Bayesian Knowledge Corroboration with Logical
Rules and User Feedback

Gjergji Kasneci, Jurgen Van Gael, Ralf Herbrich, and Thore Graepel

Microsoft Research Cambridge,
7 J J Thomson Avenue, Cambridge CB3 0FB, UK
{gjergjik, v- juvang, rherb, thoreg}@microsoft.com

Technical Report (MSR-TR-2010-45)

Abstract. Current knowledge bases suffer from either low coverage
or low accuracy. The underlying hypothesis of this work is that user
feedback can greatly improve the quality of automatically extracted
knowledge bases. The feedback could help quantify the uncertainty
associated with the stored statements and would enable mechanisms
for searching, ranking and reasoning at entity-relationship level. Most
importantly, a principled model for exploiting user feedback to learn the
truth values of statements in the knowledge base would be a major step
forward in addressing the issue of knowledge base curation.

We present a family of probabilistic graphical models that builds on
user feedback and logical inference rules derived from the popular
Semantic-Web formalism of RDFS [1]. Through internal inference and
belief propagation, these models can learn both, the truth values of
the statements in the knowledge base and the reliabilities of the users
who give feedback. We demonstrate the viability of our approach in
extensive experiments on real-world datasets, with feedback collected
from Amazon Mechanical Turk.

Key words: Knowledge Base, RDFS, User Feedback, Reasoning,
Probability, Graphical Model

1 Introduction

1.1 Motivation

Recent efforts in the area of Semantic Web have given rise to rich triple stores
[6,11, 14], which are being exploited by the research community [12,13,15-18].
Appropriately combined with probabilistic reasoning capabilities, they could
highly influence the next wave of Web technology. In fact, Semantic-Web-
style knowledge bases (KBs) about entities and relationships are already being
leveraged by prominent industrial projects [7-9].

A widely used Semantic-Web formalism for knowledge representation is the
Resource Description Framework Schema (RDFS) [1]. The popularity of this
formalism is based on the fact that it provides an extensible, common syntax for
data transfer and allows the explicit and intuitive representation of knowledge
in form of entity-relationship (ER) graphs. Each edge of an ER graph can be
thought of as an RDF triple, and each node as an RDFS resource. Furthermore,
RDFS provides light-weight reasoning capabilities for inferring new knowledge
from the one represented explicitly in the KB.

The triples contained in RDFS KBs are often subject to uncertainty, which
may come from different sources:



2 Gjergji Kasneci, Jurgen Van Gael, Ralf Herbrich, and Thore Graepel

Extraction & Integration Uncertainty Usually, the triples are the result
of information extraction processes applied to different Web sources. After
the extraction, integration processes are responsible for organizing and
storing the triples into the KB. The mentioned processes build on uncertain
techniques such as natural language processing, pattern matching, statistical
learning, etc.

Information Source Uncertainty There is also uncertainty related to the
Web pages from which the knowledge was extracted. Many Web pages may
be unauthoritative on specific topics and contain unreliable information.
For example, contrary to Michael Jackson’s Wikipedia page, the Web site
michaeljacksonsightings.com claims that Michael Jackson is still alive.

Inherent Knowledge Uncertainty Another type of uncertainty is the one
that is inherent to the knowledge itself. For example, it is difficult to say
when the great philosophers Plato or Pythagoras were exactly born. For
Plato, Wikipedia offers two possible birth dates 428 BC and 427 BC. These
dates are usually estimated by investigating the historical context, which
naturally leads to uncertain information.

Leveraging user feedback to deal with the uncertainty and curation of data
in knowledge bases is acknowledged as one of the major challenges by the
community of probabilistic databases [32]. A principled method for quantifying
the uncertainty of knowledge triples would not only build the basis for knowledge
curation but would also enable many inference, search and recommendation
tasks. Such tasks could aim at retrieving relations between companies, people,
prices, product types, etc. For example, the query that asks how Coca Cola,
Pepsi and Christina Aguilera are related might yield the result that Christina
Aguilera performed in Pepsi as well as in Coca Cola commercials. Since the
triples composing the results might have been extracted from blog pages, one
has to make sure that they convey reliable information. In full generality, there
might be many important (indirect) relations between the query entities, which
could be inferred from the underlying data. Quantifying the uncertainty of such
associations would help ranking the results in a useful and principled way.

Unfortunately, Semantic-Web formalisms for knowledge representation do
not consider uncertainty. As a matter of fact, knowledge representation
formalisms and formalisms that can deal with uncertainty are evolving
as separate fields of AI. While knowledge representation formalisms (e.g.,
Description Logics [5], frames [3], KL-ONE [4], RDFS, OWL [2], etc.) focus
on expressiveness and borrow from subsets of first-order logics, techniques for
representing uncertainty focus on modeling possible world states, and usually
represent these by probability distributions. We believe that these two fields
belong together and that a targeted effort has to be made to evoke the desired

synergy.

1.2 Related Work

Most prior work that has dealt with user feedback, has done so from the
viewpoint of user preferences, expertise, or authority (e.g., [34-36]). We are
mainly interested in the truth values of the statements contained in a knowledge
base and in the reliability of users who give feedback. Our goal is to learn these
values jointly, that is, we aim to learn from the feedback of multiple users at
once.



Bayesian Knowledge Corroboration with Logical Rules and User Feedback 3

There are two research areas of AI which provide models for dealing with
reasoning over KBs: (1) logical reasoning and (2) probabilistic reasoning. Logical
reasoning builds mainly on first-order logic and is best at dealing with relational
data. Probabilistic reasoning emphasizes the uncertainty inherent in data.

There have been several proposals for combining techniques from these two
areas. In the following, we discuss the strengths and weaknesses of the main
approaches.

Probabilistic Database Model (PDM) The PDM [31-33] can be viewed as
a generalization of the relational model which captures uncertainty with respect
to the existence of database tuples (also known as tuple semantics) or to the
values of database attributes (also known as attribute semantics).

In the tuple semantics, the main assumption is that the existence of a tuple
is independent of the existence of other tuples. Given a database consisting of
a single table, the number of possible worlds (i.e. possible databases) is 2",
where n is the maximum number of the tuples in the table. Each possible
world is associated with a probability which can be derived from the existence
probabilities of the single tuples and from the independence assumption.

In the attribute semantics, the existence of tuples is certain, whereas the
values of attributes are uncertain. Again, the main assumption in this semantics
is that the values attributes take are independent of each other. Each attribute
is associated with a discrete probability distribution over the possible values
it can take. Consequently, the attribute semantics is more expressive than the
tuple-level semantics, since in general tuple-level uncertainty can be converted
into attribute-level uncertainty by adding one more (Boolean) attribute. Both
semantics could also be used in combination, however, the number of possible
worlds would be much larger, and deriving complete probabilistic representations
would be very costly. So far, there exists no formal semantics for continuous
attribute values [32]. Another major disadvantage of PDMs is that they build
on rigid and restrictive independence assumptions which cannot easily model
correlations among tuples or attributes [26].

Statistical Relational Learning (SRL) SRL models [28] are concerned with
domains that exhibit uncertainty and relational structure. They combine a subset
of relational calculus (first-order logic) with probabilistic graphical models, such
as Bayesian or Markov networks to model uncertainty. These models can capture
both, the tuple and the attribute semantics from the PDM and can represent
correlations between relational tuples or attributes in a natural way [26].

More ambitious models in this realm are Markov Logic Networks [23,24],
Multi-Entity Bayesian Networks [29] and Probabilistic Relational Models [27].
Some of these models (e.g., [23,24,29]) aim at exploiting the whole expressive
power of first-order logic. While [23,24] represent the formalism of first-order
logic by factor graph models, [27] and [29] deal with Bayesian networks applied
to first-order logic. Usually, inference in such models is performed using standard
techniques such as belief propagation or Gibbs sampling. In order to avoid
complex computations, [22,23,26] propose the technique of lifted inference,
which avoids materializing all objects in the domain by creating all possible
groundings of the logical clauses. Although lifted inference can be more efficient
than standard inference on these kinds of models, it is not clear whether they
can be trivially lifted (see [25]). Hence, very often these models fall prey to high
complexity when applied to practical cases.



4 Gjergji Kasneci, Jurgen Van Gael, Ralf Herbrich, and Thore Graepel

More related to our approach is the work by Galland et al. [38], which presents
three probabilistic fix-point algorithms for aggregating disagreeing views about
knowledge fragments and learning their truth values as well as the trust in the
views. However, as admitted by the authors, their algorithms cannot be used
in an online fashion, while our approach builds on a Bayesian framework and is
inherently flexible to online updates. Furthermore, [38] does not deal with the
problem of logical inference, which is a core ingredient of our approach. In our
experiments, we show that our approach outperforms all algorithms from [38]
on a real-world dataset (provided by the authors of [38]).

Finally, a very recent article [39] proposes a supervised learning approach to
the mentioned problem. In contrast to our approach, the solution proposed in
[39] is not fully Bayesian and does not deal with logical deduction rules.

1.3 Contributions and Outline

We argue that in many practical cases the full expressiveness of first-order logic is
not required. Rather, reasoning models for knowledge bases need to make a trade-
off between expressiveness and simplicity. Expressiveness is needed to reflect the
domain complexity and allow inference; simplicity is crucial in anticipation of
the future scale of Semantic-Web-style data sources [6].

In this paper, we present a Bayesian reasoning framework for inference in
triple stores through logical rules and user feedback. The main contributions of
this paper are:

— A family of probabilistic graphical models that exploits user feedback to learn
the truth values of statements in a KB. As users may often be inconsistent
or unreliable and give inaccurate feedback across knowledge domains, our
probabilistic graphical models jointly estimate the truth values of statements
and the reliabilities of users.

— The proposed model uses logical inference rules based on the proven RDFS
formalism to propagate beliefs about truth values from and to derived
statements. Consequently, the model can be applied to any RDF triple store.

— We present the superiority of our approach in comparison to prior work on
real-world datasets with user feedback from Amazon Mechanical Turk.

In Section 2, we describe an extension of the RDF'S formalism, which we refer
to as RDFS#. In Section 3, we introduce the mentioned family of probabilistic
graphical models on top of the RDFS# formalism. Section 4 is devoted to
experimental evaluation and we conclude in Section 5.

2 Knowledge Representation with RDFS

Semantic-Web formalisms for knowledge representation build on the entity-
relationship (ER) graph model. ER graphs can be used to describe the knowledge
from a domain of discourse in a structured way. Once the elements of discourse
(i.e., entities or so-called resources in RDFS) are determined, an ER graph can
be built. In the following, we give a general definition of ER graphs.

Definition 1 (Entity-Relationship Graph) Let Ent and Rel C Ent be
finite sets of entity and relationship labels respectively. An entity-relationship



Bayesian Knowledge Corroboration with Logical Rules and User Feedback 5

graph over Ent and Rel is a multigraph G = (V,lgnt, Erer) where V is a
finite set of nodes, lgpn: : V. — Ent is an injective vertex labeling function,
and Ere; Clgni(V) X Rel X lgn (V) is a set of labeled edges.

The labeled nodes of an ER, graph represent entities (e.g., people, locations,
products, dates, etc.). The labeled edges represent relationship instances,
which we refer to as statements about entities (e.g., <AlbertEinstein, hasWon,
NobelPrize>). Figure 1 depicts a sample ER subgraph from the YAGO
knowledge base.

[Element of discourse] ER term [ RDFS term ]
ce Ent entity resource
r € Rel relationship (type) property
f € Egel relationship instance / fact|statement / RDF triple / fact

Table 1. Correspondence of ER and RDF'S terminology.

One of the most prominent Semantic-Web languages for knowledge
representation that builds on the concept of ER graphs is the Resource
Description Framework Schema (RDFS) [1]. Table 1 shows the correspondence
between ER and RDFS terminology.

Germany

States of
America

Fig. 1. Sample ER subgraph from the YAGO knowledge base

RDFS is an extensible knowledge representation language recommended by
the World Wide Web Consortium (W3C) for the description of a domain of
discourse (such as the Web). It enables the definition of domain resources,
such as individuals (e.g. AlbertEinstein, NobelPrize, Germany, etc.), classes
(e.g. Physicist, Prize, Location, etc.) and relationships (or so-called properties,
e.g. type, hasWon, locatedIn, etc.). The basis of RDFS is RDF which comes
with three basic symbols: URIs (Uniform Resource Identifiers) for uniquely
addressing resources, literals for representing values such as strings, numbers,
dates, etc., and blank nodes for representing unknown or unimportant resources.



6 Gjergji Kasneci, Jurgen Van Gael, Ralf Herbrich, and Thore Graepel

Another important RDF construct for expressing that two entities stand in a
binary relationship is a statement. A statement is a triple of URIs and has
the form <Subject, Predicate, Object>, for example <AlbertEinstein, bornln,
Ulm>. An RDF statement can be thought of as an edge from an ER graph,
where the Subject and the Object represent entity nodes and the Predicate
represents the relationship label of the corresponding edge. Consequently, a
set of RDF statements can be viewed as an ER graph. RDFS extends the set
of RDF symbols by new URIs for predefined class and relation types such as
rdfs:Resource (the class of all resources), rdfs:subClassOf (for representing the
subclass-class relationship), etc.

RDFS is popular because it is a light-weight modeling language with
practical logical reasoning capabilities, including reasoning over properties of
relationships (e.g., reflexivity, transitivity, domain, and range). However, in the
current specification of RDFS, reflexivity and transitivity are defined only for
rdfs:subClassOf, rdfs:subPropertyOf, and the combination of the relationships
rdf:type+rdfs:subClassOf. The more expressive Web Ontology Language (OWL)
[2], which builds on RDFS, allows the above properties to be defined for arbitrary
relationships, but its expressive power makes consistency checking undecidable.
The recently introduced YAGO model [14] permits the definition of arbitrary
acyclic transitive relationships but has the advantage that it still remains
decidable. Being able to define transitivity for arbitrary relationships can be
a very useful feature for ontological models, since many practically relevant
relationships, such as isA, locatedIn, containedIn, partOf, ancestorOf, siblingOYf,
etc., are transitive. Hence, in the following, we will consider a slightly different
variant of RDFS.

Let RDFS#! denote the RDFS model, in which blank nodes are forbidden
and the reasoning capabilities are derived from the following rules. For all
X,)Y,Z € Ent,R,R € Rel with X £Y,Y #Z, X #+#Z R+ R":

<X, type, Y> A <Y, subClassOf, Z> — <X, type, Z>

<X, R, Y> A K<Y, R, Z> A <R, type, TransitiveRelation> — <X, R, Z>
<R, subPropertyOf, R'> AN <X, R, Y> - <X, R, Y>

<R, hasDomain, Dom> A <X, R, Y> — <X, type, Dom>

<R, hasRange, Ran> A <X, R, Y> — <Y, type, Ran>

CU oo =

Theorem 1 (Tractability of Inference) For any RDFS# knowledge base K,
the set of all statements that can be inferred by applying the inference rules can
be computed in polynomial time in the size of IC (i.e., number of statements in
K). Furthermore, consistency can be checked in polynomial time.

The proof of the theorem is a straight-forward extension of the proof of
tractability for RDFS entailment, when blank nodes are forbidden [37].

We conclude this section by sketching an algorithm to compute the deductive
closure of an RDFS# knowledge base K with respect to the above rules. Let Fi
be the set of all statements in L. We recursively identify and index all pairs of
statements that can lead to a new statement (according to the above rules) as
shown in Algorithm 1.

For each pair of statements (f, ') that imply another statement f according

to the RDFS# rules, Algorithm 1 indexes (f, f’, f). In case f is not present in
Fic it is added and the algorithm is ran recursively on the updated set Fy.

! Read: RDFS sharp.



Bayesian Knowledge Corroboration with Logical Rules and User Feedback 7

Algorithm 1 InferFacts(Fi)

for all pairs (f, f') € Fx x Fx do
if fAf — fand (f,f,f) is not indexed then
index (f, f', f)
Fr = F U {f}
InferFacts(Fx)
end if
end for

3 A Family of Probabilistic Models

Using the language of graphical models, more specifically directed graphical
models or Bayesian networks [40], we develop a family of Bayesian models each
of which jointly models the truth value for each statement and the reliability
for each user. The Bayesian graphical model formalism offers the following
advantages:

— Models can be built from existing and tested modules and can be extended
in a flexible way.

— The conditional independence assumptions reflected in the model structure
enable efficient inference through message passing.

— The hierarchical Bayesian approach integrates data sparsity and traces
uncertainty through the model.

We explore four different probabilistic models each incorporating a different
body of domain knowledge. Assume we are given an RDFS# KB K. Let Fx =
{f1, -, fn} be the set of all statements contained in and deducible from K . For
each statement f; € Fx we introduce a random variable ¢; € {T, F'} to denote
its (unknown) truth value. We denote by y;, € {T, F'} the random variable that
captures the feedback from user k for statement f;. Let us now explore two
different priors on the truth values ¢; and two user feedback models connecting
for y;k-

3.1 Fact Prior Distributions

Independent Statements Prior. A simple baseline prior assumes indepen-
dence between the truth values of statements, ¢; ~ Bernoulli(ey;). Thus, for t €
{T, F}™, the conditional probability distribution for the independent statements
prior is

n n

p(tlag) = Hp(ti\at) = HBernoulli(ti; ay). (1)

i=1 i=1
This strong independence assumption discards existing knowledge about the
relationships between statements from RDFS#. This problem is addressed by
the Deduced Statements Prior.
Deduced Statements Prior. A more complex prior will incorporate the
deductions from RDFS# into a probabilistic graphical model. First, we describe
a general mechanism to turn a logical deduction into a probabilistic graphical
model. Then, we show how this can be used in the context of RDFS+#.



8 Gjergji Kasneci, Jurgen Van Gael, Ralf Herbrich, and Thore Graepel

Fig. 2. A graphical model illustrating the logical derivation for the formula
X=(AAB)V(BAC)VD.

Let X denote a variable that can be derived from AA B or B A C, where the
premises A, B, and C are known. Let D denote all unknown derivations of X. The
truth of X can be expressed in disjunctive normal form: X = (AAB)V(BAC)VD.
This can automatically be turned into the graphical model shown in Figure 2. For
each conjuctive clause, a new variable with corresponding conditional probability
distribution is introduced, e.g.,

1 ifAAB
0 otherwise

p(AB|A, B) = { @)

This simplifies our disjunctive normal form to the expression X = ABV BC'V D.
Finally, we connect X with all the variables in the disjunctive normal form by a
conditional probability:

1 if ABvVvBCvVD
0 otherwise

p(X|AB,BC. D) = { 3)

This construction can be applied to all the deductions implied by RDFS#.
After computing the deductive closure of the KB (see Algorithm 1), for each
statement f; € Fx, all pairs of statements that imply f; can be found; we denote
this set by D;. An additional binary variable ¢; ~ Bernoulli(cy) is introduced to
account for the possibility that our knowledge base does not contain all possible
deductions of statement f;. The variable ¢; is added to the probabilistic graphical
model similar to the variable D in the example above. Hence, we derive the
following conditional probability distribution for the prior on statements

ptla) =] 32 pltde Do ar)p(ila), (4)

i=17,e{T,F}

where Equations (2) and (3) specify the conditional distribution p(t;|t;, D;, o).

3.2 User Feedback Models

The proposed user feedback model jointly models the truth values ¢;, the
feedback signals y;; and the user reliabilities. In this section we discuss both
a one-parameter and a two-parameter per user model for the user feedback
component. Note that not all users rate all statements: this means that only
a subset of the y;; will be observed.

1-Parameter Model. This model represents the following user behavior. When
user k evaluates a statement f;, with probability ux he will report the real truth
value of f; and with probability 1 — u he will report the opposite truth value.



Bayesian Knowledge Corroboration with Logical Rules and User Feedback 9

Figure 4 represents the conditional probability table for p(yix|ug,t;). Consider
the set {y;x} of observed true/false feedback labels for the statement-user pairs.
The conditional probability distribution for u € [0,1)™, t € {T, F}™ and {yx}
in the 1-parameter model is

Pk alt o, Bu) = ] pluklow, Bu) 11 pWiklti,uk).  (5)
users k statements i by k

2-Parameter Model. This model represents a similar user behavior as above,
but this time we model the reliability of each user k£ with two parameters
uy, € [0,1] and @y, € [0,1], one for true statements and one for false statements.
Figure 5 represents the conditional probability table for p(y;k|u,x,t;). The
conditional probability distribution for the 2-parameter model is

p({ylk}a u, ﬁ‘ta Ay s ﬁU7 gy Bﬂ) =
1T puklow, Bu)p(urlaa, Ba) II P(Yik|ti, uk, Uk)- (6)

users k statements ¢ by k
i=1,..,n i=1,.,n

Fig. 3. The graphical models for the user feedback components. Left, the
1l-parameter feedback model and right, the 2-parameter feedback model.

Gl |
Yik Yik
T ur |1 — ug T ug |1 — g

F 1 —ug| ug F 1—ug| Uk

T F

Fig.4. The conditional probability Fig.5. The conditional probability dis-
distribution for feedback signal y;x tribution for feedback signal y;r given
given reliability u, and truth ;. reliabilities uy, 4r and truth ¢;.

In both models, the prior belief about uy (and @y, in the 2-parameter model) is
modeled by a Beta(aw,, 5) (and Beta(ag, fz)) distribution, which is a conjugate
prior for the Bernoulli distribution.

Table 2 depicts four different models, composed using all four combinations
of statement priors and user feedback models. We can write down the full joint
probability distribution for the I1 model as

p(t7 {yik}7 u‘ah auvﬁu) =

(HBernouHi(ti;at)> H p(uk| o, Bu) H p(yiklti,ue) | - (7)

% users k statements ¢ by k



10 Gjergji Kasneci, Jurgen Van Gael, Ralf Herbrich, and Thore Graepel

The joint distribution for 12, D1 and D2 can be written down similarly by
combining the appropriate equations above.

[Model Name] Composition ]
11 independent priors & 1-parameter feedback model
12 independent priors & 2-parameter feedback model
D1 deduced statements priors & 1-parameter feedback model
D2 deduced statements priors & 2-parameter feedback model

Table 2. The four different models

3.3 Discussion

Figure 6 illustrates how the 1-parameter feedback model, D1, can jointly learn
the reliability of two users and the truth values of two statements, f; and f;, on
which they provide feedback. Additionally, it can also learn the truth value of
the statement f;, which can be derived from f; A f;. An additional variable ¢; is
added to account for any deductions which might not be captured by the KB.
Note that the model in Figure 6 is loopy but still satisfies the acyclicity required
by a directed graphical model.

Fig. 6. Illustration of a small instance of the D1 model. Note how user
feedback is propagated through the logical relations among the statements.

Given a probabilistic model we are interested in computing the
posterior distribution for the statement truth variables and user reliabilities:
p(t|{yir }, o, oy Bu) and p(ul{yix}, o, o, Bu). Both computations involve
summing (or integrating) over all possible assignments for the unobserved
variables

p(ul{yik}vat»auaﬁu) o0 Z Z p(tv{yik}au|atvauvﬁu)' (8)

t1€{T,F} tn, €{T,F}

As illustrated in Figure 6, the resulting graphical models are loopy. Moreover
deep deduction paths may lead to high treewidth graphical models making exact
computation intractable. We chose to use an approximate inference scheme based
on message passing known as expectation propagation [30, 21].

From a computational perspective, it is easiest to translate the graphical
models into factor graphs, and describe the message passing rules over them.
Table 3 summarizes how to translate each component of the above graphical
models into a factor graph. We rely on Infer.NET [10] to compute a schedule
for the message passing algorithms and to execute them. The message passing
algorithms run until convergence. The complexity of every iteration is linear in
the number of nodes in the underlying factor graph.



Bayesian Knowledge Corroboration with Logical Rules and User Feedback 11

[ Bayes Net [Factor Graph[Factor Semantics ]

91
CID gi(t) = w1 (1 - m) D

2

©)ra
Q
(V)
0
Il
P!
&
=
=
IS4
Q
|
—
|
£
b

gs(y, t,u) = (W1 (1 — ) A1)y
.(u(l—[[y]])(l _ u)[[y]])(l—[[t]])

otc

ga(y @) = (I (1 — )1 01
_(ﬁﬂ*[[y]])(l _ ﬂ)[[y]])(lf[[t]b

gs(t,t',8) = [E)[E'10E] + (1 — (D[] (1 — [2D)
HE A = DA - D) + (= EDA = [FDH (A - [2)

Q%@%@%@@

Il
=

() (et | 1=2: goldr,i2,D) = [l + (1~ D]

+'El 1—1?2 E-i—l—fl 1—'[2 1 — [
@ g}_@ [E2] (1 = [E=D[E] + (1 = [t (@ = [ (X = [2])

Table 3. Detailed semantics for the graphical models. The first column depicts the
Bayesian network dependencies for a component in the graphical model, the second
column illustrates the corresponding factor graph, and the third column gives the
exact semantics of the factor. The function [¢] maps T and F to 1 and 0, respectively.

4 Experimental Evaluation

For the empirical evaluation we constructed a dataset by choosing a subset of
833 statements about prominent scientists from the YAGO knowledge base [14].
Since the majority of statements in YAGO are correct, we extended the extracted
subset by 271 false but semantically meaningful statements? that were randomly
generated from YAGO entities and relationships, resulting in a final set of 1,104
statements. The statements from this dataset were manually labeled as true or
false, resulting in a total of 803 true statements and 301 false statements.
YAGO provides transitive relationships, such as locatedIn, isA, influences,
etc. Hence, we are in the RDFS# setting. We ran Algorithm 1 to compute the

2 E.g., the statement <AlbertEinstein, bornln, Berlin> is meaningful although false,
whereas <Berlin, bornln, AlbertEinstein> is not semantically meaningful.



12 Gjergji Kasneci, Jurgen Van Gael, Ralf Herbrich, and Thore Graepel

closure of our dataset with respect to the transitive relationships. This resulted
in 329 pairs of statements from which another statement in the dataset could be
derived.

For the above statements we collected feedback from Amazon Mechanical
Turk (AMTurk). The users were presented with tasks of at most 5 statements
each and asked to label each statement in a task with either true or false. This
setup resulted in 221 AMTurk tasks to cover the 1,104 statements in our dataset.
Additionally, the users were offered the option to use any external Web sources
when assessing a statement. 111 AMTurk users completed between 1 and 186
tasks. For each task we payed 10 US cents. At the end we collected a total
number of 11,031 feedback labels.

4.1 Quality Analysis

First we analyze the quality of the four models, 11, 12, D1, D2. As a baseline
method we use a “voting” scheme, which computes the probability of a statement
f being true as

1 + # of true votes for f

p(f) 24 # of votes for f

We choose the negative log score (in bits) as our accuracy measure. For a
statement f; with posterior p; the negative log score is defined as

—log,(pi) if ground truth for f; is true
—logy(1 — p;) if ground truth for f; is false

IllS(pl',ti) = { (9)
The negative log score represents how much information in the ground truth is
captured by the posterior; when p; = [t;] the log score is zero. To illustrate the
learning rate of each model, in Figure 7 we show aggregate negative log scores
for nested subsets of the feedback labels. For each of the subsets, we use all 1,104
statements of the dataset.

1200
—L1

—L2

LT1
—LT2
—Voting

1000

600

400

negative log score

200

0 2000 4000 6000 8000 10000 12000 0 02 04 06 08 1
# of user assessments False Positive Rate

Fig. 7. The negative log score for the Fig.8. The ROC curves for the D1
different models as a function of the model, for varying numbers of user
number of user assessments. assessments.

Figure 7 shows that for smaller subsets of feedback labels the simpler models
perform better and have lower negative log scores. However, as the number of



Bayesian Knowledge Corroboration with Logical Rules and User Feedback 13

labels increases, the two-parameter models become more accurate. This is in line
with the intuition that simpler (i.e., one-parameter) models learn quicker (i.e.,
with fewer labels). Nonetheless, observe that with more labels, the more flexible
(i.e., 2-parameter) models achieve lower negative log scores. Finally, the logical
inference rules reduce the negative log scores by about 50 bits when there are no
labels. Nevertheless, when the amount of labels grows, the logical inference rules
hardly contribute to the decrease in negative log score. All models consistently
outperform the voting approach.

We computed ROC curves for model D1 for different nested subsets of the
data. In Figure 8, when all labels are used, the ROC curve shows almost perfect
true positive and false positive behavior. The model already performs with high
accuracy for 30% of the feedback labels. Also, we get a consistent increase in
AUC as we increase the number of feedback signals.

4.2 Case Studies

Our probabilistic models have another big advantage: the posterior probabilities
for truths and reliabilities have clear semantics. By inspecting them we can
discover different types of user behavior.

When analyzing the posterior probabilities for the D2 model, we found that
the reliability of one of the users was 89% when statements were true, while it
was only 8% when statements were false. When we inspected the labels that were
generated by the user we found that he labelled 768 statements, out of which
693 statements were labelled as “true”. This means that he labelled 90% of all
statements that were presented to him as “true”, whereas in our dataset only
about 72% of all statements are true. Our model suggests that it is more likely
that this user was consciously labelling almost all statements as true. Similarly
we found users who almost always answered “false” to the statements that were
presented. In Figure 9, the scatter plot for the mean values of u and u across all
users gives evidence for the existence of such a biased behavior. The points in
the lower-right and in the upper-left part of the plot represent users who report
statements mainly as true and false, respectively.

0.8 - L

0.6

u mean
.

04 4 .

0.2 4

[ 0.2 0.4 06 0.8 1
u mean

Fig. 9. Scatter plot of u versus u for the D2 model. Each dot represents a
user.



14 Gjergji Kasneci, Jurgen Van Gael, Ralf Herbrich, and Thore Graepel

Interestingly enough, we did not find any users who were consistently
reporting the opposite truth values compared to their peers. We would have
been able to discover this type of behavior by the D2 model. In such a case, a
good indication would be reliabilities below 50%.

The previous analysis also hints at an important assumption of our model:
only because most of our users are providing correct feedback, it is impossible for
malicious behavior to go undetected. If enough reliable users are wrong about a
statement, our model can converge on the wrong belief.

4.3 Comparison

In addition, we evaluated the D1 model on another real-world dataset that was
also used by the very recent approach presented in [38]. The authors of [38]
present three fixed-point algorithms for learning truth values of statements by
aggregating user feedback. They report results on various datasets one of which
is a sixth-grade biology test dataset. This test consists of 15 yes-no questions
which can be viewed as statements in our setting. The test was taken by 86
participants who gave a total of 1,290 answers, which we interpret as feedback
labels. For all algorithms presented in [38], the authors state that they perform
similarly to the voting baseline. The voting baseline yields a negative log score
of 8.5, whereas the D1 model yields a much better negative log score of 3.04e — 5.

5 Conclusion

We presented a Bayesian approach to the problem of knowledge corroboration
with user feedback and semantic rules. The strength of our solution lies in its
capability to jointly learn the truth values of statements and the reliabilities of
users, based on logical rules and internal belief propagation. We are currently
investigating its application to large-scale knowledge bases with hundreds of
millions of statements or more. Along this path, we are looking into more complex
logical rules and more advanced user and statement features to learn about the
background knowledge of users and the difficulty of statements. Finally, we are
exploring active learning strategies to optimally leverage user feedback in an
online fashion.

In recent years, we have witnessed an increasing involvement of users in
annotation, labeling, and other knowledge creation tasks. At the same time,
Semantic Web technologies are giving rise to large knowledge bases that could
facilitate automatic knowledge processing. The approach presented in this
paper aims to transparently evoke the desired synergy from these two powerful
trends, by laying the foundations for complex knowledge curation, search and
recommendation tasks. We hope that this work will appeal to and further benefit
from various research communities such as Al, Semantic Web, Social Web, and
many more.

6 Acknowledgments

We thank the Infer.NET team, John Guiver, Tom Minka, and John Winn for
their consistent support throughout this project.



Bayesian Knowledge Corroboration with Logical Rules and User Feedback 15

References

1. W3C: RDF Vocabulary Description Language 1.0: RDF Schema. http://www.w3.
org/TR/rdf-schema/

2. W3C: OWL Web Ontology Language. http://www.w3.org/TR/owl-features/

3. Minsky, M.: A Framework for Representing Knowledge. MIT-ATI Laboratory Memo
306, 1974. http://web.media.mit.edu/~minsky/papers/Frames/frames.html

4. Brachman, R.J., Schmolze, J.: An Overview of the KL-ONE Knowledge
Representation System. In: Cognitive Science, 9(2), 1985.

5. Baader, F., Calvanese, D., McGuinness D. L., Nardi D., Patel-Schneider, P. F.: The
Description Logic Handbook. Cambridge University Press (2003)

6. W3C SweolG: The Linking Open Data Community Project. http://esw.w3.org/
topic/SweolG/TaskForces/CommunityProjects/LinkingOpenData

7. Wolfram Alpha: A Computational Knowledge Engine. http://www.wolframalpha.
com/

8. EntityCube. http://entitycube.research.microsoft.com/

9. True Knowledge. http://www.trueknowledge.com/

10. Infer NET  http://research.microsoft.com/en-us/um/cambridge/projects/
infernet/

11. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R.,
Hellmann, S.: DBpedia: A Nucleus for a Web of Open Data. In: 6th International
Semantic Web Conference, 2nd Asian Semantic Web Conference (ISWC/ASWC
2007), pp. 722-735. Springer (2007)

12. Lehmann, J., Schiippel, J., Auer, S.: Discovering Unknown Connections - The
DBpedia Relationship Finder. In: 1st Conference on Social Semantic Web (CSSW
2007) pp. 99-110. GI (2007)

13. Suchanek, F. M., Sozio, M., Weikum, G.: SOFIE: Self-Organizing Flexible
Information Extraction. In: 18th International World Wide Web conference (WWW
2009), pp. 631-640. ACM Press (2009)

14. Suchanek, F. M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge.
In: 16th International World Wide Web Conference (WWW 2007), pp. 697-706.
ACM Press (2007)

15. Kasneci, G., Suchanek, F. M., Ifrim, G., Ramanath, M., Weikum, G.: NAGA:
Searching and Ranking Knowledge. In: 24th International Conference on Data
Engineering (ICDE 2008), pp. 953-962. IEEE (2008)

16. Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F. M., Weikum, G.: STAR:
Steiner-Tree Approximation in Relationship Graphs. In: 25th International
Conference on Data Engineering (ICDE 2009), pp. 868-879. IEEE (2009)

17. Kasneci, G., Shady, E., Weikum, G.: MING: Mining Informative Entity
Relationship Subgraphs. In: 18th ACM Conference on Information and Knowledge
Management (CIKM 2009), pp. 1653-1656. ACM Press (2009)

18. Preda, N. Kasneci, G., Suchanek, F. M., Yuan, W., Neumann, T., Weikum, G.:
Active Knowledge: Dynamically Enriching RDF Knowledge Bases by Web Services.
In:30th ACM International Conference on Management Of Data (SIGMOD 2010),
ACM Press (2010)

19. Wu, F., Weld, D. S.: Autonomously Semantifying Wikipedia. In: 16th ACM
Conference on Information and Knowledge Management (CIKM 2007), pp. 41-50.
ACM Press (2007)

20. Weld, D. S., Wu, F., Adar, E., Amershi, S., Fogarty, J., Hoffmann, R., Patel,
K., Skinner, M.: Intelligence in Wikipedia. In: 23rd AAAT Conference on Artificial
Intelligence (AAAT 2008), pp. 1609-1614. AAAI Press (2008)

21. Minka, T. P.: A Family of Algorithms for Approximate Bayesian Inference.
Massachusetts Institute of Technology (2001)

22. Poole, D.: First-Order Probabilistic Inference. In: 8th International Joint
Conference on Artificial Intelligence (IJCAT 2003), pp. 985-991, Morgan Kaufmann
(2003)



16 Gjergji Kasneci, Jurgen Van Gael, Ralf Herbrich, and Thore Graepel

23. Domingos, P., Singla, P.: Lifted First-Order Belief Propagation. In: 23rd AAAI
Conference on Artificial Intelligence (AAAI 2008), pp. 1094-1099. AAAI Press
(2008)

24. Domingos, P., Richardson, M.: Markov Logic Networks. In: Machine Learning,
62(1-2), pp. 107-136. Springer (2006)

25. Jaimovich, A., Meshi, O., Friedman, N.: Template Based Inference in Symmetric
Relational Markov Random Fields. In: 23rd Conference on Uncertainty in Artificial
Intelligence (UAI 2007), pp. 191-199. AUAI Press (2007)

26. Sen, P., Deshpande, A., Getoor, L.: PrDB: Managing and Exploiting Rich
Correlations in Probabilistic Databases. In: Journal of Very Large Databases, 18(5),
pp. 1065-1090. Springer (2009)

27. Friedman, N., Getoor, L., Koller, D., Pfeffer, A. Learning Probabilistic Relational
Models. In: 16th International Joint Conference on Artificial Intelligence (IJCAI
1999), pp. 1300-1309. Morgan Kaufman (1999)

28. Getoor, L.: Tutorial on Statistical Relational Learning. In: 15th International
Inductive Logic Programming Conference (ILP 2005), Springer (2005)

29. Da Costa, P. C. G., Ladeira, M., Carvalho, R. N., Laskey, K. B., Santos, L. L.,
Matsumoto, S.: A First-Order Bayesian Tool for Probabilistic Ontologies. In: 21st
International Florida Artificial Intelligence Research Society Conference (FLAIRS
2008), pp. 631-636. AAAT Press (2008)

30. Frey, B. J., Mackay, D. J. C.: A Revolution: Belief Propagation in Graphs with
Cycles. In: Advances in Neural Information Processing Systems 10, pp. 479-485.
MIT Press (1997)

6
31. Antova, L., Koch, C., Olteanu, D.: 1010”7 Worlds and Beyond: Efficient
Representation and Processing of Incomplete Information. In: 23rd International
Conference on Data Engineering (ICDE 2007), pp. 606—-615. IEEE (2007)
32. Dalvi, N. N., Ré, C., Suciu, D.: Probabilistic Databases: Diamonds in the Dirt. In:
Communications of ACM, 52(7), (CACM 2009), pp. 86-94. ACM Press (2009)

33. Agrawal, P., Benjelloun, O., Sarma, A. D., Hayworth, C., Nabar, S. U., Sugihara,
T., Widom, J.: Trio: A System for Data, Uncertainty, and Lineage. In: 32nd
International Conference on Very Large Data Bases (VLDB 2006), pp. 1151-1154.
ACM Press (2006)

34. Osherson, D., Vardi, M. Y.: Aggregating Disparate Estimates of Chance. In: Games
and Economic Behavior, 56(1), pp. 148-173. Elsevier (2006)

35. Jgsang, A., Marsh, S., Pope, S.: Exploring Different Types of Trust Propagation.
In: 4th International Conference on Trust Management (iTrust 2006), pp: 179-192.
Springer (2006)

36. Kelly, D., Teevan, J.: Implicit Feedback for Inferring User Preference: A
Bibliography. In: SIGIR Forum, 37(2), pp. 18-28. ACM Press (2003)

37. Horst, H. J. T.: Completeness, Decidability and Complexity of Entailment for RDF
Schema and a Semantic Extension Involving the OWL Vocabulary. In: Journal of
Web Semantics: Science, Services and Agents on the World Wide Web, 3(2-3), pp.
79-115, Elsevier (2005)

38. Galland, A., and Abiteboul, S., and Marian, A., and Senellart, P.: Corroborating
Information from Disagreeing Views. In: 3rd ACM International Conference on Web
Search and Data Mining (WSDM 2010), pp. 1041-1064, ACM Press (2010)

39. Raykar, V. C., and Yu, S., and Zhao, L. H., and Valadez, G. H., and Florin, C.,
and Bogoni, L., Moy, L.: Learning From Crowds. In: Journal of Machine Learning
Research, 11, pp. 1297-1322, MIT Press (2010)

40. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (1997)



Bayesian Knowledge Corroboration with Logical Rules and User Feedback 17

Appendix: Message Passing Operations

As we discussed in Section 3.3, we use expectation propagation for posterior
inference. We implement expectation propagation in a message passing
framework. For completeness, we describe the exact message passing operations
for the various components in our graph.

Message from Independent Fact Prior. The Bernoulli prior on a truth value
has form g (t) = 7#[t1(1 — 1)~ The only message that needs to be sent is a
message from factor g; to t. This message has the form mg, . (t) = Bernoulli(r).

Message for the User Reliabilities. The Beta prior on a user’s reliability «

%u%’l(l —u)#«~1, The only message that needs to be

sent is a message from factor go to u. This message has the form mg,_,(u) =
Beta(ay, By). Analogously, one can derive the message from go to @.

has form go(u) =

Message for the AND Factor The probabilistic model with the deduced
facts prior introduces conjunctions of random boolean variables. The expression
that corresponds to the factor t =t At is

g5(t.t, 1) = [T+ (- F1A- D+ - D A= D+t Q- A-[ZD)-

Let us denote the incomming messages as my_q4,(t) = Bernoulli(y),
My gs(t') = Bernoulli(yy) and m,;_)gs(f) = Bernoulli(yz). The outgoing
messages have the form

par g+ (1= py ) (1 = M))

Mgyt (t) = Bernoulli(ut//r R T p——
i 7

and

b+ (1= pe) (1 — pg)
m t) = Bernoulli ,
-1(1) G+ = ) (1= pp)

and

m . () = Bernoulli(ppiy).

Message for the OR Factor The probabilistic model with the deduced facts
prior introduces disjunctions of random boolean variables. The expression that
corresponds to the factor t = t; V g is

go(t1,t2, 1) = [t ] [E] [E]+ (A D DT+ [E ] (1—[E=D) [E]+ ([ ]) (- [E2D) (- [E]).-

Let us denote the incomming messages as myg . (f1) = Bernoulli(uy),
m{z*)gﬁ(l?g) = Bernoulli(uy,) and mgﬁgﬁ(f) = Bernoulli(y;). The outgoing
messages have the form

Hi )

. t~ :B 11
Mot (1) = BermonliCy g S

ge—rt1




18 Gjergji Kasneci, Jurgen Van Gael, Ralf Herbrich, and Thore Graepel

and
Mg )

-(t5) = B 11
Maoiy (f2) = Bernoulli(g = =5 S —

ge—rt2

and

mg, ,;(t) = Bernoulli(1 — (1 — pg, ) (1 — ).
6.1 Message for the 1-Parameter Feedback Model

The factor for the 1-parameter model can be written as
g3(y, t,u) = (uM(l _ u)(lfﬂyﬂ))[[t]] (u(lf[[y]])(l _ u)[[y]])(lfllt]]).

Let us denote with my_, ¢, (¢t) = Bernoulli(y;) and my_ 4, (u) = Beta(a, §) the
incomming messages for factor gs3. The outgoing messages are

Bernoulli(/(a + p)) ify=0

Mgy () = {Bernoulli(a/(a +4) ify=1 (10)

proj ﬂto%iﬂBeta(l, 2)+ (1 — pe) 555Beta(2,1)| ify=0
proj |pu 555 Beta(2,1) + (1 — ,ut)ﬁBeta(l, 2)| ify=1

(11)

Mgz —u (u =

In these equations the proj operator maps the mixture of Beta distributions
onto the closest Beta distribution. Ideally we would like the mixture and
resulting Beta distribution to be close in terms of KL divergence, however for
computational reasons it is often simpler to find the Beta distribution to match
the moments of the mixture.

6.2 Message for the 2-Parameter Feedback Model
The factor for the 2-parameter model can be written as
ga(y, tu, ) = (ull(1 — o)D) I (O =TvD (1 — )l -ID)

Let us denote with my4,(t) = Bernoulli(y) and my_g,(u) =

Beta(a, 8), ma— g4, () = Beta(@, §) the incomming messages for factor g4. The
outgoing messages are

] a(@+B)y i —
m (1) = Bernoulli(1 + 3 a+ﬁ)) ify=0 (12)
git Bernoulli(1 + &2ty iy =1
Ba+s)) YT
proj (uBeta(1,2) + (1 — ) 755 Beta(1,1)| ify =0
Mg, —u(u) = (13)
proj |u:Beta(2,1) 4+ (1 — ut)aLWBeta(l, 1 ify=1

Again, in these equations the proj operator maps the mixture of Beta
distributions onto the closest Beta distribution as described above. Using a
symmetry argument one can derive that the messages for mgy, 5 (@) are the
same up to a swap of y; and 1 — py.



