Nectar: Automatic Management of Data and Computation in Data Centers

Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath, Yuan Yu, and Li Zhuang

Microsoft Research Silicon Valley

Abstract

Managing data and computation is at the heart of data
center computing. Manual management of data can lead
to data loss, wasteful consumption of storage, and labo-
rious bookkeeping. Lack of proper management of com-
putation can result in lost opportunities to share common
computations across multiple jobs or to compute results
incrementally.

Nectar is a system designed to address all the afore-
mentioned problems. Nectar uses a novel approach that
automates and unifies the management of data and com-
putation in a data center. With Nectar, the results of a
computation, called derived datasets, are uniquely iden-
tified by the program that computes it, and together with
the program are automatically managed by a data cen-
ter wide caching service. All computations and uses of
derived datasets are controlled by the system. The sys-
tem automatically regenerates a derived dataset from its
program if it is determined missing. Nectar greatly im-
proves data center management and resource utilization:
obsolete or infrequently used derived datasets are auto-
matically garbage collected, and shared common com-
putations are computed only once and reused by others.

This paper describes the design and implementation
of Nectar, and reports our evaluation of the system using
both analysis of actual logs from a number of production
clusters and an actual deployment on a 240-node cluster.

1 Introduction

Recent advances in distributed execution engines (Map-
Reduce [10], Dryad [16], and Hadoop [1]) and high-level
language support (Sawzall [22], Pig [21], BOOM [6],
HIVE [2], SCOPE [9], DryadLINQ [26]) have greatly
simplified the development of large-scale, data-intensive,
distributed applications. However, major challenges still
remain in realizing the full potential of data-intensive
distributed computing within data centers. In current

1

0.9 -

0.8 -

0.7 +

0.6 -

CDF

0.5 -

04

03 -

0.2 -

0.1 +

0

0 100 200 300 400 500 600 700
Last access (days before)

Figure 1: CDF of last access time versus amount of data
in a 240-node cluster.

practice, a large fraction of computations in a data center
are redundant and many datasets are obsolete or seldom
used, wasting vast amounts of resources in a data center.

As one example, we quantified the wastage storage
in our 240-node experimental Dryad/DryadL.INQ clus-
ter. We crawled this cluster and noted the last access time
for each data file. Figure 1 shows the CDF of access time
versus the amount of data. Notice that around 50% of the
files are not accessed in the last 250 days.

As another example, we examined the execution statis-
tics of 25 production clusters running data-parallel ap-
plications. We estimated that, on one such cluster, over
7000 hours of redundant computation can be eliminated
per day by caching intermediate results. (This is approx-
imately equivalent to shutting off 300 machines daily.)
Cumulatively, over all clusters, this figure is over 35,000
hours per day.

Many of the resource issues in a data center arise due
to lack of efficient management of either data or compu-
tation, or both. This paper describes Nectar: a system
that manages the execution environment of a data center
and is designed to address these problems.

Computations running on a Nectar-managed data cen-

ter are specified as programs in LINQ [3]. LINQ com-
prises a set of operators to manipulate datasets of .NET
objects. These operators are integrated into high level
.NET programming languages (e.g., C#), giving pro-
grammers direct access to .NET libraries as well tradi-
tional language constructs such as loops, classes, and
modules. The datasets manipulated by LINQ can contain
any .NET type, making it easy to compute with complex
data such as vectors, matrices, and images. All of these
operators are functional: they transform input datasets to
new output datasets.

Data stored in a Nectar-managed data center falls in
one of two classes: primary or derived. Primary datasets
are created once and accessed many times. Derived
datasets are the results produced by computations run-
ning on primary and other derived datasets. Examples of
typical primary datasets in our data centers are click and
query logs. Examples of typical derived datasets are the
results of thousands of computations on those click and
query logs.

In a Nectar-managed data center, all access to a de-
rived dataset is mediated by Nectar. At the lowest level
of the system, a derived dataset is referenced by the
LINQ program fragment or expression that produced it.
Programmers refer to derived datasets with simple path-
names that contain a simple indirection (much like a
UNIX symbolic link) to the actual LINQ programs that
produce them. Primary datasets are referenced by con-
ventional pathnames.

A Nectar-managed data center offers the following
four advantages.

1. Efficient space utilization. Nectar implements a
cache server that manages the storage, retrieval, and
eviction of the results of all computations (i.e., de-
rived datasets). As well, Nectar retains the de-
scription of the computation that produced a de-
rived dataset. Since programmers do not directly
manage datasets, Nectar has considerable latitude
in optimizing space: it can remove unused or in-
frequently used derived datasets and recreate them
on demand by rerunning the computation. This is a
classic tradeoff of storage and computation.

2. Reuse of shared sub-computations. Many applica-
tions running in the same data center share com-
mon sub-computations. Since Nectar automatically
caches the results of sub-computations, they will be
computed only once and reused by others. This sig-
nificantly reduces redundant computations, result-
ing in better resource utilization.

3. Incremental computations. Many data center ap-
plications repeat the same computation on a slid-
ing window of an incrementally augmented dataset.

Again, caching in Nectar enables us to reuse the re-
sults of old data and only compute incrementally for
the newly arriving data.

4. Ease of content management. With derived datasets
uniquely named by LINQ expressions, and auto-
matically managed by Nectar, there is little need for
developers to manage their data manually. In par-
ticular, they don’t have to be concerned about re-
membering the location of the data. Executing the
LINQ expression that produced the data is sufficient
to access the data, and incurs negligible overhead in
almost all cases because of caching. This is a signif-
icant advantage because most data center applica-
tions consume a large amount of data from diverse
locations and keeping track of the requisite filepath
information is often a source of bugs.

Our experiments shows that Nectar, on average, could
improve space utilization by at least 50%. As well, in-
cremental and sub-computations managed by Nectar pro-
vide an average speed up of 30% for the programs run-
ning on our clusters. We provide a detailed quantitative
evaluation of the first three benefits in Section 4. We have
not done a detailed user study to quantify the fourth ben-
efit, but the uniformly positive feedback from our users
from our initial deployment suggests there is evidence to
support our claim.

The idea of using a computational interface to describe
and access data has its roots in SQL, which is ubiqui-
tous in using queries to access database tables. Nectar
takes this idea further to treat data and computation in-
terchangably by maintaining the dependency of data and
programs. It generalizes to the distributed, data center
setting and handles arbitrarily complex user defined pro-
grams. Some of our ideas such as reusing results of sub-
computations and caching the results of previous com-
putations are also reminiscent of earlier work in incre-
mental database maintenance [8], version management
systems [14], and functional caching [24, 15]. Section 5
provides a more detailed analysis of our work in relation
to prior research.

This paper makes the following contributions to the
literature:

e We propose a novel and promising approach that
automates and unifies the management of data in a
data center, leading to substantial improvements in
data center resource utilization.

e We present the design and implemention of our sys-
tem, including a sophisticated program rewriter and
static program dependency analyzer.

e We present a systematic analysis of the performance
of our system from a real deployment on 240-nodes
as well as analytical measurements.

The rest of this paper is organized as follows. Sec-
tion 2 provides a high-level overview of the Nectar sys-
tem. Section 3 describes the implementation of the sys-
tem. Section 4 evaluates the system using real work-
loads. Section 5 covers related work and Section 6 dis-
cusses future work and concludes the paper.

2 System Design Overview

The overall Nectar architecture is shown in Figure 2.
Nectar consists of a client-side component that runs on
the programmer’s desktop, and two services running on
the data center.

Nectar is completely transparent to user programs. It
uses the facilities of Dryad and DryadLINQ to manage
the distribution, scheduling, and execution of the LINQ
programs. Nectar takes a DryadLINQ program as input,
and consults the cache service to rewrite it to an equiva-
lent, more efficient program. It then hands the resulting
program to DryadLINQ which futher compiles it into a
Dryad computation running in the cluster. At run time,
a Dryad job is a directed acyclic graph where vertices
are programs and edges represent data channels. Vertices
communicate with each other through the data channels.

Nectar makes certain assumptions about the underly-
ing storage system. The input and output of a Dryad-
LINQ program are expected to be streams. A stream
consists of an ordered sequence of extents and each ex-
tent stores a sequence of object of some data type. We
require that streams be append-only, meaning that new
contents are added by either appending to the last extent
or adding a new extent. The metadata of a stream con-
tains Rabin fingerprints [7] of the entire stream and its
extents. We use an in-house fault-tolerant, distributed file
system called TidyFS that supports the necessary func-
tionality. TidyFS, Dryad, and DryadLINQ are described
in detail elsewhere [4, 16, 26] and won’t be discussed
further in this paper.

Nectar maintains and manages two namespaces in
TidyFS. The program store keeps all DryadLINQ pro-
grams that have ever executed successfully. The data
store is used to store all derived streams generated by
DryadLINQ programs. The Nectar cache server provides
cache hits to the program rewriter on the client side. Any
stream in the data store that is not referenced by any
cache entry is deemed to be garbage and deleted perma-
nently by the Nectar garbage collector. Programs in the
program store are never deleted and are used to recreate
a deleted derived stream if it is needed in the future.

2.1 Client-Side Library

On the client side, Nectar takes advantage of cached re-
sults from the cache to rewrite a program P to an equiv-

DryadLINQ Program

P

Nectar Client-Side Library Nectar Cluster-Wide Services

i Lookup
Program Rewriter f——I—4 Cache Server
] Hits

P’ o
S

J 7t

| DryadLINQ/Dryad]

Garbage Collector

Nectar Program Store | Distributed FS

Figure 2: Nectar architecture. The system consists of
a client-side library and cluster-wide service that runs
in the data center. Nectar relies on the services of
DryadLINQ/Dryad and TidyFS, a distributed file system.

alent, more efficient program P’. It automatically inserts
AddEntry calls at appropriate places in the program so
new cache entries can be created when P’ is executed.
The AddEntry calls are compiled into Dryad vertices that
create new cache entries at runtime. We summarize the
three main client-side components below.

Cache Key Calculation

A computation is uniquely identified by its program and
inputs. We therefore use the Rabin fingerprint [7] of the
program and the input datasets as the cache key for a
computation. The input datasets are stored in TidyFS
and their fingerprints are calculated based on the actual
stream contents. Nectar calculates the fingerprint of the
program and combines it with the fingerprints of the in-
put datasets to form the cache key.

The fingerprint of a DryadLINQ program must be able
to detect any changes to the code the program depends
on. However, the fingerprint should not change when
code the program does not depend on changes. This
is crucial for the correctness and practicality of Nectar.
(Fingerprints can collide but the probability of a colli-
sion can be made vanishingly small by choosing long
enough fingerprints.) We implement a static dependency
analyzer to compute the transitive closure of all the code
that can be reached from the program. The fingerprint
is then formed using all the reachable code. Of course,
our analyzer only produces an over-approximation of the
true depdendency.

Rewriter

Nectar rewrites user programs to use cached results
where possible. Specifically, we support the following
three rewriting scenarios that arise in practice.

Common sub-expressions. Internally, a DryadLINQ
program is represented as a LINQ expression tree. Nec-
tar treats all prefix sub-expressions of the expression tree
as candidates for caching and looks up in the cache for
possible cache hits for every prefix sub-expression.

Incremental query plans. Incremental computation on
datasets is a common occurence in data intensive com-
puting. Typically, a user has run a program P on input
D. Now, he is about to compute P on input D + D’, the
concatenation of D and D’. The Nectar rewriter finds a
new operator to combine the results of computing on the
old input and the new input separately. That is, it finds an
operator C such that P(D + D’) = C(P(D), D). Nec-
tar automatically derives C' for most operators in LINQ.

Incremental query plans for sliding windows. This is
the case where data is appended to the end of the input
of a repeated computation while the beginning of the in-
put is excluded from the computation. That is, the same
program is repeatedly run on the following sequence of
inputs:

Dy =di+do+ ...+ dp,
Dy =dy+d3+...+dpya,
Dy = ds +dy + .. + do 1o,

Nectar automatically generates cache entries for each in-
dividual dataset d;, and uses them in subsequent compu-
tations.

In the real world, a program may belong to more than
one category above. For example, an application that an-
alyzes logs of the past seven days is rewritten as an in-
cremental computation by Nectar, but Nectar may use
sub-expression results of log preprocessing on each day
from other applications.

Cost Estimator

An expression might hit different entries in the cache
server with different sub-expressions and/or partial in-
put datasets. So there are typically multiple alternatives
to choose from in rewriting a DryadLINQ program. The
rewriter uses a cost estimator to choose an optimal one
from multiple alternatives.

Comparing the cost of two candidates is not always
straightforward. For example, it is hard to determine if
a shorter prefix with a larger input dataset is better than
a longer prefix with a smaller input dataset. Nectar es-
timates the cost of alternative candidates generated by
rewriter using execution statistics collected and saved in
the cache server from past executions. We discuss the
details of the cost estimation in Section 3.1.

2.2 Datacenter-Wide Service

The datacenter-wide service in Nectar comprises two
separate components: the cache service and the garbage
collection service. The actual datasets are stored in
the distributed storage system and the datacenter-wide
services manipulate the actual datasets by maintaining
pointers to them.

Cache Service

Nectar implements a distributed datacenter-wide cache
service for bookkeeping information about DryadLINQ
programs and the location of their results. The cache ser-
vice has two main functionalities: (1) serving the cache
lookup requests by the Nectar rewriter; and (2) managing
derived datasets by deleting the cache entries of the least
value.

Programs of all successful computations are uploaded
to a dedicated program store in the cluster. Thus, the
service has the necessary information about cached re-
sults, meaning that it has a recipe to recreate any de-
rived dataset in the data center. When a derived dataset
is deleted but needed in the future, Nectar recreates it us-
ing the program that produced it. If the inputs to that
program have themselves been deleted, it backtracks re-
cursively till it hits the immutable primary datasets or
cached derived datasets. Because of this ability to recre-
ate datasets, the cache server can make informed deci-
sions to implement a cache replacement policy, keeping
the cached results that yield the most hits and deleting
the cached results of the least value when storage space
is low.

Garbage collector

The Nectar garbage collector operates transparently to
the users of the cluster. Its main job is to identify datasets
unreachable from any cache entry and delete them. We
use a standard mark-and-sweep collector. Actual content
deletion is done in the background without interfering
with the concurrent activities of the cache server and job
executions. To avoid the races with concurrent creation
of new deriveds, we use a lease to protect newly created
derived datasets.

3 Implementation Details

This section presents the implementation details of Nec-
tar. We focus on the most important aspects of the sys-
tem. Section 3.1 describes how computation caching is
achieved. Section 3.2 discribes how the derived datasets
are managed automatically.

3.1 Caching Computations

Nectar rewrites a DryadLINQ program to an equivalent
but more efficient one using cached results. This gen-
erally involves: 1) identifying all sub-expressions of the
expression, 2) probing the cache server for all cache hits
for the sub-expressions, 3) using the cache hits to rewrite
it into a set of equivalent expressions, and 4) choosing
one that gives us the maximum benefit based on some
cost estimation.

Cache and Programs

A cache entry records the result of executing a program
on some given input. It is of the form:

(FPpp, FPp, Result, Statistics, F PList)

Here, F'Ppp is the combined fingerprint of the pro-
gram and its input datasets, F'Pp is the fingerprint of the
program only, Result is the location of the output, and
Statistics contains execution and usage information of
this entry. The last field F'P List contains a list of finger-
print pairs each representing the fingerprints of the first
and last extents of an input dataset. As we shall see later,
it is used by the rewriter to efficiently search the solution
space. Since the same program could be executed on dif-
ferent inputs, there can be multiple cache entries with the
same F'Pp.

We use F'Ppp as the primary key. So our caching is
sound only if F'Ppp can uniquely determine the result of
the computation. The fingerprint of the inputs is based on
the actual content of the datasets. For a large dataset, the
fingerprint is formed by combining the fingerprints of its
extents which are efficiently computed in parallel in the
data center.

The computation of the program fingerprint is tricky,
as the program may contain user-defined functions that
call into library code. We implemented a static de-
pendency analyzer to capture all the dependency of an
expression. At the time a DryadLINQ program is in-
voked, DryadLINQ knows all the dynamic linked li-
braries (DLLs) it depends on. We divide them into two
categories: system and application. For a system DLL,
we assume it is available and identical on all cluster ma-
chines and therefore is not included in the dependency.
For an application DLL that is written in native code
(e.g., C or assembler), we include the entire DLL as a
dependency. For an application DLL that is in managed
code (e.g., C#), our analyzer traverses the call graph to
compute all the code reachable from the initial expres-
sion.

The analyzer works at the bytecode level. It uses stan-
dard .NET reflection to get the body of a method, finds
all the methods being called in the body, and traverses to

those methods recursively. When a virtual method call is
encountered, we include all the possible call sites. While
our analysis is certainly a conservative approximation of
the true dependency, it is quite precise and works well in
practice. Since dynamic code generation could introduce
unsoundness into the analysis, it is forbidden in managed
application DLLs, and is statically enforced by the ana-
lyzer.

The statistics information kept in the cache entry is
used by the rewriter to find an optimal execution plan. It
is also used to implement the cache insertion and eviction
policy. It contains information such as the cumulative ex-
ecution time, the number of hits on this entry, and the last
access time. The cumulative execution time is defined as
the sum of the execution time of upstream Dryad vertices
of the current execution stage. It is computed at the time
of the cache entry insertion using Dryad logging infor-
mation.

The cache server supports a very simple client
interface. = The important operations include: (1)
Lookup (fp) finds and returns the cache entry for
the given primary key fp; (2) Inquire (fp) returns
all cache entries that have fp as their F'Pp; and (3)
AddEntry inserts a new cache entry. Note that the ar-
gument of Lookup is F'Ppp. We will see their use in
the following sections.

The Rewriting Algorithm

Having explained the structure and interface of the cache,
let us now look at how Nectar rewrites a program.

For a given expression, we may get cache hits on
any possible sub-expression and subset of the input
dataset, and considering all of them in the rewriting
is not tractable. We therefore only consider cache
hits on prefix sub-expression on segments of the input
dataset. More concretely, consider a simple example
D.Where (P) .Select (F). The Where operator ap-
plies a filter to the input dataset D, and the Select
operator applies a transformation to each item in the
input. Let us assume that the input D has n extents.
We will only consider cache hits for the sub-expressions
S.Where (P) and S.Where (P) . Select (F) forall
subsequence of extents in D.

Our rewriting algorithm is a simple recursive proce-
dure. We start from the largest prefix sub-expression, the
root of the expression. Below is an outline of the algo-
rithm:

Step 1. At each sub-expression, we probe the cache ser-
ver to obtain all the possible hits on it. There can be
multiple hits on different subsequences of the input D.
Let us denote the set of hits by H.

Step 2. If there is a hit on the entire D, we just use that
hit and stop exploring its sub-expressions, because it

gives us the most saving in terms of cumulative exe-
cution time. Otherwise, we compute the best hit for
the current expression using smaller prefixes, and then
choose the best among it and H. To do that, we re-
cursively apply our procedure on each successor of the
current expression and find the best hits for all of them,
which is combined to form the candidate solution.

Step 3. Now, there are | H|+ 1 candidates to rewrite the
current expression: The | H | hits from Step 1 and a new
one by combining all the hits of the smaller prefixes
from Step 2. Our job now is to choose a subset of it
such that they operate on disjoint subsequence of D and
give us the most saving in terms of cumulative execu-
tion time. This boils down to the well-known problem
of computing the maximum independent sets of an in-
terval graph, which has a known efficient solution using
dynamic programming techniques [11].

In Step 1, the rewriter calls Inquire to compute .
As described before, Inquire returns all the possible
cache hits of the program with different inputs. A real hit
means that its input dataset is identical to a subsequence
of extents of D. A bruteforce search is inefficient and re-
quires to check every subsequence. As an optimization,
we store in the cache entry the fingerprints of the first and
last extents of the input dataset. With that information,
we can compute H in linear time.

The main step of rewriting a program P on incremen-
tal data is to derive a combining operator C' such that
P(D+ D)= C(P(D),D’), where C' combines the re-
sults of applying P separately on the datasets D and D’.
Nectar supports all the LINQ operators DryadLINQ sup-
ports.

The combining functions for some LINQ opera-
tors require the parallel merging of multiple streams,
and are not directly supported by DryadLINQ. We
introduced three combining functions MergeSort,
HashMergeGroups, and SortMergeGroups,
which are straightforward to implement using Dryad-
LINQ’s Apply operator [26]. MergeSort takes
multiple sorted input streams, and merge sorts them.
HashMergeGroups and SortMergeGroups take multiple
input streams and merge groups of the same key from
the input streams. If all the input streams are sorted,
Nectar chooses to use SortMergeGroups, which is
streaming and more efficient. Otherwise, Nectar uses
HashMergeGroups. We give an example later in this
section.

Cache Insertion Policy

We consider every prefix sub-expression of an expres-
sion to be a candidate for caching. Adding a cache entry
incurs additional cost if the entry is not useful. It requires
us to store the result of the computation on disk (instead

of possibly pipelining the result to the next stage), incur-
ring the additional disk IO and space overhead. Obvi-
ously it is not practical to cache everything. Nectar im-
plements a simple strategy to determine what to cache.

First of all, Nectar always creates a cache entry for
the final result of a computation as we get it for free: it
does not involve a break of the computation pipeline and
incurs no extra IO and space overhead.

For sub-expression candidates, we wish to cache them
only when they are predicted to be useful in the future.
However, determining the potential usefulness of a cache
entry is generally difficult. So we base our cache in-
sertion policy on some simple, intuitive heuristics. The
caching decision is made in the following two phases.

First, when the rewriter rewrites the expression, it de-
cides on the places in the expression to insert AddEntry
calls. This is done using the usage statistics maintained
by the cache server. The cache server keeps some simple
statistics for a sub-expression based on request history
from clients. In particular, it records (1) the number of
times it has been looked up, and (2) the number of times
we have got cache hits on this expression. (There can
be multiple cache entries for the same expression with
different inputs.) On response to a cache lookup, these
two numbers are included in the return value. We insert
an AddEntry call only when both the number of lookups
and cache hits exceed pre-defined thresholds.

Second, the decision made by the rewriter may still be
wrong because of the lack of information about the sav-
ing of the computation. Information such as execution
time and disk consumption are only available at run time.
So the final insertion decision is made based on the run-
time information of the execution of the sub-expression.
Currently, it is a simple benefit function that is propor-
tional to the execution time and inversely proportional
to storage overhead. We add the cache entry when the
benefit exceeds a threshold.

We also make our cache insertion policy adaptive to
storage space pressure. When there is no pressure, we
choose to cache more aggressively as long as it saves ma-
chine time. This strategy could increase the useless cache
entries in the cache. But it is not a problem because it is
addressed by Nectar’s garbage collection, which we will
discuss in more detail in Section 3.2.

Example: GroupBy-Select

GroupBy-Select performs a MapReduce-type job and is
one of the most important computation patterns for data-
parallel computation. We now use it as a concrete exam-
ple to illustrate Nectar caching.

GroupBy-Select is expressed in DryadLINQ as fol-
lows:

var groups = source.GroupBy (KeySelect);

var reduced = groups.Select (Reduce);

The input of GroupBy is a sequence of records. It
first groups the records into groups using the keys com-
puted by the function keySelect, and then applies
the reduction function Reduce to each group. In a
distributed setting, GroupBy first partitions the records
based on their keys across a cluster of machines, and then
forms the groups and applies Reduce to each group in-
dependently on each partition in parallel.

MergeGroup

AddEntry N\

—(Gosd)

AddEntry N
(R)

Rewritten
Figure 3: Rewriting of GroupBy(D+D1)

Let us look at the interesting case of incremental com-
putation. Figure 3 shows the rewriting of GroupBy-
Select in the presence of caching. Let us assume we have
performed the same computation on input D and added
a cache entry for the result of GroupBy. So when we
encounter the same computation with input D + D1, the
Nectar rewriter would get a cache hit on Gp. So it only
needs to perform GroupBy on D; and merge with G p
to form new groups. We compute GroupBy on D; the
same way as G p, generating the same number of par-
titions with the same partition scheme. We then do a
pairwise merge with Gp to construct the result dataset
Gp+Dp, - This allows the system to reuse the partitioning
and ordering properties of Gp for Gpyp,. We always
create a cache entry for the final result. It is also impor-
tant to create a cache entry for the new groups (G p+p,),
because it will be useful when the same computation is
performed on Gpy p, +p, in the future.

Similar to MapReduce’s combiner optimization [10],
DryadLINQ can decompose Reduce into the compo-
sition of two associatve and commutative functions if
Reduce is determined to be decomposable. We handle
this by first applying the decomposition as in [25] and
then the caching and rewriting as described above.

3.2 Managing Derived Data

Derived datasets can take up a significant amount of stor-
age space in a data center, and a large portion of it could

be unused or seldom used. Nectar keeps track of the us-
age statistics of all derived datasets and deletes the ones
of the least value. Recall that Nectar permanently stores
the program of every derived dataset so that a deleted de-
rived can be recreated by re-running its program.

Data Store for Derived Data

As mentioned before, Nectar stores all derived datasets
in a data store inside a distributed, fault-tolerand file sys-
tem. The actual location of a derived dataset is com-
pletely opaque to programmers. Accessing an existing
derived dataset must go through the cache server. We ex-
pose a simple, standard file interface with one important
restriction: New derived datasets can only be created as
results of computations.
P = q.ToTable(“lenin/foo.pt”)

DryadLINQ/Dryad

Reference Pointer
\

%
&y
lenin/foo.pt
FP(P) Distributed FS

I

v
A31E4.pt
Actual data

Nectar Data Store

Figure 4: The creation of a derived dataset. The actual
dataset is stored in the Nectar data store. The user file
contains only the primary key of the cache entry associ-
ated with the derived.

Our scheme to achieve this is quite simple. Figure 4
shows the flow of creating a derived dataset by a com-
putation and the relationship between the user file and
the actual derived dataset. In the Figure, P is a user pro-
gram that writes its output to lenin/foo.pt. After
applying tranformations by Nectar and DryadLINQ, it is
executed in the data center by Dryad. When the execu-
tion succeeds, the actual derived dataset is stored in the
data store with a unique name generated by Nectar. A
cache entry is created with the fingerprint of the program
(FP (P)) as the primary key and the unique name as a
field. The content of 1lenin/foo.pt just contains the
primary key of the cache entry.

To access lenin/foo.pt, Nectar simply uses
FP (P) to look up the cache to obtain the location of
the actual derived dataset (A31E4 . pt). The fact that all
accesses go through the cache server allows us to keep
track of the usage history of every derived dataset and
to implement automatic garbage collection for deriveds
based on their usage history.

Garbage Collection

When the available disk space falls below a threshold,
the system automatically deletes the derived datasets that
are considered to be least useful in the future. This is
achieved by a combination of the Nectar cache server and
garbage collector.

A derived dataset is protected from garbage collection
if it is referenced in any cache entry. So, the first step is
to inform the cache server to delete cache entries that it
determines to have the least value. The datasets referred
to by these deleted cache entries will then be considered
garbage and collected by the Nectar garbage collector.

The information we store in the cache entries allows
us to make informed decisions on the usefulness of the
cache entries. Our eviction policy is based on the cost-fo-
benefit ratio. Suppose S is the size of the derived dataset
referred to by a cache entry and AT is the time interval
between now and the time it was last used. Let us also
assume that /V is the number of times the cache entry is
used and M is the cumulative machine time of the com-
putation that created this cache entry. The cost-to-benefit
ratio of a cache entry is then defined as

Ratio = (S x AT)/(N x M)

When a garbage collection is triggered, Nectar scans
the entire cache, computing the cost-to-benefit ratio for
each cache entry. It then sorts the cache entries accord-
ing to the ratios and deletes the top n entries such that
the collective space saving reaches a pre-defined thresh-
old. This entire operation is done in the background, con-
currently with any other cache server operations. Since
we don’t have enough information to compute a use-
ful cost/benefit ratio for them, we exclude newly created
cache entries to give them a chance to demonstrate their
usefulness. A lease on each cache entry prevents its dele-
tion until the lease expires.

When the cache server completes its eviction of cache
entries, the garbage collector starts to delete all derived
datasets that are not protected by any existing cache en-
try. We use a simple mark-and-sweep collector. Again,
this is done in the background, concurrently with any
other activities in the system.

Operations such as a Dryad job can run currently with
the garbage collector and create new cache entries and
derived datasets. Derived datasets pointed to by cache
entries (freshly created or otherwise) are not candidates
for garbage collection. Notice however that freshly cre-
ated derived datasets, which due to concurrency may
not yet have a cache entry, also need to protected from
garbage collection. We do this with a lease on the dataset.

With these leases in place, garbage collection is quite
straightforward. We first compute the set of all derived
datasets (ignoring the ones with unexpired leases) in our

data store, exclude from it the set of all derived datasets
referenced by cache entries, and treat the remaining as
garbage.

Our garbage collection and cache eviction could mis-
takenly delete datasets that are subsequently requested,
but these can be recreated by rexecuting the appropriate
program(s) from the program store.

Programs are stored in binary form in the program
store. A program is a Dryad job that is ready to submit
to the data center for execution. In particular, it includes
the execution plan and all the application DLLs. We ex-
clude all system DLLs, assuming that they are available
on the data center machines. For a typical data center that
runs 1000 jobs daily, our experience suggests it would
take less than 1TB to store one year’s program in un-
compressed form. With compression, it should take up
roughly a few hundreds of gigabytes of disk space, which
is negligible even for a small sized data center.

4 Experimental Evaluation

We evaluate Nectar running on our 240-node research
cluster. We also present the results from our analysis of
detailed execution logs from 25 large production clusters
that run data-intensive parallel jobs similar to the ones on
our research cluster. We first present our analytic results.

4.1 Production Clusters

We use logs from 25 different clusters to evaluate the use-
fulness of Nectar. The logs consists of detailed execution
statistics for jobs in these clusters for a recent 3-month
period. Across these clusters, 33182 jobs were executed
in the given period. For each job in a cluster, the log
has the source program and detailed execution statistics
such as computation time, bytes read and written and the
actual time taken for every stage in a job. The log also
gives information on the submission time, start time, end
time, user information, and job status.

Programs from the production cluster work with mas-
sive datasets such as click logs and search logs. Pro-
grams are written in a language similar to DryadLinq in
that each program is a sequence of SQL-like queries. A
program is compiled into an expression tree with various
stages and modeled as a DAG with vertices representing
processes and edges representing data flows. The DAGs
are executed on a Dryad cluster, just as in Nectar man-
aged Dryad/DryadLLINQ cluster. Input data in these clus-
ters is stored as append-only streams. Most data streams
are partitioned into stream sets based on date.

4.1.1 Benefits from Caching

We parse the execution logs to recreate a set of DAGs,
one for each job. The root of the DAG represents the

input to the job and a path through the DAG starting at
the root represents a partial (i.e., a sub-) computation of
the job. Two paths from different DAGs that are identical
represents an opportunity to save part of the computation
time of the later job by caching results from the first.We
simulate the effect of Nectar’s caching on these DAGs to
estimate both sub-computation and incremental/sliding
window cache hits.

Our results show that 20% to 65% jobs in a cluster
benefits from caching. In fact, 30% of the jobs in 17
clusters had a cache hit, and on an average more than
35% of the jobs benefited from caching.

The log contains detailed computation time informa-
tion for each node in the DAG for a job. When there is a
cache hit on a sub-computation of a job, we can therefore
calculate the time saved by the cache hit.

Figure 5 shows that significant percentage of computa-
tion time can be saved in each cluster with Nectar. Most
clusters can save a minimum of 20% to 40% of computa-
tion time and in some clusters the savings are up to 50%.

0.7 4

o ° =3
I n o

Fraction of computation time saved
o
w

oo

NNNNNNN

o o
o - N}

Cl |——

C2 e —

C3 —

C4 ——

C5 I ——

C6 I—

C7 e —

C8 I—

CO ——

Figure 5: Fraction of compute time saved in each cluster

Table 1 shows the minimum hours of computation
time that can be saved per day in each cluster. These
numbers show significant savings, for instance, a mini-
mum of 7143 hours of computation per day can be saved
using Nectar in Cluster C5. This is roughly equivalent to
saying that about 300 machines in that cluster were doing
wasteful computations all day that caching could elimi-
nate. Across all 25 clusters, 35078 hours of computation
per day can be saved.

4.1.2 Ease of Program Development

Our analysis of the caching accounted for both sub-
computation as well as incremental/sliding window hits.
We noticed that, the percentage of sliding window hits in
some production clusters was minimal (under 5%). We
investigated this further and noticed that many program-
mers explicitly structure their programs so that they can

Computation Computation
Cluster | Time Savings | Cluster | Time Savings
(hours/day) (hours/day)

Cl 3898 Cl4 753

C2 2276 C15 755

C3 977 C16 2259

C4 1345 C17 3385

C5 7143 C18 528

C6 62 C19 4

C7 57 C20 415

C8 590 C21 606

C9 763 C22 2002

C10 2457 C23 1316

C11 1924 C24 291

C12 368 C25 58

C13 105

Table 1: Minimum Computation Time Savings

reuse a previous computation. This somewhat artificial
structure makes their programs cumbersome, which can
be alleviated by using Nectar.

There are anecdotes of system administrators manu-
ally running a common sub-expression on the daily input
and explicitly notifying programmers to avoid each pro-
gram performing the computation on its own and tying
up cluster resources. Nectar automatically supports in-
cremental computation and programmers do not need to
code them explicitly. As discussed in Section 2, Nectar
tries to produce the best possible query plan using the
cached results significantly reducing computation time,
at the same time making it opaque to the user.

An unanticipated benefit of Nectar reported by our
users on the research cluster was that it aids in debug-
ging during program development. Programmers incre-
mentally test and debug pieces of their code. With Nectar
the debugging time significantly improved due to cache
hits. We therefore try to quantify the effect of this on
the production clusters. We assumed that a program is a
debugged version of another program if they had almost
the same queries accessing the same source streams and
writing the same derived streams, submitted by the same
user and had the same program name.

Table 2 shows the amount of debugging time that can
be saved by Nectar in the 90 day period. We present
results for the first 12 clusters due to space constraints.
Again, these are conservative estimates but shows sub-
stantial savings. For instance, in Cluster C1, a minimum
of 3 hours of debugging time can be saved per day. No-
tice that this is real elapsed time, i.e., each day 3 hours of
computation on the cluster spent on debugging programs
can be avoided with Nectar.

Debugging Time Debugging Time
Cluster Saved (hours) Cluster Saved (hours)

C1 270 C7 3

Cc2 211 C8 35
C3 24 9 84
Cc4 101 C10 183
C5 94 Cl1 121
Cc6 8 Cl12 49

Table 2: Actual elapsed time saved on debugging in 90
days.

4.1.3 Managing Storage

Today, in data centers, storage is manually managed.'
We studied storage in our 240-node research cluster that
has been used by a significant number of users over the
last 2 to 3 years. As we pointed out in Section 1, we
crawled this 240-node cluster for derived objects and
noted their last access times. 109 TB of derived datasets
were created in the last 2 years. Figure 1 shows the
CDF of the amount of derived data and their access time.
As we see, about 50% of the data (54.5 TB) was never
accessed in the last 250 days. This shows that users
often create derived datasets and after a point, forget
about them, leaving them occupying unnecessary storage
space.

We analyzed the production logs for the amount of de-
rived datasets written. When calculating the storage oc-
cupied by these datasets, we assumed that if a new job
writes to the same dataset as an old job, the dataset is
overwritten. Figure 6 shows the growth of derived data
storage in cluster C1. It show an approximatley linear
growth with the total storage occupied by datasets cre-
ated in 90 days being 670 TB.

Cluster | Projected unreferenced
derived data (in TB)
Cl1 2712
C5 368
C8 863
C13 995
C15 210

Table 3: Projected unreferenced data in 5 production
clusters

Assuming that the trend on data access times in our
local cluster is similar on the production cluster, Table 3
shows the projected space occupied by unreferenced de-
rived datasets in 5 production clusters that showed linear

'Nectar’s motivation in automatically managing storage partly
stems from the fact that we used to get periodic e-mail messages from
the administrators of the production clusters requesting us to delete our
derived objects to ease storage pressure in the cluster.

10

Storage occupied by derived datasets

40 60 80

Day

Figure 6: Growth of storage occupied by derived datasets
in Cluster C1

growth of data similar to cluster C1. Any object that has
not been referenced in 250 days is deemed unreferenced.
This result is obtained by extrapolating the amount of
data written by jobs in 90 days to 2 years based on the
storage growth curve and predicting that 50% of that
storage is not accessed in the last 250 days (based on
the result from our local cluster). As we see, production
clusters create large amount of derived datasets and if not
properly managed can create significant storage pressure.

4.2 System Deployment Experience

Each machine in our 240-node research cluster has two
dual-core 2.6GHz AMD Opteron 2218 HE CPUs, 16GB
RAM, four 750GB SATA drives, and runs Windows Ser-
ver 2003 operating system. We evaluate the comparative
performance of several programs that run on our cluster
with Nectar turned on and off. The programs were writ-
ten by researchers in our lab.

4.2.1 Datasets

We use three datasets to evaluate performance of Nectar.

WordDoc Dataset. The first dataset is a collection of
Web documents. Each document record contains a doc-
ument URL and its content (as a list of words). The data
size is 987.4 GB . The dataset is randomly partitioned
into 236 partitions. Each partition has two replicas in
the distributed file system, evenly distributed on 240 ma-
chines.

ClickLog Dataset. The second dataset is a small sam-
ple of about 160GB collected over five consecutive days
from an anonymized click log of a commercial search
engine. The dataset is randomly partitioned into 800 par-
titions, two replicas each, evenly distributed on 240 ma-
chines.

SkyServer Dataset. This database is taken from the
Sloan Digital Sky Survey database [12]. It contains two

data files: 11.8 and 41.8 GBytes of data. Both files were
manually range-partitioned into 40 partitions using the
same keys.

4.2.2 Sub-computation Evaluation

We have four programs: WordAnalysis, TopWord, Most-
Doc, and TopWordRatio that analyze the WordDoc
dataset.

WordAnalysis parses the dataset to generate the num-
ber of occurrences of each word and the number of doc-
uments that it appears in. TopWord looks for the top ten
most commonly used words in all documents. MostDoc
looks for the top ten words appearing in the largest num-
ber of documents. TopWordRatio finds the percentage of
occurrences of the top ten mostly used word among all
words. All programs take the entire 987.4 GB dataset as
1nput.

Program Name Cumulative Time Saving
Nectar on | Nectar off

TopWord 16.1m 21h44m | 98.8%

MostDoc 17.5m 21h46m | 98.6%

TopRatio 21.2m 43h30m | 99.2%

Table 4: Saving by sharing a common sub-computation:
Document analysis

With Nectar on, we can cache the results of executing
the first program, which spends a huge amount of com-
putation analyzing the list of documents to output an ag-
gregated result of much smaller size (12.7 GB). The sub-
sequent three programs share a sub-computation with the
first program, which is satisfied from the cache. Table 4
shows the cumulative CPU time saved for the three pro-
grams. This behavior is not isolated, one of the programs
that uses the ClickLog dataset shows a similar pattern; we
don’t report the results here for reasons of space.

4.2.3 Incremental Computation

We describe the performance of a program that stud-
ies query relevance by processing the ClickLog dataset.
When users search a phrase at a search engine, they click
the the most relevant URLS returned in the search results.
Monitoring the URLSs that are clicked the most for each
search phrase is important to understand query relevance.
This program is an example where the initial dataset is
large, but the incremental updates are small. The input
to the query relevance program is the set of all click logs
collected so far, which increases each day, because a new
log is appended daily to the dataset.

Table 5 shows the cumulative CPU time with Nectar
on and off, the size of datasets and incremental updates
each day. We see that the total size of input data increases

11

Data Size(GB) Time (m) Saving
Total | Update | On Off
Day3 | 68.20 | 40.50 | 93.0 | 107.5 | 13.49%
Day4 | 111.25 | 43.05 | 112.9 | 194.0 | 41.80%
Day5 | 152.19 | 40.94 | 164.6 | 325.8 | 49.66%

Table 5: Cumulative machine time savings for incremen-
tal computation.

each day, while the computation resource used daily in-
creases much slower when Nectar is on. We observed
similar performance results for another program that cal-
culates the number of active users, who are those that
clicked at least one search result in the past three days.
These results are not reported here for reasons of space.

4.2.4 Debugging Experience: Sky Server

Here we demonstrate how Nectar saves program devel-
opment time by shortening the debugging cyle. We se-
lect the most timeconsuming query (Q18) from the Sloan
Digital Sky Survey database [12]. The query identifies a
gravitational lens effect by comparing the locations and
colors of stars in a large astronomical table, using a three-
way Join over two input tables containing 11.8 GBytes
and 41.8 GBytes of data, respectively. The query is com-
posed of four steps, each of which is debugged sepa-
rately. When debugging the query, the first step failed
and the programmer modified the code. Within a couple
of tries, the first step succeeded, and execution continued
to the second step, which failed, and so on.

Table 6 shows the average savings in cumulative time
in one round of debugging for each step with Nectar. To-
wards the end of the program, Nectar saves as much 94%
of the time.

Cumulative Time Saving
Nectar on | Nectar off
Stepl 47.4m 47.4m 100%
Step2 26.5m 125.0m 79.80%
Step3 35.5m 245.5m 85.54%
Step4 15.0m 258.7m 94.20%

Table 6: Debugging: SkyServer cumulative time

5 Related Work

In term of the overall system architecture, we drew in-
spiration from the Vesta system [14]. Many high-level
concepts and techniques such as the clear separation of
primary and derived data are directly taken from Vesta.
However, because of the difference in application do-
mains, the actual design and implementation of the main

system components such as caching and program rewrit-
ing are radically different.

With the wide adoption of distributed execution
platforms like Dryad/DryadLINQ, MapReduce/Sawzall,
Hadoop/Pig [16, 26, 10, 22, 1, 21], recent work has in-
vestigated job patterns and resource utilization in data
centers [23, 20, 5, 19, 13]. These investigation of real
work loads have revealed a vast amount of wastage in
data centers due to redundant computations, which is
consistent with our findings from logs of a number of
production clusters.

DryadInc [23] represented our early attempt to elim-
inate redundant computations via caching, even before
we started on the DryadLINQ project. The caching ap-
proach is quite similar to Nectar. However, it works at
the level of Dryad dataflow graph, which is too general
and too low-level for the system we wanted to build.

The two systems that are most related to Nectar are
the stateful bulk processing system [19] and Comet [13].
The systems mainly focus on addressing the important
problem of incremental computation, which is also one
of the problems Nectar is designed to address. However,
Nectar is a much more ambitious system, attempting to
provide a comprehensive solution to the problem of au-
tomatic management of data and computation in a data
center.

As a design principle, Nectar is designed to be trans-
parent to the users. The stateful bulk processing system
takes a different approach by introducing new primitives
and hence makes state explicitly in the programming
model. It would be interesting to understand the trade-
offs in terms of performance and ease of programming.

Comet, also built on top of Dryad and DryadLINQ,
also attempted to address the sub-computation problem
by co-scheduling multiple programs with common sub-
computations to execute together. There are two interest-
ing issues raised by the paper. First, when multiple pro-
grams are involved in caching, it is difficult to determine
if two code segments from different programs are iden-
tical. This is particularly hard in the presence of user-
defined functions, which is very common in the kind of
DryadLINQ programs targeted by both Comet and Nec-
tar. It is unclear how it is achieved in Comet. Nectar
addresses this problem by building a sophisticated static
program analyzer that allows us to compute the depen-
dency of user-defined code. Second, co-scheduling in
Comet requires submissions of multiple programs with
the same timestamp. It is therefore not useful in all sce-
narios. Nectar instead shares sub-computations across
multiple jobs executed at different times by using a
datacenter-wide, persistent cache service.

The caching aspect of our work is closely related to
the incremental view maintenance in databases [8, 17].
In incremental data management, they study the problem

12

of updating the materialized views incrementally when
their base tables are updated. Nectar is simpler in that we
only consider append-only updates, while databases at-
tempt to handle random updates to the base table. On the
other hand, Nectar is more challenging because we must
deal with user-defined functions written in a general-
purpose programming language.

Caching function calls in a functional programming
language is well studied in the literature [24, 18, 14].
Memoization avoids re-computing the same function
calls by caching the result of past invocations. Caching
in Nectar can be viewed as function caching in the con-
text of large-scale distributed computing.

6 Discussion and Conclusions

In this paper, we described Nectar, a system that auto-
mates the management of data and computation in data
centers. The system has been deployed on a 240-node re-
search cluster, and has been in use by a small number of
developers. Feedback has been quite positive. The most
popular comment from our users is that the system makes
program debugging much more interactive and fun. Most
of us, the Nectar developers, use Nectar to develop Nec-
tar on a daily basis, and found a big increase in our pro-
ductivity.

To validate the effectiveness of Nectar, we performed
a systematic analysis of computation logs from 25 pro-
duction clusters. As reported in Section 4, we have seen
huge potential value in using Nectar to manage the com-
putation and data in a large data center. Our next step
is to work on transfering Nectar to Microsoft production
data centers.

Nectar is a complex distributed systems with multi-
ple interacting policies. Devising the right policies and
fine-tuning their parameters to find the righ tradeoffs are
essential to make the system work in practice. Our eval-
uation of these tradeoffs has been limited, but we are ac-
tively working on this top. We hope we will continue to
learn a great deal with the ongoing deployment of Nectar
on our 240-node research cluster.

What Nectar essentially does is to unify computation
and data, treating them interchangably by maintaining
the dependency between them. This allows us to greatly
improve the data center management and resource uti-
lization. We believe this is a very powerful paradigm
and represents a significant step forward in data center
computing.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

The Hadoop project.
http://hadoop.apache.org/.

The HIVE project.
http://hadoop.apache.org/hive/.

The LINQ project.
http://msdn.microsoft.com/
netframework/future/ling/.

Tidyfs.
http://research.microsoft.com/
en—-us/projects/tidyfs/.

P. Agrawal, D. Kifer, and C. Olston. Scheduling
shared scans of large data files. In Proceedings of
VLDB Endowment, 2008.

P. Alvaro, T. Condie, N. Conway, K. Elmeleegy,
J. M. Hellerstein, and R. Sears. BOOM: Data-
centric programming in the datacenter. In Proceed-
ings of the European Conference on Computer Sys-
tems (EuroSys), 2010.

A. Z. Broder. Some applications of rabins fin-
gerprinting method. In Sequences II: Methods in
Communications, Security, and Computer Science.
Springer-Verlag, 1993.

S. Ceri and J. Widom. Deriving production rules for
incremental view maintenance. In Proceedings of
the Seventeenth International Conference on Very
Large Data Bases, 1991.

R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. SCOPE: Easy
and efficient parallel processing of massive data
sets. In International Conference of Very Large
Data Bases (VLDB), August 2008.

J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proceedings of
the 6th Symposium on Operating Systems Design
and Implementation (OSDI), 2004.

M. C. Golumbic. Algorithmic Graph Theory and
Perfect Graphs (Annals of Discrete Mathematics,
Vol 57). North-Holland Publishing Co., Amster-
dam, The Netherlands, The Netherlands, 2004.

J. Gray, A. Szalay, A. Thakar, P. Kunszt,
C. Stoughton, D. Slutz, and J. Vandenberg. Data
mining the SDSS SkyServer database. In Dis-
tributed Data and Structures 4: Records of the
4th International Meeting, pages 189-210, Paris,
France, March 2002. Carleton Scientific. also as
MSR-TR-2002-01.

13

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin,
and L. Zhou. Comet: Batched stream processing
for data intensive distributed computing. In ACM
Symposium on Cloud Computing (SOCC), 2010.

A. Heydon, R. Levin, T. Mann, and Y. Yu. Software
Configuration Management Using Vesta. Springer-
Verlag, 2006.

A. Heydon, R. Levin, and Y. Yu. Caching function
calls using precise dependencies. In Proceedings of

Programming language design and implementation
(PLDI), 2000.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-
terly. Dryad: Distributed data-parallel programs
from sequential building blocks. In Proceedings
of European Conference on Computer Systems (Eu-
roSys), 2007.

K. Y. Lee, J. H. Son, and M. H. Kim. Efficient in-
cremental view maintenance in data warehouses. In
CIKM ’01: Proceedings of the tenth international
conference on Information and knowledge manage-
ment, 2001.

Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static
caching for incremental computation. ACM Trans.
Program. Lang. Syst., 1998.

D. Logothetis, C. Olston, B. Reed, K. Webb, and
K. Yocum. Stateful bulk processing for incremental
algorithms. In ACM Symposium on Cloud Comput-
ing (SOCC), 2010.

C. Olston, B. Reed, A. Silberstein, and U. Srivas-
tava. Automatic optimization of parallel dataflow
programs. In ATC’08: USENIX 2008 Annual Tech-
nical Conference on Annual Technical Conference,
2008.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language
for data processing. In International Conference
on Management of Data (Industrial Track) (SIG-
MOD), Vancouver, Canada, June 2008.

R. Pike, S. Dorward, R. Griesemer, and S. Quin-
lan. Interpreting the data: Parallel analysis with
Sawzall. Scientific Programming, 13(4), 2005.

L. Popa, M. Budiu, Y. Yu, and M. Isard. Dryad-
Inc: Reusing work in large-scale computations. In
Workshop on Hot Topics in Cloud Computing (Hot-
Cloud), San Diego, CA, June 15 2009.

W. Pugh and T. Teitelbaum. Incremental compu-
tation via function caching. In Proceedings of the

[25]

[26]

Sixteenth Annual ACM Symposium on Principles of
Programming Languages (POPL), 1989.

Y. Yu, P. K. Gunda, and M. Isard. Distributed ag-
gregation for data-parallel computing: Interfaces
and implementations. In SOSP ’09: Proceedings
of the ACM SIGOPS 22nd symposium on Operat-
ing systems principles, 2009.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlings-
son, P. K. Gunda, and J. Currey. DryadLINQ: A
system for general-purpose distributed data-parallel
computing using a high-level language. In Proceed-
ings of the 8th Symposium on Operating Systems
Design and Implementation (OSDI), 2008.

14

