rationally blended according to
the u, v domain parameters. Once the blend has been computed, the patch can
be evaluated as a bicubic Bézier patch.

In the first scenario, we assume quad faces, but not isolated extraordinary
vertices. The scheme is general enough to handle triangular faces as well, but
this complicates the implementation significantly. For the quad only case, a
patch type is characterized by the valences of the four vertices. Excluding ro-
tational symmetries, for a maximum valence of 12, there are 449 patch types.
Allowing triangular faces would greatly increase this number. Precomputing
these change of basis matrices, is non-trivial, greatly reducing the flexibility of
this approach. In our implementation, we generate each 20× (2n+ 8) change of
basis matrix on demand. Our second implementation presumes isolated extraor-
dinary vertices. This means that we have exactly 9 change of basis matrices for
all cases (up to valence 12) that we precompute. In either case, each of 20 hull
shader threads will execute 6n + 24 FLOPS.

The Gregory patch domain shader is nearly identical to the bicubic Bézier
domain shader. The different is the rational blend step driven by conditional
assignments based on the u, v coordinates of the current domain location. This
adds 8 additional multiplies and 4 divides, for a total of 174 FLOPS.

5 Results

Figure 4: Models used in our timing measurements, from left to right: Twohole,
Bigguy, Monsterfrog, and Cat. Regular regions of the surfaces are color gray.
Extraordinary regions are colored by valence n.

10



We implement our algorithms using DirectX 11 compute shaders and tessel-
lation pipeline. A compute shader is a GPGPU programming construct much
like a CUDA kernel; but it is more tightly coupled to the graphics pipeline (us-
ing the same device context), it is coded in hlsl (High Level Shader Language),
and is device independent. This allows us to run experiments on the latest high
end GPUs from ATI (Radeon 5870) and nVidia (GTX 480). All test were run
on a Dell Studio XPS 435T with a Core i7-920 processor.

We test our implementations on the four models depicted in Figure 4. Three
of the models, Twohole, Bigguy, and Monsterfrog are quad meshes; the Cat is
a triangle model. While the quad meshes only require one level of subdivision
to isolate extraordinary vertices, we can apply a Gregory patch approximation
without subdivision. For the Cat, being a triangulation, requires two levels of
subdivision to isolate extraordinary vertices. While a triangulation may not be
an ideal candidate for Catmull-Clark subdivision, we include this model since
it has a large number and variety of extraordinary vertices.

Due to the lack of performance analysis tools (at the time of this writing) for
the GTX 480, we confine ourselves to measuring frame rates with and without
subdivision turned on. Differences in these measurements indicate the perfor-
mance of the subdivision step(s), given in milliseconds in Table 1.

Twohole Bigguy Monsterfrog Cat
Radeon 5870 0.30 0.31 0.31 0.35

GTX 480 0.33 0.36 0.37 0.48

Table 1: Timings in milliseconds for the subdivision stage.

We can see that the Radeon 5870 slightly outperforms GTX 480 for running
the subdivision kernels. In both cases, these measurements indicate that the
subdivision step represents a very small fraction of overall frame time.

For the tessellation stage, we run our algorithms over these models at various
tessellation rates. These algorithms are: Gregory approximation with no subdi-
vision (Gregory1), Gregory approximation with subdivision (Gregory2), Stam’s
direct evaluation procedure (Stam), and curvature continuous biseptic patch-
ing (Biseptic). Our tessellation factors are uniformly integer powers of 2, going
from 1 to 32 on the horizontal axis in our timing graphics (see Figure 5). We
don’t take advantage of adaptive tessellation here because each scheme would
generate different tessellation patterns that would impact the cost of evaluation
as well as rasterization, biasing our comparisons. On the vertical axis we show
frames per second with log base 10 scaling.

Clearly, the GTX 480 performs much better for dense tessellations, realizing
performance increases of 5 to 10x over Radeon 5870. GTX 480 has multiple
rasterization and tessellation units, so this performance difference is not unex-
pected.

As expected, we see that Gregory1 (no subdivision) is the best performer at

11



low tessellation rates (less than 4 division per edge). On Radeon 5870, we see
that Gregory2 (one level of subdivision, 4x the patches) actually outperforms
Gregory1 at tessellation level 4 and above for Bigguy and Monsterfrog; but this
is not the case on GTX 480. However, above tessellation level 16 on GTX 480,
the performance for Bigguy and Monsterfrog is roughly the same for Gregory1
and Gregory2. We attribute this to the fact that Gregory2 will perform more
regular evaluations and fewer extraordinary evaluations for the same sampling
rate.

Also as expected, we see that Gregory1 and Gregory2 always outperform
Stam and Biseptic. Somewhat unexpected however, is the extremely poor per-
formance of Biseptic on Radeon 5870 at high tessellation rates. We suspect
that this is an anomalous case outside the design parameters of ATI’s tessella-
tor implementation. Given that Biseptic requires fewer FLOPS than Stam, the
performance similarity between Stam and Biseptic on GTX 480 is also some-
what puzzling. Our expectation was that for low tessellation levels, Stam would
outperform Biseptic due to the lower cost of hull shading. As tessellation rates
go up, we expected the lower cost of Biseptic evaluation would give it better
performance. We see the former, but not the latter.

6 Conclusion

We have presented a method of preforming Catmull-Clark subdivision in par-
allel on programmable graphics hardware. We perform only one or two levels
of subdivision in order to isolate extraordinary vertices. This simplified input
is feed to the hardware tessellation pipeline where we analyze the performance
of exact Catmull-Clark evaluation utilizing Stam’s algorithm, a curvature con-
tinuous patching scheme based on biseptic Bézier patches, and a Gregory patch
based approximation scheme.

Our results confirm that a Gregory patch approximation is always signifi-
cantly faster than exact evaluation. This indicates that for displacement mapped
surfaces, such as characters in games, an approximation to the limit surface will
give better performance. Reasons not to use an approximation are limited to
accuracy and faithfulness to the artist intent. While valid concerns, using the
approximation within the tools chain would solve the problem.

For applications where the exact limit surface is a requirement, our results
show that Stam’s direct evaluation procedure performs well and can absolutely
be used for adaptive real-time rendering. While widely used in games and com-
puter generated animations, the lack of curvature continuity limits the use of
Catmull-Clark surfaces in other engineering disciplines. One possible solution
to this problem is the use of curvature continuous biseptic patches. We have
demonstrated that theses patches can be evaluated with roughly the same per-
formance as direct evaluation. Clearly, biseptic patches at high tessellation rates
challenge Radeon 5870. We speculate that this may be due to limited register

12



or shared memory availability, forcing off-chip memory accesses that severely
harm performance.

Finally, we note that for dense tessellation rates, performing subdivision
prior to tessellation has negligible impact on performance. This suggest that for
micropolygon rendering, pre-tessellator subdivision may be useful. Generating
more, smaller, flatter, more uniform patches will lead to better sample rate
estimates and more uniformly size triangles.

While we handle meshes with boundary rather simply in our subdivision
stage, we would like to incorporate state-of-the-art boundary and crease rules
[1, 6] into both our subdivision and tessellation stages. We expect that the
simplification created by extraordinary vertex isolation will greatly ease this
task.

References

[1] Henning Biermann, Adi Levin, and Denis Zorin. Piecewise smooth subdi-
vision surfaces with normal control. In proceedings of SIGGRAPH, pages
113–120, 2000.

[2] Jeffrey Bolz and Peter Schröder. Rapid evaluation of catmull-clark subdi-
vision surfaces. In Proceeding of the International Conference on 3D Web
Technology, pages 11–17, 2002.

[3] Michael Bunnell. Adaptive tessellation of subdivision surfaces with dis-
placement mapping. In GPU Gems 2, pages 109–122. 2005.

[4] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbi-
trary topological meshes. Computer-Aided Design, 10(6):350–355, 1978.

[5] Matthew Fisher, Kayvon Fatahalian, Solomon Boulos, Kurt Akeley,
William R. Mark, and Pat Hanrahan. Diagsplit: parallel, crack-free, adap-
tive tessellation for micropolygon rendering. ACM Transactions on Graph-
ics, 28(5):150:1–150:10, 2009.

[6] Denis Kovacs, Jason Mitchell, Shanon Drone, and Denis Zorin. Real-time
creased approximate subdivision surfaces. In Proceedings of the symposium
on Interactive 3D graphics, pages 155–160, 2009.

[7] Charles Loop and Scott Schaefer. Approximating catmull-clark subdivision
surfaces with bicubic patches. ACM Trans. Graph., 27(1):8:1–8:11, 2008.

[8] Charles Loop and Scott Schaefer. G2 Tensor Product Spline Surfaces over
Extraordinary Vertices. Computer Graphics Forum, 27(5):1373–1382, 2008.
Proceedings of SGP 2008.

13



[9] Charles Loop, Scott Schaefer, Tianyun Ni, and Ignacio Casta no. Approxi-
mating subdivision surfaces with gregory patches for tessellation hardware.
Transactions on Graphics, 28(5):151:1–151:9, 2009.

[10] Henry Moreton. Watertight tessellation using forward differencing. In
HWWS ’01: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware, pages 25–32, New York, NY, USA, 2001.
ACM.

[11] Ashish Myles, Tianyun Ni, and Jörg Peters. Fast parallel construction of
smooth surfaces from meshes with tri/quad/pent facets. Computer Graph-
ics Forum, 27(5):1365–1372, 2008.

[12] Ashish Myles, Young In Yeo, and Jörg Peters. Gpu conversion of quad
meshes to smooth surfaces. In SPM ’08: ACM symposium on Solid and
physical modeling, pages 321–326, 2008.

[13] Ahmad H. Nasri. Polyhedral subdivision methods for free-form surfaces.
ACM Trans. Graph., 6(1):29–73, 1987.

[14] Tianyun Ni, Young In Yeo, Ashish Myles, Vineet Goel, and Jörg Peters.
Gpu smoothing of quad meshes. In SMI ’08: IEEE International Confer-
ence on Shape Modeling and Applications, pages 3–9, 2008.

[15] Anjul Patney, Mohamed S. Ebeida, and John D. Owens. Parallel view-
dependent tessellation of catmull-clark subdivision surfaces. In HPG ’09:
Proceedings of the Conference on High Performance Graphics 2009, pages
99–108, New York, NY, USA, 2009. ACM.

[16] Anjul Patney and John D. Owens. Real-time Reyes-style adaptive surface
subdivision. ACM Transactions on Graphics (Proceedings of ACM SIG-
GRAPH Asia), 27(5), December 2008.

[17] Le-Jeng Shiue, Ian Jones, and Jörg Peters. A realtime gpu subdivision
kernel. ACM Trans. Graph., 24(3):1010–1015, 2005.

[18] Jos Stam. Exact evaluation of Catmull-Clark subdivision surfaces at
arbitrary parameter values. Computer Graphics, 32(Annual Conference
Series):395–404, 1998.

14



Figure 5: Timing results for our tessellator algorithms. The vertical axis mea-
sures frames per second with log base 10 scaling. The horizontal axis measures
uniform edge tessellation factors with log base 2 scaling.

15


