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Abstract

We present an algorithm to remove wobble artifacts from
a video captured with a rolling shutter camera undergo-
ing large accelerations or jitter. We show how estimating
the rapid motion of the camera can be posed as a tempo-
ral super-resolution problem. The low-frequency measure-
ments are the motions of pixels from one frame to the next.
These measurements are modeled as temporal integrals of
the underlying high-frequency jitter of the camera. The es-
timated high-frequency motion of the camera is then used
to re-render the sequence as though all the pixels in each
frame were imaged at the same time. We also present an
auto-calibration algorithm that can estimate the time be-
tween the capture of subsequent rows in the camera.

1. Introduction

Most digital still cameras, cellphone cameras, and we-
bcams use CMOS sensors. CMOS video cameras are also
increasingly becoming popular, from the low-end Flip cam-
era [12] to the high-end Red camera [13]. To maximize the
fill factor, CMOS sensors are commonly read out line-by-
line and use a “rolling shutter”; ie. the capture time of each
row is slightly after the capture time of the previous row.

Rolling shutter cameras suffer from three main artifacts:
(1) shear, (2) partial exposure, and (3) wobble. Shearing
occurs when the camera undergoes a constant (or smoothly
varying) motion. Shearing can be corrected by computing
the global motion and then warping the frames appropri-
ately [11, 7]. In the presence of independently moving (but
slowly accelerating) objects, a full optical flow field can be
used to perform the correction [5]. Partial exposure occurs
when a rolling shutter is used to image fast changing illu-
mination such as a flash, a strobe light, or lightning [5].

Wobble occurs when there are large accelerations or the
motion is at a higher frequency than the frame rate of the
camera. Wobble is particularly pronounced for cameras
mounted on helicopters, cars, and motorbikes. Wobble
artifacts are often largely imperceptible in single images,

even in cases where the temporal artifacts in the video are
quite dramatic. See the videos in the supplemental material
(pausing at various points) for examples. About the only
prior work that has come close to addressing rolling shutter
wobble is [8]. This paper uses camera motion and context-
preserving warps for video stabilization. Empirically, the
authors noted that their algorithm tends to reducing rolling
shutter wobble. However, the algorithm does not model the
high-frequency temporal motion [10, 1] necessary for gen-
eral purpose rolling shutter correction.

In this paper, we present an algorithm to remove rolling
shutter wobble in video. In particular, we show how esti-
mating the high-frequency jitter of the camera can be posed
as a temporal super-resolution problem [3, 14]. The tem-
poral low-frequency measurements (analogous of the low
resolution pixels) are the motions of pixels from one frame
to the next. These measurements are modeled as temporal
integrals of the underlying high-frequency jitter of the cam-
era. The estimated high-frequency motion of the camera is
then used to re-render the video as though all the pixels in
each frame were imaged at the same time.

We begin in Section 2.1 by deriving our algorithm for
a high-frequency (e.g. per row) translational jitter model,
analogous to the one in [6]. It is straight-forward to gener-
alize this model to a per row affine model. See [2] for the
details. In Section 2.2 we generalize the model to include
independently moving objects. In particular, we model the
motion of each pixel as the combination of a low-frequency
independent motion and a high-frequency camera jitter.

Our algorithm has a single calibration parameter, the
time between the capture of two subsequent rows as a frac-
tion of the time between two subsequent frames. In Sec-
tion 2.3 we investigate the calibration of this parameter. We
first derive a closed-form expression relating the solution
of the super-resolution constraints with the correct parame-
ter to the solution with another setting (for the translational
model). This result is important because it implies that the
performance of our algorithm should be robust to the setting
of the calibration parameter, a result which we empirically
validate. Second, we present an auto-calibration algorithm
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Figure 1. Image Capture Model: In a rolling shutter camera, each
row is exposed and read out at a slightly later time than the pre-
vious row. We denote the difference in the capture times to be 7,
where one time unit is the time between subsequent frames.

that can estimate the calibration parameter from a short seg-
ment of a video containing jitter.

2. Theory and Algorithms

Assume that the rolling shutter camera captures a video:
IBS(X,Y) forT =0,1,2,... 1)

Assume that the Y'*® row in image I}5(X,Y) is captured at
time 7'+ 7Y, where we define the capture time of each row
to be the mid-point of the exposure period for that row. See
Figure 1 for an illustration. The non-zero exposure period
means motion blur may be present. The shift over time in
the mid-point of the exposure period still causes “rolling
shutter” artifacts even in the presence of motion blur. Note
that in this paper we do not address motion blur removal.

For now, we assume that 7 has been calibrated and so
is known. See Section 2.3 for a method to calibrate 7. We
wish to correct the rolling shutter images I55(X, Y') to gen-
erate a sequence I$5(X,Y) that might have been captured
by a camera with a global shutter. We are free to choose the
time T + 3 that the global shutter image I$5(X,Y") would
have been captured. A natural choice is:

f=1x(M-1)/2 2)

because it minimizes the maximum correction and means
that the center of the image will require the least correction.
In this paper, we always use the value of 8 in Equation (2).

2.1. High-Frequency Translational Camera Jitter

We begin by describing our algorithm using a high-
frequency (e.g. per row) translational model of the camera
jitter. In this model, the motions of all the pixels in each row
are assumed to be the same. The motion of each subsequent
row can be different, however.

2.1.1 Motion Model

Denote the temporal trajectory of the projected location of
a scene point x(t) = (x(t), y(t)). We use lower case t, x,
y to denote continuous variables and upper case 7', X, Y
to denote integer frame, column, and row numbers. Note
that we model the continuous path of the point x(¢) even
through time periods that it is not imaged. If the camera
is jittering, x(t) will vary rapidly between two subsequent
frames 7" and T' 4+ 1. We assume that this high-frequency
variation can be described using the following differential
equation:

T = mM (). 3)
The parameters p(t) are a function of continuous time ¢.
At any given time ¢, m"f(x; p(t)) describes a low para-
metric spatial motion model. For example, m"f could be
a translation. In this case, the parameter vector p(t) =
(p1(t), p2(t)) has two components, and:

m" (x;p(t)) = (p1(t),p2(t)). )

In the remainder of this section, we use this translational
model. See [2] for the derivation of our algorithm for a
high-frequency (e.g. per row) affine model. In the transla-
tional model, at any given time ¢, all the points in the image
are moving with the same motion. However, over the dura-
tion of a frame from 7" to T + 1, the translation may vary
temporally. In the context of image deblurring with a global
shutter camera, this translational model can result in arbi-
trarily complex blur kernels [6]. The blur kernels are the
same at each pixel, however. In our case of a rolling shut-
ter sequence, the low-frequency (frame-to-frame) motion of
each row in the image can be different because each row is
imaged at a different time. The temporally high-frequency
translational model can result in complex, non-rigid image
deformations; i.e. rolling shutter wobble.

Equation (3) defines a differential equation for x(t). To
proceed, this equation must be solved. In the case of the
translation, the continuous analytical solution is:

t
x(t) = x(to) + / p(s)ds. Q)
to

For more complicated motion models, deriving an analytic
solution of Equation (3) may be impossible. An approxi-
mate or numerical solution can be used instead. See Sec-
tion 2.2 for the approximation used in the case of indepen-
dent motion and [2] for the affine case.

2.1.2 Measurement Constraints

We assume that measurements of the motion are available in
the form of point correspondences. In this paper, all corre-
spondences are obtained using the Black and Anandan op-
tical flow algorithm [4]. Note that rolling shutter distortions
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Figure 2. Measurement Constraints: Each constraint in Equa-
tion (7) specifies a known value for the integral of the unknown
higher-resolution temporally varying motion parameters over a
known interval. The constraints from points in nearby rows closely
overlap each other, analogously to how sub-pixel shifts generate
overlapping constraints in image super-resolution [3].

do not affect the extent to which brightness constancy holds.
We subsample the flow fields, as described in detail in Sec-
tion 3, to obtain a discrete set of correspondences. An al-
ternative approach would be to use a feature detection and
matching algorithms such as [9]. Note, however, that care
should be taken as non-rigid image deformations do affect
the values of most feature descriptors to some extent.
We assume each correspondence takes the form:

Corr; = (T, T; + Ky, X1, X1, 4 K, ) - (6)

This correspondence means that a point at xp, = (7, yr,)
in image I%_S was matched, tracked, or flowed to the point
X1,+k, = (T1,4K,,y1,+K,) in the second image I . .
The times 7T; and T; + K are integers. Although in many
cases, the first location X, is integer valued, the second lo-
cation X7, i, should be estimated with sub-pixel accuracy.
For generality we denote both as real-valued.

Each correspondence can be substituted into Equa-

tion (5) to generate a measurement constraint:

Ti+Ki+7yr; + K,
p(s)ds

@)
where ideally MC(Corr;) = 0. Note that the integral is
from the time that the point was imaged in the first image
T; + Tyr, to the time at which it was imaged in the sec-
ond image T; + K; + Tyr,+k,; 1.e. the length of the in-
terval is not exactly K;. Also note that the constraints in
Equation (7) are temporal analogs of the constraints in im-
age super-resolution [3]. Each constraint specifies a value
for the integral of the unknown higher-resolution tempo-
rally varying motion parameters over a known interval. See
Figure 2 for an illustration. The constraints from points in
neighboring rows closely overlap each other, analogously to
how sub-pixel shifts create overlapping constraints in [3].

One important difference is that the integral in Equa-
tion (7) is 1D (albeit of a 2D vector quantity), whereas
in image super-resolution, it is a 2D integral (of 1-3 band

MC(Corr;) = X7,4 K, — XT, — /
Ti+Tyr;

images). Image super-resolution is known to be relatively
poorly conditioned [3]. Obtaining resolution improvements
beyond a factor of 4-6 or so is difficult. In [14], however,
it was shown that 1D super-resolution problems are far bet-
ter conditioned. Roughly speaking, the condition number
in 1D is the square-root of the condition number in the cor-
responding 2D case. Consistent with this analysis, we en-
countered diminishing returns when attempting to enhance
the temporal resolution by more than a factor of 30 or so.

2.1.3 Regularization and Optimization

We regularize the problem using a standard first order
smoothness term that encourages the temporal derivative of
the motion p to be small. We use L.1 norms to measure er-
rors in both the measurement constraints and regularization.
We used the following global energy function:

> MC(Corry)| + A > /“if;

Corr;, j=1,2

ds. ®)

The measurement constraints are likely to contain a num-
ber of outliers, both due to independently moving objects
and gross errors in the flow field. An L1 norm is therefore
preferable to an L2 norm. We could also use an even more
robust energy function, but such a choice would make the
optimization more complex. We use an .1 norm rather than
an L2 norm for the regularization term, as it is reasonable
to expect the motion to be piecewise smooth, with disconti-
nuities during rapid accelerations.

We represent the continuous motion parameters with a
uniform sampling across time. The exact number of sam-
ples used in each experiment is reported in Section 3. As in
[3], we use a piecewise constant interpolation of the sam-
ples when estimating the integral in the measurement con-
straints. With this representation, both the measurement
constraints and the regularization term are linear in the un-
known motion parameters. We solved the resulting convex
L1 optimization using linear programming.

2.1.4 Correction Process

We wish to estimate the global shutter pixels I$5(X,Y)
using the rolling shutter pixels I%5(x, y). We assume that
X,Y,and T are known integer values, whereas = and y are
unknown subpixel locations. Once we know x and y, we
can (bicubically) interpolate the rolling shutter image. To
estimate = and y, it helps to also estimate the time ¢ at which
this rolling shutter pixel was captured. Figure 3 contains an
visualization of a 2D (y, t) slice through 3D (z, y, t) space.
We project out the x variable and only show one pixel in
each row of the image. Under the translational model, the
motion of each pixel in a row is identical.
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Figure 3. Correction Process: A 2D (y,t) slice through 3D
(z,y,t) space. The rolling shutter pixels I}°(z,y) lie on the
plane t = T+ 7y. The global shutter pixel IS5 (X, Y') starts at 3D
location (X, Y, T+ () and moves along the path in Equation (10.)
The correction process operates by first computing the intersection
between the rolling shutter plane and the global shutter path. The
rolling shutter image is then interpolated at this point.

The rolling shutter pixels I25(z, ) lie on the plane:
t=T+Ty. )

Compensating for the estimated motion, the global shutter
pixel I$5(X,Y) starts at 3D location (X,Y,T + () and
moves along the path:

t
d
( Y ) B ( ¥ )* Jrpapi()ds ) g
Y Jr L pb2(s)ds
The correction process begins by solving the pair of simul-

taneous Equations (9) and (10). Plugging Equation (9) into
the y row of Equation (10) gives:

t—T K
= Y+/ pa(s)ds. (11)
T T+

The solution of this equation for ¢ is independent of X and
so this process only needs to be applied once per row. The
solution can be obtained by stepping through the represen-
tation of the motion parameters p(t), considering each pair
of samples in turn and approximating the integral in Equa-
tion (11). For the time interval between each pair of mo-
tion samples, Equation (11) is linear in the unknown ¢. It
is therefore easy to check whether there is a solution in this
interval. Note that, assuming the absolute value of the verti-
cal motion p(t) is bounded above by < — ¢ for some € > 0,
the solution of Equation (11) is unique. A single pass can
therefore be made through each neighboring pair of motion
samples, with an early termination if a solution is found. If
no solution is found, the pixel must have moved outside the
image. Once the solution of Equation (11) has been com-
puted for ¢, the corresponding (x, y) location in the rolling
shutter image can be computed using Equation (10).

2.2. Adding Low-Frequency Independent Motion

The L1-based energy function in Equation (8) is rela-
tively robust to outliers such as independently moving ob-

jects. The correction applied to independently moving ob-
jects, however, will ignore their independent motion. Inde-
pendently moving objects may still have a residual shear.
We now extend our algorithm to model independently mov-
ing objects and correct this residual shear. We use a low-
frequency model of the independently moving objects for
two reasons: (1) In most cases, independently moving ob-
jects undergo relatively slow acceleration. There are excep-
tions, of course, such as rotating helicopter blades. (2) Mod-
eling independently moving objects with a high-frequency
model would be extremely challenging and ambiguous.
We generalize the motion model in Equation (3) to:

dx

4 = W sp®) +mi} () (12)

where m{f, m{f, ... is a low-frequency motion (constant
within each frame), but spatially the variation is dense. The
low-frequency model mlft | (x) can be thought of as a per-
pixel flow field, where each pixel flows with a temporally
constant velocity between each pair of frames.

The low-frequency term ml’, (x) makes analytically
solving Equation (12) hard, as the dependence on x is es-
sentially arbitrary. To obtain an approximate solution, we
assume that the spatial variation in mlft | (x) is small and
treat this term as a constant. Using the translational model
of Equation (4) for the high-frequency term, the approxi-

mate solution of Equation (12) is:
t
x(t) ~ x(to) + / p(s)ds + (t — to)ml} (x4,)  (13)
to
which yields the measurement constraints:

Ti+Ki+7yr;+K;

MC(Corr;) = X1, 4K, — XT; f/ p(s)ds
Ti+7yr;
_(KZ T TYT+K; — TyTi)m}Zf“i (XTi)' (14

We regularize the low-frequency model by adding the fol-
lowing two terms to the global energy function:

’yZ/Hlefw(x)Hl dx+eZ/Hm¥«(x)H1 dx. (15)

The first term encourages the low-frequency model to vary
smoothly across the image. We also spatially subsample
m!(x) to reduce the number of unknowns. See Section 3
for the details. The second term is needed to resolve an
ambiguity between the low-frequency and high-frequency
models. We favor the high-frequency model by adding a
(very small) penalty to non-zero independent motion.

During the correction process, the path of the global
shutter pixel in Equation (10) becomes:

¢
X = X+/ p(s)ds+ (t — T — /)mi(X). (16)
T+p



Note that the time of intersection of this path with the plane
of rolling shutter pixels in Equation (9) is no longer inde-
pendent of X. The intersection therefore needs to be per-
formed for each pixel, rather than just once for each row.
Note that this process can be sped up by solving the inter-
section on a subsampled mesh and then upsampling.

2.3. Calibrating 7

The only image formation parameter in our model is 7,
the time between the capture of neighboring rows (see Fig-
ure 1.) In some cases, it is possible to calibrate 7 for a
camera in the lab [5]. In many cases, however, all we have
is a video obtained from an unknown source. Two key
questions are: (1) how sensitive is our algorithm to an er-
roneous setting of 7, and (2) can we auto-calibrate 77 In
Section 2.3.1, we address the first question by deriving a
closed-form expression relating two solutions of the mea-
surement constraints with different 7s. This result indicates
that the performance of our algorithm should be robust to
the setting of 7, a result which we empirically validate in
Section 3.4. In Section 2.3.2, we derive an auto-calibration
algorithm to estimate 7 from a short segment of the video.

2.3.1 Analyzing the Effect of Incorrect Calibration

We first introduce some notation. Suppose that the images
have M rows. Denote the duty cycle d = (M — 1)7. The
camera is active capturing image /. ;l':S (X,Y) between times
T and T + d. Between T' + d and T + 1, the camera is
inactive in the sense that no new rows are imaged.

Now consider two solutions to the measurement con-
straints in Equation (7). Suppose the first solution uses
the correct 7 = 7y, duty cycle dy = (M — 1)1, and
the second solution uses an incorrect 7 = 79, duty cycle
d2 = (M — ].)TQ. Letr = dl/dQ = Tl/TQ. AlSO, Split the
solutions into their active and inactive parts:

B act(t) ift— [t] <=d;
pi(t) = { g;na(t) if t — [t] > d,

(t) is the active part of the solution and pi"®(¢)

%

i=1,2 (17

act

where p?

is the inactive part.
Below we show that if all the correspondences have K =
1 and so take the form (T, T + 1, x7,X711), and:

p5(t) = rpi®(r(t — [t]) + [t]) + ey (18)
where:
1 t]+1 le]+1
e = o | [ e [ pies)ds
d2 | J1t)+a, [t]+d2
(19)

then the integrals in Equation (7) are the same:

T+14+72yr4+1 TH+14+7T1yr+1
/ pa(s)ds = / pi(s)ds. (20)
T+72yr T+7iyr

For a correspondence (7,7 + 1,xp,x7p4+1) with K =
1, the left hand side of Equation (20) is:

T+1+7'2yT+1 T+d2
/ pa2(s)ds = / p5°t(s)ds +

THT2yr T+Toyr
T+1 TH14+72yT 41
[ e [ pI(s)ds. 1)
T+ds T+1

Plugging Equation (18) into the first term on the right hand
side gives:

T+d2
[ e L)+ lsh e ds @)
T+1oyr

which after substituting s’ = (s — T') + T simplifies to:

T+dy
/ pi(s)ds' + er(da — 2yr).  (23)
T+1iyr

Similarly the third term simplifies to:

TH+1+72yr+1
/ pit(s’) ds’ + ermayria. (24)
T+1

Assuming that yr41 =~ yr and plugging these expressions
into Equation (21) and substituting the expression for c
from Equation (19) yields Equation (20).

Our derivation makes one approximating assumption,
that yr ~ yry41. This assumption is reasonable because
the vertical motion between two consecutive frames is gen-
erally only a small fraction of the frame.

Equation (18) provides a relationship between two solu-
tions of the measurement constraints for different 7. Due to
regularization and discretization, the final solution obtained
by our algorithm will not exactly match Equation (18). It
can be expected to hold approximately, however.

What does Equation (18) mean in terms of the final cor-
rection applied? First, note that only the active part of the
solution is used in the correction process. See Figure 3. Sec-
ond, note that if c|;; = O then Equation (18) would mean
that exactly the same correction is applied for the two dif-
ferent values of 7. The proof of this fact follows the same
argument as above. The difference in the two corrections
is due to C|¢), & constant motion for each frame. The two
corrections will therefore approximately differ by a global
affine warp. In general, ¢ ;| will vary from frame to frame,
as c|;) is related to the motion in the inactive period.

In summary, with a slightly incorrect value of 7 theory
shows that the final corrections with approximately differ
by a slightly different affine warp for each frame. Although
estimating 7 wrongly may add a little jitter to the output,
our algorithm can be expected to be robust in the sense that
there is little danger of gross artifacts being added.



2.3.2 An Auto-Calibration Algorithm

The analysis above suggests an algorithm to auto-calibrate
T from a short segment of the video containing jitter. We
first perform the correction for a sampling of different val-
ues of 7 € [0, ;7). For each solution, we attempt to detect
the small residual affine jitter from frame to frame that the
above analysis predicts. In particular, we compute optical
flow across each corrected result. We then compute a mea-
sure of how “translational” the motion is.

For each flow field between a pair of subsequent images,
we consider a number of patches, compute the average flow,
and then measure the median deviation of each pixel from
this median translational motion. We then compute the me-
dian value of this measure across a sampling of patches in
each flow field. We compute the mean value of this mea-
sure across the short segment of the video. Finally, we
plot the measure across 7, smooth the result slightly, and
then choose 7 to take the minimum value. Note that al-
though the analysis in Section 2.3.1 assumes a translation
jitter model and makes several approximations, the auto-
calibration is a reasonable approach in a much wider setting.
Also note that, although this algorithm amounts to a brute
force search, the 1D search range can be sampled sparsely
and the algorithm only needs to be run on a short segment
of the input video, so long as it contains some wobble.

3. Experimental Results

To avoid the size of the optimization growing arbitrarily
with the length of the video, we solved Equation (8) for a
fixed size window that is slid one frame at a time through
the video. Empirically we found a significant improvement
in performance up to a window size of around 7-11 frames.
All the results in this paper use a window size of 9 frames.

We obtained correspondences in the form of Equation (6)
by sub-sampling optical flow fields computed using the
Black and Anandan algorithm [4]. In the independent mo-
tion case, we sample the flow every row and every 10th col-
umn, excluding flows within 6 pixels of the edge of the im-
age to avoid boundary errors in the flow field. In the trans-
lational case, the correction is constant along each row. We
therefore use a single correspondence per row, obtained by
median filtering the correspondences along each row. We
experimented with K > 1 but found only a small gain. The
results in this paper all use motion computed with K = 1.

We experimented with different sample rates for the mo-
tion parameters p. We found diminishing returns beyond
around 25-35 samples per frame. All results in this paper
use 30 samples of p (60 unknowns) per frame. We subsam-
ple m!f (x) spatially every 10 rows and every 10 columns.

With the translational model we use the regularization
weight A = 300. The independent motion regularization
weights are v = 10 and € = 1. Most of our test sequences
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Figure 4. An Illustrative Example: (a) One frame from the video
city.mp4. Our algorithm first computes the optical flow (bot-
tom left). We then compute a corrected video without the non-
rigid wobble artifacts, but which still contains global jitter (bottom
right). We then stabilize the result (top right.) (b) and (c) A com-
parison of the low-frequency optical flow (blue) with the estimated

(red) and ground-truth (green) high-frequency motion.

were downloaded from the web and so we do not know the
camera details. For all video sequences, we estimated 7
using the algorithm in Section 2.3.2. We generally found
that 7 € [0.75/(M — 1),0.95/(M — 1)]. Note that Gunnar
Thalin has calibrated a number of cameras in a laboratory
setting and published the results online [15].

3.1. An Illustrative Synthetic Example

We begin with a synthetic example to illustrate the steps
in our algorithm. In Figure 4(a) we include one frame
from the video city.mp4 included in the supplemental
material. In the top left we show the input rolling shutter
video which was generated synthetically using the transla-
tion model in Equation (3). In the bottom left we include
the optical flow, where the horizontal flow is coded in the
red channel and the vertical flow is coded in the green chan-
nel. In the bottom right, we include the corrected video,
which still contains global high-frequency jitter. The non-
rigid wobble has been removed, however. We include a sta-
bilized version of the corrected output in the top right. We
stabilize the videos by simply low-pass filtering the motion
of the center of the frame and then applying a global cor-
rection for each frame. More sophisticated algorithms such
as [8] could now be applied to the corrected video because
all the pixels in each frame have been re-rendered as though
they were captured at the same time.

In Figures 4(b) and (c) we compare the input optical
flow (median filtered across each row), the estimated high-
frequency motion, and the ground-truth high-frequency mo-
tion. We plot the value of the flow/motion on the y-axis. On
the x-axis we plot time, which in the case of the optical flow



Figure 5. A Qualitative Comparison: One frame from the video
skool.mp4. We compare the output of our algorithm (top right)
with the result of naive stabilization (bottom left) and the result
obtained with the algorithm described in [7] (bottom right).

corresponds to the row in the video that the flow was mea-
sured at. Note how the optical flow is relatively smoothly
varying across time, whereas both the ground-truth and es-
timated motions are higher frequency. There is also a phase
shift between the optical flow and the real camera motion.
We also include a video shear.mp4 comparing the
input, output, and ground-truth for a similar synthetic se-
quence generated with constant motion. This video con-
firms that our algorithm handles a simple shear correctly.

3.2. Qualitative Comparisons

Our main evaluation consists of a set of qualitative com-
parisons. In Figure 5 we include one frame from the video
skool.mp4. In the top left we include the input. In the top
right we include the stabilized output of our algorithm. In
the bottom left we include the result of stabilization without
correcting the rolling shutter distortions.

We implemented the algorithm in [7] and the morphing
algorithm in [5]. Empirically, we found the algorithm in [7]
to outperform the one in [5]. For lack of space, we only
present the results for the algorithm in [7] in the bottom
right of Figure 5 and the video. When implementing [7]
we used the same Black and Anandan flow [4] used by our
algorithm, rather than the block matching described in [7].
We also used the median filtered flow for every row, as in
our algorithm, rather that the four samples in [7]. These
changes should only improve the algorithm in [7] and make
the comparison fairer. The algorithm in [7] does not per-
form any high-frequency analysis or super-resolution. In-
stead it performs an interpolation of the motion. While [7]
corrects some artifacts, it does not remove all the wobble.

We also include several other videos in the supplemental
material. The video vegas1.mp4 is another aerial video,
which shows the robustness of our algorithm to low light
conditions, saturation, and motion blur (which we do not
attempt to remove.) The video bike .mp4 is robust to very
noisy input, where the computed flow is very noisy. The

video reverse.mp4 illustrates that our algorithm per-
forms reasonably even in the presence of some rotational
motion. Finally, race .mp4 contain footage from a car in-
volved in a high-speed race. Most of the video is well cor-
rected. It does, however, illustrate one failure case of our
algorithm. As the car goes over the rumble strips, the opti-
cal flow algorithm fails completely due to the large induced
motion. These errors lead to a couple of “bumps” in the out-
put video. The output video is still a dramatic improvement
over the input, however.

3.3. Independent Motion

We first illustrate the independent motion extension to
our algorithm on a synthetic dataset in order to present a
comparison with ground-truth. Inballoon.mp4 we com-
pare the results obtained using just the translational model
(bottom right) with the results obtained using the indepen-
dent motion model in addition to the translational model
(top right). In the bottom left we include results using the
morphing algorithm of [5] which is specifically designed to
handle independent motion. As can be seen, however, the
morphing algorithm of [5] cannot handle high-frequency jit-
ter. Note that even just the translational model is robust to
the independent motion, through the median filtering of the
flows and the L1 norms. Finally, note that the residual shear
on the balloon is largely imperceptible in balloon.mp4.
When toggled with the ground-truth in toggle . mp4, the
residual shear becomes more apparent.

In checker.mp4 we include an example of a rotating
checkerboard, similar to an example presented in [5]. Our
example also contains high-frequency jitter not present in
the example in [5]. While the motion in checker.mp4
could be modeled with our affine model, rotational motion
is a useful tool when evaluating independent motion mod-
eling because errors make straight lines appear curved. As
can be seen in checker .mp4, with the addition of the in-
dependent motion model, the curvature disappears.

3.4. Calibration

5 ﬁ; i.e.
half of the maximum value. In Figure 6(a) we present the re-
sults of our auto-calibration algorithm. These show a clear
minimum close to the ground-truth value of 0.5. In Fig-
ure 6(b) we present calibration results for the skool .mp4
video. We downloaded this video from the web and so do
not know the ground-truth value of 7. In skool_cal.mp4
we present a qualitative comparison of the affect of varying
the relative value (i.e. multiplied by M — 1) of 7. These
qualitative results confirm two things. First, the calibrated
relative value of 7 = 0.75 does appear to be reasonable.
Second, our algorithm is relatively insensitive to the exact
choice of 7, validating Section 2.3.1.

We first re-generated city.mp4 using 7 = 1
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Figure 6. Quantitative Calibration Results: (a) Auto-calibration
results on a version of city.mp4 where the ground-truth relative
value of 7 is 0.5. (b) Auto-calibration results on skool.mp4.
In skool_cal.mp4 we present a comparison of 7 = 0.25, 0.5,
0.75, and 1.0. This video confirms that the calibration result of
0.75 is reasonable and illustrates the robustness of our algorithm.
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3.5. Timing Results

For our timing results, we have made no attempt to im-
plement our algorithm efficiently and use the relatively slow
Black and Anandan algorithm [4]. We timed our algorithm
on the 30 frame, 320 x 240 pixel video city.mp4, run-
ning our algorithms on a 2.0Ghz Dual-Core HP nc8430
laptop. Computing the flow and extracting the correspon-
dences took 7.6 seconds per frame. Solving the super-
resolution problem took 2.1 seconds per frame for the trans-
lational model and 102.4 seconds per frame for the indepen-
dent motion model. Correcting the distortions and stabiliz-
ing the video took 0.2 seconds per frame. One way to speed
up our algorithm is to run the flow and super-resolution on a
downsampled video. The computed high-frequency motion
can then be scaled up and applied to the original video. In
timing.mp4 we compare results obtained on city .mp4
at the full resolution with those on a half-size video. There
is little difference, indicating that speed-ups are possible.

4. Conclusion

We have presented an algorithm to remove rolling shut-
ter wobble. Our algorithm uses a form of temporal super-
resolution to infer the high-frequency motion of the cam-
era from low-frequency optical flow. We extended our al-
gorithm to use an affine motion model and to model low-
frequency independent motion. We showed both analyti-
cally and empirically that our algorithm is robust to the set-
ting of the key calibration parameter 7. We also presented
an auto-calibration algorithm that can estimate this param-
eter from a short segment of the video containing jitter.

One failure mode of our algorithm occurs when the mo-
tion is so great that the optical flow algorithm completely
fails; e.g. race .mp4 in Section 3.2. One possible solution
is to fall back on sparse feature matching [9] in such cases.
The reduced density of correspondences will result in less
accurate, but hopefully more robust results. Secondly, our
model is currently unable to model large parallax between
foreground and background objects. Finally, on very close
inspection, some residual wobble can be seen in the output,

caused by the inherent limitations of the super-resolution
process [3, 14]. Novel priors or longer-range correspon-
dences (/ > 1) could possibly reduce the residual wobble.

One possible future direction is to investigate the choice
of the error functions and optimization algorithm, both to
improve quality and speed. Another possibility is to explore
the direct estimation of the motion model parameters.
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