Virtual Machine Power Metering and Provisioning

Aman Kansal, Feng Zhao,
Jie Liu
Microsoft Research
Redmond, WA, USA
kansal@microsoft.com

ABSTRACT

Virtualization is often used in cloud computing platforms for its
several advantages in efficiently managing resources. However, vir-
tualization raises certain additional challenges, and one of them is
lack of power metering for virtual machines (VMs). Power man-
agement requirements in modern data centers have led to most new
servers providing power usage measurement in hardware and alter-
nate solutions exist for older servers using circuit and outlet level
measurements. However, VM power cannot be measured purely in
hardware. We present a solution for VM power metering, named
Joulemeter. We build power models to infer power consumption
from resource usage at runtime and identify the challenges that
arise when applying such models for VM power metering. We
show how existing instrumentation in server hardware and hyper-
visors can be used to build the required power models on real plat-
forms with low error. Our approach is designed to operate with
extremely low runtime overhead while providing practically useful
accuracy. We illustrate the use of the proposed metering capability
for VM power capping, a technique to reduce power provisioning
costs in data centers. Experiments are performed on server traces
from several thousand production servers, hosting Microsoft’s real-
world applications such as Windows Live Messenger. The results
show that not only does VM power metering allow virtualized data
centers to achieve the same savings that non-virtualized data cen-
ters achieved through physical server power capping, but also that
it enables further savings in provisioning costs with virtualization.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement Techniques; K.6.2
[Computing Milieux]: Management of Computing and Informa-
tion Systems—Installation Management

General Terms

Measurement, Performance

Keywords

power capping, virtualization, datacenter power management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SoCC’10, June 10-11, 2010, Indianapolis, Indiana, USA.

Copyright 2010 ACM 978-1-4503-0036-0/10/06 ...$10.00.

Nupur Kothari
University of Southern California
Los Angeles, CA, USA
nkothari@usc.edu

Arka A. Bhattacharya
Indian Institute of Technology
Kharagpur, West Bengal, India
arka@cse.iitkgp.ernet.in

1. INTRODUCTION

Most current cloud platforms use virtualized data centers. This
paper considers power management for virtualized data centers.
The importance of power management for data centers is well known
and most computational platforms now provide multiple power man-
agement options. A key component of power management in such
large scale computational facilities is the visibility into power us-
age. This visibility is used to make automated and manual power
management decisions, including power over-subscription and server
capping. Modern server hardware has built-in power metering ca-
pabilities and several solutions exist to monitor power for older
servers using power distribution units (PDUs) that measure power
at the outlet. Equivalent visibility is, however, lacking in virtual-
ized platforms. The use of virtual machines (VMs) comes with
many benefits such as safe isolation of co-located workloads, en-
abling multiple workloads to be consolidated on fewer servers, re-
sulting in improved resource utilization and reduced idle power
costs. However, the lack of VM power metering capability takes
away the advantages of server power metering that were available
in non-virtualized settings.

In this paper we propose a mechanism for VM power metering,
named Joulemeter, and show how it enables virtualized platforms
to use some of the same power management mechanisms that have
proved beneficial on physical servers. As an example, we show
how this mechanism can enable power caps to be enforced on a
per-VM basis, resulting in a significant reduction of power provi-
sioning costs. Experiments on real-world workloads from several
thousand production servers show similar savings as achieved with
physical server capping but with the benefits of VM isolation. Also,
additional savings are realized due to the more aggressive over-
subscription in the virtualized world enabled by the tighter control
and safety mechanisms offered by Joulemeter. The energy meter-
ing mechanism also enables several other power management tasks
(Section 7.3).

Clearly, a hardware power measurement instrument cannot be
connected to a VM. In principle, VM power can be metered by
tracking each hardware resource used by a VM and converting the
resource usage to power usage based on a power model for the
resource. However, in practice this approach involves several chal-
lenges since accurate power models are not computationally feasi-
ble for run time use and may not work when using only realistically
available instrumentation. We address these challenges and design
a power metering mechanism for existing hardware platforms and
hypervisors. Our mechanism does not require any additional in-
strumentation of application workloads or operating systems within
the VMs. Our approach can naturally adapt to changes in ap-
plication characteristics and even hardware configurations. While
prior works have proposed mechanisms to measure VM energy us-

age [29], they assumed the availability of detailed power models
from each hardware component, that are not available in practice,
and are in fact difficult to provide.

1.1 Contributions

Specifically, we make the following contributions:

First, we present a solution, named Joulemeter, to provide the
same power metering functionality for VMs as currently exists in
hardware for physical servers. The solution uses power models in
software to track VM energy usage on each significant hardware
resource, using hypervisor-observable hardware power states. We
select practically feasible power models and show how they can
be learned using only existing instrumentation. While prior work
has used performance counters for metering full system power, we
address the additional challenges that are faced when applying such
approaches to VM energy metering. The design keeps the runtime
overhead of the proposed energy metering system very low.

Second, we experimentally evaluate the accuracy of the VM en-
ergy metering mechanism using benchmark applications on com-
monly used platforms. We also show why generic power mod-
els, as used in prior work and effective for physical servers run-
ning a single application, are not well-suited to cloud platforms
where a server may be shared by many different VMs each run-
ning a markedly different application. The Joulemeter mechanism
is shown to achieve much higher accuracy, achieving errors within
0.4W - 2.4W.

Third, we show how VM power metering improves power man-
agement for cloud platforms. Specifically, we use Joulemeter to
solve the power capping problem for VMs. This enables signifi-
cant reductions in power provisioning costs. Power provisioning
costs are well known [6] to be an important concern, and solutions
based on server power capping have not only been proposed [7, 18]
but are already available commercially [11, 12]. However, these ex-
isting server power capping techniques cannot directly be applied
to virtualized environments. Joulemeter helps realize similar sav-
ings in virtualized environments as existed in physical servers with
hardware power capping, and also offers additional savings that are
achievable only with virtualization, due to VM migration capabil-
ity and temporal multiplexing of VM peak loads. Actual savings
are evaluated through experiments using traces from commercial
production servers. The impact of metering error is considered in
the provisioned power reduction mechanism.

Finally, we also discuss the use of power metering in taking ad-
vantage of renewable energy and variable electricity pricing for
data centers. We describe additional power management techniques
that can be realized if the proposed VM energy metering capabil-
ity is available, including its applicability to previously proposed
application energy management strategies [33, 13] that can be ex-
tended to VMs.

The power modeling techniques discussed are also applicable to
metering the energy usage of individual applications running on a
computer system, and may be useful for battery power management
for laptops.

2. RELATED WORK

Energy Metering: Energy measurement for VMs was consid-
ered in [29]. That work assumes that the correct power usage of
each hardware resource in different usage modes is known to its
device driver and exposed to the OS. Accuracy of power estimates
was thus not a concern and not evaluated. However, most hardware
drivers do not provide such power data. Providing such data is dif-
ficult because the power used depends on the details of how an ap-
plication uses a component. For instance, a processor driver cannot

declare a fixed value for its active mode power usage since power
usage will depend on which sub-units and accelerators within the
processor are activated by the application instructions. We develop
methods that work with realistic platforms and build all required
power models based on existing instrumentation in the hypervisor
and the hardware. We experimentally investigate the resultant er-
rors and overheads, using benchmark application in VMs running
on representative hardware. Further, we also present applications
of the VM power metering mechanism, including a power over-
subscription and capping solution for data center power provision-
ing.

Additional closely related work is found in tracking application
energy usage [25, 33, 8] that, in concept, can be compared to VM
energy usage. Some of these methods [25, 8] assume that the en-
ergy usage at a current time instance can be attributed to the thread
that has the active context on the processor and ignore issues of
asynchronous activities such as buffered 10 and parallel tasks on
multi-core processors. This results in high estimation error as al-
ready shown in [33]. However, the main focus of the work in [33]
was on application energy budgeting and the power metering it-
self used data-sheet numbers for key hardware components. All
required application-software instrumentation that tracked an ap-
plication’s hardware component use was assumed to be available.
Our goal is to build the relevant power models using only instru-
mentation that is available in hypervisors and servers, and extend
the metering capability to VMs. We also evaluate errors on stan-
dard benchmarks. We discuss several VM energy cost reduction
opportunities, in addition to the application energy management
scenario considered in [33] that can potentially be applied to VMs
instead of applications.

Power Modeling: Power models of varying complexity and ac-
curacy have been proposed before for several hardware resources
including processors [30, 2, 14, 26, 4, 24], memory [22, 15], and
disks [32, 17]. We focus on applying such models to VM energy
metering. This involves adding the required monitoring capabili-
ties for VM energy tracking, selecting the appropriate power mod-
els with regards to their runtime overhead and accuracy, and using
these models on realistic hardware with practically feasible instru-
mentation.

Power usage of full systems has been explored before through
software-based modeling [5, 6, 23, 3]. While those methods are
very useful for the platforms they were developed for, on most
newer platforms, the server hardware already measures full system
power usage [16].0ur goal is to provide visibility into VM power
usage.

Energy models based on extensive hardware and software instru-
mentation have also been considered [9, 27, 19]. The Quantto [9]
approach is well-suited to the platforms targeted in that work: low
power embedded systems. The source code was instrumented to
track all application and system activities. Such instrumentation
is impractical in cloud platforms because the cloud operator can-
not instrument applications executed within the VM. Also, even if
each cloud customer was willing to allow such instrumentation on
their applications, the kind of fine grained source code annotations
used in [9] would incur a very high overhead in cloud applications
due to the complexity of software applications, abstraction stacks
used, and inclusion of third party modules. Several issues such as
monitoring memory activity, or buffering of disk IO by the OS,
do not arise in Quantto but are significant in virtualized systems.
The LEAP platform [27] presents a system where each hardware
resource is individually instrumented in hardware to track energy
usage. The method in [19] used laboratory instrumentation for
hardware power metering. Our focus is on methods that do not

depend on extensive instrumentation and leverage available instru-
mentation, making them significantly easier to adopt.

3. POWER METERING CHALLENGES

Existing hardware instrumentation, such as motherboard or power
supply based power sensors, allow measuring a physical computer
system’s power consumption [16]. Our goal is to convert such full
system power measurement capability into virtual machine (VM)
energy usage.

While no hardware power measuring device can be connected to
an individual VM, we can think of the following two approaches to
measure its power usage:

Dedicated run with hardware measurement: We could host the
VM alone on a server, measure the server power usage and subtract
the server’s measured idle power usage to obtain the VM’s power
usage. This could be repeated for all servers the VM will be used
on. If the VM power usage over time stays the same for every run,
this would work. But in practice, the VM behavior will change sig-
nificantly from one run to another depending on user workload and
which other VMs are running alongside.

Infer energy from resource usage: We can, in principle, track
the resources used by each VM in software and then convert the
resource usage to energy by leveraging the power models of indi-
vidual resources.

We consider the second approach as more feasible and pursue
it in more detail. For this approach, we need to track the usage
for all the hardware resources, such as the CPU cores, disk arrays,
memory banks, network cards, and graphics cards, to determine
what power level the resource was operating at and what VM was
it working for. Figure 1 represents this approach, depicting some of
the hardware resources and their usage by different VMs over time.

VM issues E % ‘
disk write n \
U A =
N / — Q
= N N
o ﬂ N
Memory § E E §
NE=R,
Hypervisor
commits buffered
Disk writes to idle disk

Time
Figure 1: Metering individual VM energy usage.

The rectangles labeled A and filled with the corresponding pat-
tern represent the times when VM A used the CPU, disk, and mem-
ory respectively. The height of a rectangle corresponds to power
draw during that duration, depending on the power state of the re-
source. For instance, for the CPU, the power state could depend on
the DVFES level used and the processor subcomponents exercised
by the workload. If we can correctly label each resource according
to which VM was using it and also measure the power draw during
that duration (typically a few milliseconds), we can compute the
active energy usage of each VM. The active energy is defined here
as the energy consumed by a resource when working on behalf of
some VM or the system. For instance, the active energy used by

VM A is the summation of energies under the diagonally hashed
rectangles.

In addition to the active energy, the system also uses some idle
energy, shown as light gray shaded regions, and some shared sys-
tem energy, shown as dark gray shaded regions. For the CPU, the
idle energy could include the energy spent in a sleep state for a
small duration between active states. The shared energy includes
energy used by a resource when the work performed benefits mul-
tiple VMs, such as the energy spent on disk spin-up before 10 op-
erations from multiple VMs. Some of the idle energy is spent re-
gardless of whether any VM is running or not while part of it is
affected by the presence of VMs. For instance the length of idle
time durations between VM active periods may affect whether a
deeper sleep state is used by the processor or not during the idle
time, such as depicted using varying heights of the light gray rect-
angles. The idle and shared energies can be reported separately or
divided among VMs either equally or proportional to their active
energy usage, depending on how the metering information is to be
used. For the power capping application illustrated later, reporting
separately works best.

Considering the previous figure, tracking VM energy boils down
to two challenges:

1. Power measurement at fine time granularity: The height of
the rectangles (instantaneous power) in Figure 1 must be de-
termined at a fine enough granularity for each resource, to
distinguish between the energy used by different VMs (de-
pending on time quanta used for context switching).

2. Label resource use per VM: We must determine which VM
was responsible for using each resource. This step should
not require the application source code running inside a VM
to be instrumented, since the platform developers may not
have access to it and requiring application developers to in-
strument their source code is unlikely to scale in practice.

To address the first challenge, we leverage power models that re-
late the software-observable state of a resource to its power usage.
If the state changes can be observed at fine time granularity, we can
infer the power usage at that fine time scale. Observing the power
states is non-trivial and several approximations must be made. For
instance, the resource states, such as the clock gating of sub com-
ponents within the processor or exact nature of mechanical motions
within a disk array, may not be completely known, and the hyper-
visor may not have visibility into power states of certain hardware
resources within the platform, such as hardware-controlled device
power states or graphics processor activity.

After observing the resource state, the next step is to determine
the power usage in that state using its power model. However,
power models are not readily available. The following methods
could be employed to obtain power models:

1. Let the device drivers provide the power usage in different
resource states [29] but existing systems do not support this.
Providing accurate power models would be hard due to the
large number of factors affecting the power level.

2. Use the data sheets of the hardware resources [33]. How-
ever, detailed power data for different power states is rarely
available in data sheets. If data is available for only some of
the resources, the power used by the whole system cannot be
determined.

3. Build the power models in situ. We pursue this approach and
design the metering method to observe the resource states

and learn power models using available platform instrumen-
tation.

To address the second challenge, we leverage the knowledge
that the hypervisor has regarding scheduling of resources for VMs.
Again, complete visibility into all resources is lacking and trade-
offs in instrumentation overhead and accuracy must be made.

4. JOULEMETER SYSTEM DESIGN

The largest dynamic energy consuming resources in a computer
server (without displays) are the processor, memory, and disk. The
server of course has a non-trivial idle energy consumption, often
exceeding 50% of its peak power, but the idle energy is relatively
static and can be measured in hardware. The energy impact of the
VM can thus be considered in terms of the dynamic energy used.

To visualize the energy impact of the processor, memory, and
disk subsystems in a realistic data center server, consider the work-
loads and power data shown in Figure 2. The figure shows the

Phase | Phase Il Phase Il

— 220 4
2
[}
g
a 120 -
— 100 4
B
(&) 0 - T WL ST SLY
g 100
]
s in
s 0 sttt
_. 100
X
o 50
%
A 0

—

Figure 2: Power impact of the three major system resources.
While memory throughput shown above is obtained using
hardware specific performance counters, a simpler approach
to infer memory energy impact is presented in Section 4.2 to
avoid such hardware specific instrumentation.

power consumption measured in hardware for a Dell PowerEdge
server with two quad core processors, 12GB RAM, and four 300GB
disks. The figure also shows the processor, memory and disk uti-
lizations over time. The workload shown was specifically gener-
ated to first exercise the processor (denoted Phase I in the figure),
then the memory (Phase II), followed by the disk (Phase III), and fi-
nally a combination of all three resources. The resource utilizations
and power data are aligned in time. It is easy to see the increase
in power with varying processor utilization in phase I. Similarly,
phases II and III show the energy impacts of memory and disk re-
spectively. The dynamic energies of these three resources under
this workload are shown in Figure 3.

Prior work has proposed various power models for deriving full
system energy usage [2, 5, 6, 3] and some of these models have
been compared in [23]. The models used are linear. As we see
in experiments and as is consistent with prior work, the linearity
assumptions made in these models do lead to errors. The magnitude
of errors was small compared to full system energy but is much
larger compared to the energy used by an individual VM. Also, the
errors reported were averaged across multiple workloads but can
be higher on specific workloads. We discuss methods to overcome

Power (W)
S
o

60
20 I
0 []

CPU RAM Disk mCPU Memory ™ Disk

Figure 3: Relative power impact of different resources on dy-
namic power consumption.

those errors without requiring extensive additional instrumentation.
Our approach takes advantage of built-in server power sensors that
were not available in older servers used in prior work.

4.1 Practical Power Models
4.1.1 CPU

The power usage of the CPU depends on several factors, such as
the subunits within the processor that are active, specific instruc-
tions executed, on-chip cache usage, frequency used, denoted by
Performance states, or P-states, corresponding to different DVFS
frequencies and Throttle-states, or T-states, corresponding to DFS
frequencies. An accurate power estimation considering these fac-
tors can be achieved using a cycle accurate simulator. However,
that requires a complete architectural model of the processor, and
has high processing overheads, making it unsuitable for runtime
VM power metering.

A lighter weight alternative is to track processor active and sleep
times, often available easily from the OS as processor utilization.
Let ucp. denote processor utilization. Then, in this approach, for a
given processor frequency, the CPU energy model becomes:

Ecpu = CGcpulcepu + Yepu (1)

where ovepy, and 7ycp,, are model specific constant. The method to
learn parameters the model constants is described in Section 4.2
together with the power models for other resources.

Assigning the CPU usage to relevant VMSs requires accounting
for the exact chip resources used by the VM, including the shared
caches and processing components. We choose a light weight ap-
proach that simply tracks when a VM is active on a processor
core. The energy used can be tracked using Equation (1) during
the durations when the VM is active on the processor. The Win-
dows Hyper-V hypervisor creates virtual processors that can span
a whole or fractional logical core' and allocates the specified num-
ber of these to each VM. Hyper-V allows tracking the usage of
the virtual processors from within the root VM through its perfor-
mance counters (under its Hyper-V Hypervisor Virtual
Processor counter category, with counter instances denoting each
individual guest VM virtual processor, and a dedicated category
named Hyper-V Hypervisor Root Virtual Processor
for the root VM’s virtual processors). Using the hypervisor VM
settings that relate the virtual cores to a whole or fractional logical
core, the virtual processor usage can be mapped to physical proces-
sor utilization. Similar data is also available for the Xen hypervisor,
for instance, through Xentrace. If the processor utilization of VM
A, is represented by ucpu, 4, then the energy usage of a VM A,
denoted Ep.,, 4, becomes:

Ecpu,A = COcpulcepu,A (2)

' A logical core may differ from a physical core when the processor
uses hyper-threading, such as on the Intel Nehalem.

Note that the processor idle energy (spent in sleep states) is not in-
cluded above as we have chosen to report it separately (Section 3).

4.1.2 Memory

A true estimate of memory energy usage may use a cycle ac-
curate simulation of its hardware design. However, prior memory
power models have found that the key factor that affects memory
energy usage is the read and write throughput. While external in-
strumentation has been attempted to capture memory throughput
accurately [1], a low overhead estimate of memory throughput is
the last level cache (LLC) miss counter available in most proces-
sors. Using this metric, memory power consumption may be writ-
ten as:

EMem (T) - Oénw'mNLLCJ\l (T) + Ymem (3)

where Enrem (T') represents the energy used by memory over du-
ration T, Nproam (T) is the number of LLC misses during 7', and
Qmem and Ymem are the linear model parameters.

Tracking the LL.C misses corresponding to each VM is less straight-

forward than tracking the VM processor usage. Since the meory
accesses are managed by the processor hardware, the OS or hy-
pervisor does not have direct visibility into this. Most processors
do expose the LLC misses as a hardware performance counter and
modern ones such as Intel Nehalem offer it on a per core basis. If
we include the additional software tooling required to access the per
core LLC misses and track its value with each VM context switch
on every core, we can obtain the LLC misses corresponding to a
VM. Then, the memory energy used by a VM A becomes:

Ertem,a(T) = amemNLLCOM, A 4

where N1,rcnm,app represents the number of LLC misses for a VM
across all cores used by it during time period 7', and cpem 1S the
same as in (3).

The above approach is feasible but has limitations for practical
use. Tracking for LLC misses requires knowledge regarding pro-
cessor specific counters that vary not only across processor manu-
facturers but even among processor families and model series from

the same manufacturer, limiting portability and maintainability. Once

processor specific instrumentation is included, the hypervisor must
also be modified to track these counters at VM context switches.
This can be achieved by modifying the hypervisor source code.
To avoid some of these overheads that may restrict practical use,
we also consider an alternative that avoids hardware performance
counters (Section 4.2).

4.1.3 Disk

While several power models have been developed for disks, this
subsystem remains the hardest to model well. The difficulty arises
due to lack of visibility into the power states of a hard disk and the
impact of disks’ hardware caches. Further, in data center servers,
disks are mostly used in RAID arrays and even when RAID-0 is
used, only the RAID controller hardware controls the physical disks
while the hypervisor only sees the logical drives. We restrict our
design to using hypervisor-observable parameters.

The hypervisor can observe the number of bytes read and written
as well as the service times for those reads/writes. However, for in-
dividual VMs, current hypervisors only track bytes read or written
and we use those in our disk energy model:

Episk(T) = arpbr + qtwbbw + Yaisk ()

where Ep;si(T) represents the energy consumed by the disk over
time duration 7', and b, and b,, are the number of bytes read and
written respectively during interval 7'. The « parameters and Yq;sk
are model parameters to be learned.

This model involves approximations since disk spin up/down ac-
tions, not visible outside of the RAID controller, are not captured.
Variable spin speeds are not captured but as multi-speed disks are
not commonly used in data centers, this is not a serious concern.

As for other resources, we need to track the disk usage parame-
ters in (5) for individual VMs. The time at which the disk activity
occurs is usually not the same as when the VM is active on the
processor, since the hypervisor may batch 10 interrupts and buffer
IO operations. Thus instead of looking at storage system activ-
ity during the active context of a VM, the IO operations need to
be explicitly tracked in the hypervisor. Fortunately, the Windows
Hyper-V hypervisor already does most of this tracking and VM
specific disk usage can be obtained from Hyper-V performance
counters in the Hyper-V Virtual Storage Device cate-
gory for certain types of VMs and the Hyper-V Virtual IDE
Controller category for other types of VMs.

This yields the following disk energy model for a particular VM

EDisk,A = @y * br s + Quwbbw,a (6)

where b, 4 and b,,, 4 represent the number of bytes read and writ-
ten, respectively, by VM A. Further, in our experiments, we found
the difference in energies for disk read and write to be negligible
and hence a common parameter, say b;,, obtained by taking the sum
of the above mentioned VM disk counters, can be used to represent
the sum of bytes read and written, simplifying the model to:

Episk(T) = ttiobio + YDisk @)
VM disk energy can then be computed using:
Episk,A = 0o * bio, 2 ()

4.1.4 Other Components

The dynamic range of power usage due to other resources on
our testbed servers was small and we have not modeled those. The
static energy use of those resources is included in the system idle
energy in our model. However, some of these resources may be
important to model on other platforms. The 1 Gbps Ethernet cards
on our servers did not show a wide variation in energy use with
network activity but higher speed cards such as 40Gbps and fiber
channel cards do use more energy in driving the physical medium,
and this energy is likely to vary with network activity. With servers
that use multiple such cards, modeling the network energy will thus
be important. The testbed servers did not vary their fan speeds but
if variable speed fans are used, their contribution to dynamic en-
ergy should be modeled. Another effect to consider is the change
in power supply efficiency as the power drawn changes, which will
introduce errors into our linear power models. Note that our ap-
proach is focused only on the local energy consumed by a VM
and not the additional energy use caused by it in a SAN device
or a back-end database. Additional power models for those devices
with VM request tracing would be required to include that impact.

4.2 Model Parameter Training

The power models in equations (1), (3), and (7) use certain coef-
ficients, denoted by «’s, and ~’s, that need to be learned in situ on
the servers.

Realistic platforms do not allow measuring Ecpw (1), Errem (T)
and Ep;si(T) separately but only the full system power, denoted
Esys(T). In Windows Server 2008 R2, F,s is exposed using a
counter named Power Meter.Power, on supported hardware
models, as well as Windows Management Instrumentation (WMI)
based API calls.

Suppose we use a quantity Fszqatic(T") to represent the idle sys-
tem power (this also includes power used by the non-modeled re-
sources in the system). Then, assuming a time duration 7" = 1, we
can measure:

Esys = E(;pu + Erem + Episk + Estatic
= Ocpulcepu (p) + Yepu + amemNLLCM
+'Ymem + aiobio + Ydisk + Estatic (9)

The following points are worth noting regarding the above equation
and lead to slight modifications for actual implementation. Firstly,
with the above summation, since the constants Yepu, Ymem, Ydisk-
and FEs:qtic do not have any observable parameters that vary across
observations, we cannot learn their individual values from mea-
surements of F,y,s. Their sum can hence be denoted as a single
constant, . Secondly, the magnitude of wcp,, is a fraction between
0 and 1 while Nyrca and b;, take values of the order of a hun-
dred million. For numerical stability, it is preferable to normalize
Nr.rcum and b, with respect to their maximum values observed on
a system, such that the o parameters are scaled to similar magni-
tudes. The final equation used in learning thus becomes:

Esys - Qepulcpu + memUmem + QioUdisk + Y (10)

where Umem and uqisk represent the normalized value of Nrrcnm
and b;, respectively.

Two methods to learn the parameters for the above models are
described below.

4.2.1 Base Server Model Learning

Taking multiple observations of the observable quantities allows
estimating the model parameters using learning techniques such
as linear regression. We use linear regression with ordinary least
squares estimation. To generate a sufficient number of observa-
tions resulting in linearly independent equations and spanning a
large range of resource usage values, we load each resource us-
ing a controlled workload (such as shown in Figure 2). This can
be carried out once at server installation time before any VMs are
instantiated, and the model parameters used at run time for VM
power metering using equations (2), (4), and (8).

We refer to the model learned using this method as base server
model. This method is conceptually similar to prior methods for
full system energy estimation [23].

4.2.2 Refined Model Learning

The base model learning approach gives good estimates when
linearity holds. Such linearity holds when the servers are used for
homogeneous workloads such as used in [6], where power was ob-
tained as a linear function of CPU utilizations.

The problem with the base method however is that linearity does
not necessarily hold across multiple workloads. For a cloud plat-
form hosting multiple VMs, the workload is no longer homoge-
neous for an entire server and different VMs may internally run
very different applications. Also, the dynamic power used by a sin-
gle VM is smaller than a full server and hence to obtain reasonable
percentage errors, a much smaller absolute error is required in the
estimate.

The simple utilization based models do not capture all aspects of
the resource power states. Consider, for instance, the three bench-
marks from the SPEC CPU 2006 suite shown in Table 1. The ta-
ble shows the processor utilization, memory utilization, and the
measured power (averaged over one run of each benchmark and
excluding the idle power of the platform) for these benchmarks
(10 is negligible for SPEC CPU benchmarks). Comparing gobmk

and omnetpp, in the linear model of (10), if amen is positive,
would predict a higher power consumption for omnetpp since it
has the same processor usage but higher memory usage. The real
observed power is in fact lower. We could try a negative value
for aumem but then, comparing omnetpp with 1bm one can see
that higher memory usage of 1bm does result in higher energy than
omnetpp, and so a negative value of amen Will yield high error.
The linear model in 10 cannot capture these effects because certain

CPU (%) | Memory (%) | Power (W)
445.gobmk 100 1.8 28
471.omnetpp 100 23 25
470.1bm 100 31 26

Table 1: Model non-linearity exposed using measured power
and observed resource states.

unobserved power states of the processor are not being accounted
for. For instance, the large memory usage may correspond to pro-
cessor pipelines being stalled on cache misses, reducing processor
power. The use of the processor’s floating point unit may on the
other hand increase power usage at the same utilization. Some of
the unobserved states can be captured through additional processor
performance counters but the number of such counters that can be
tracked simultaneously is very limited (2 to 4 counters typically)
and not portable across processors.

To capture such differences across different workloads, we learn
the model parameters for each VM separately. Since for a given
workload, the unobserved power states are highly correlated to the
observed ones, the model based on a small number of observed
states will capture the power usage more accurately. In fact with
this approach, even if the processor counter for LLC misses is not
captured due to portability limitations across processors, that sim-
ply becomes another unobserved state that for a given workload
should be correlated with observed states.

In this approach, equation (10) is modified to be written as a sum
of individual VM power values. Each unknown model parameter
is assigned a separate variable for each VM. Suppose there are n
VMs, then acepy is split across these VM into n distinct parameters
a1, a2, ...a,. The root VM, which typically has very low resource
usage, is assigned the base model parameters.

Whenever a new VM enters the system, power and resource us-
age values are collected for some time and linear regression is re-
peated to determine the unknown parameters for that VM. Model
parameters for multiple new VMs can be learned at the same time
as demonstrated in our experiments. The model parameters specific
to each VM are used for metering its power for as long as that VM
resides on the server or when it returns to the same server. Servers
with similar configurations could share the model parameters for a
VM when if it migrates across homogeneous hardware. This mod-
els learned by this method are denoted refined models.

Model Adaptation: This approach naturally allows for model
updates when application characteristics change, or hardware con-
figurations change. Joulemeter can continuously track the error be-
tween the sum of estimated power values for all VMs running on a
server and the measured server power. Whenever the error exceeds
a threshold (based on previously observed error values), the model
can be re-learned from the recent data.

S. IMPLEMENTATION

A block diagram of the JoulemeterVM energy metering system
is shown in Figure 4. The block labeled workload represents the
set of VMs hosted on the server.

VM Model
- (YMf]) Resource | Refinement
Workload Tracing *
Base Model
System > Training
& rower Yy
&Poyver Energy
Server Tracing Calculation

Figure 4: Joulemeter block diagram.

The system resource and power tracing module reads the full
system CPU, disk, and power usage.

The VM resource tracing module uses hypervisor counters to
track individual VM resource usage. Tracing of LLC misses was
included in our lab prototype for experimentation (Figure 2) but is
not intended to be used in Joulemeter.

The base model training module implements the learning ap-
proach from Section 4.2.1 and the model refinement block imple-
ments the learning method from Section 4.2.2. The output of base
model training and previously learned VM models are used to re-
duce the number of unknowns in regression when a new VM model
is being learned.

The energy calculation block uses the resource tracing data and
model parameters in equations (2), (4), and (8) to output VM en-
ergy usage.

The system is implemented using Windows Server 2008 R2 Hyper-

V but the concepts extend to other hypervisors as well.

6. EVALUATIONS

This section presents our experiments to evaluate Joulemeter. We
investigate the errors in power metering for the base method as well
as the refined method with various mixes of VM workloads.

6.1 Experimental Setup

The metering prototype is tested on a Dell PowerEdge R610
rack-mount server with two Intel Nehalem L5520 quad core hyper-
threaded processors, resulting in 16 logical cores. The server in-
cludes 12GB RAM and 4 SAS 300GB 10k hard drives. The first
drive is used for the host OS (Windows Server 2008 R2 with Hyper-
V) and the other three are in a RAID 5 array exposing a single local
drive. Storage for all VMs was allocated from the RAIDS array.
Power data exposed to the OS is internally measured by the server
in its two power supplies, at the AC input, and thus represents total
power drawn including any losses in the power supply itself [16].

The built-in power sensors in different servers update their read-
ings at different intervals. Hence we implemented a controlled ex-
citation scheme that pulses the CPU load, generating rapid changes
in power, at a known rate. By tracking the power updates, we can
learn the update interval of the power sensor. We then average all
hypervisor resource usage counters over the same update interval,
to remove this non-linearity from the model training data. For the
Dell server used, the update interval was 2s.

The benchmarks used to represent applications hosted inside the
VMs consist of the SPEC CPU 2006 (www . spec . org) suite (pro-
cessor intensive workloads), and IOmeter (www . iometer.orq)
benchmarks (IO intensive workloads). Multiple VMs were hosted
on the server resulting in various mixes of workloads. Each VM
was assigned 4 virtual processors allowing it to run at most 4 hard-
ware threads. For single threaded benchmarks, multiple instances

of the benchmark hosted in a VM were run to use multiple cores.
Given 16 logical cores on the server, up to 4 VMs could be hosted
without sharing any cores.

6.2 Base Power Model Training Error

We first evaluate the accuracy of power models, using the base
learning method. The server was loaded using controlled loads that
exercised the multiple cores and disks, while power was metered.
Figure 5 shows an example trace of the power estimate produced
using the base model, when the server was subjected to randomly
varying loads, generated using the same controlled load generator
as was used for generating the training loads. The power measured
by an externally connected power meter (WattsUp PRO ES) is also
shown for comparison. The base server model can be used to get

250 u
External

. —— Measured
2 200 = = = Estimate
5
H
o
a

150

0 50 100 150 200
Time (s)

Figure 5: Base server model used for a sample random run.

approximate power usage statistics before VM workload specific
refined models have been learned. Also, this power model (such as
learned using an external power meter in a lab before production
use or at the manufacturer site) can be used to obtain server power
for older servers that do not have built-in power sensors built-in
power meters or for servers that do not expose their power meter to
the OS.

Base Error: To evaluate the base model error, we perform mea-
surements similar to that in Figure 5 for multiple benchmarks. Fig-
ure 6 shows the errors for various workloads. The error is calcu-
lated as follows. For each run, the instantaneous error between
the measured power and estimated power at each time step is mea-
sured. The absolute values of the instantaneous errors are averaged
over the entire run. The errors reported are averaged over multi-
ple benchmark applications comprising a particular workload. The
workload labels SPEC and IO correspond to SPEC CPU 2006 and
IOmeter based benchmarks. Label ALL refers to use of all appli-
cations within the benchmark suite. FP and INT refer to SPEC
CPU floating point and integer respectively. RND and SEQ refer
to IOmeter load configurations with and without random disk ac-
cess, respectively. The error is comparable to prior works [23]. A
5% error on this server corresponds to approximately 10W at high
utilization levels.

Tracing Overhead: Running Joulemeter only involves reading
the performance counters used in the power models and perform-
ing scalar multiplications. Occasionally regression matrices are in-
verted. With n VMs and 2 unknowns per VM, even if regression is
performed for all VMs at once, the matrix is only 2n X 2n. With the
number of VMs on a server usually being small, up to a few 10’s
of VMs per server, this matrix inversion is trivial. Since Jouleme-
ter runs in the root VM, we tracked the resource usage of this VM
itself both when running Joulemeter and when not, on both an idle
server and when other VMs were running some of the benchmarks.
The difference in the resource usage of the root VM was too small
to be measurable with respect to noise.

Percent Error

SPEC ALL SPECINT SPECFP IOALL IOSEQ IORND

Figure 6: Power model errors for Dell PowerEdge. Error bars
show standard deviation.

6.3 VM Energy Measurement

VM energy measurement uses the refined models. As an illustra-
tion, consider the CPU utilization and power tracked for multiple
CPU intensive workloads from SPEC CPU 2006, shown in Fig-
ure 7. As can be seen, at any given CPU utilization, the actual
power used can differ significantly across workloads. The spread
can be greater when other types of workloads are included. The
spread may increase further with greater use of heterogeneous pro-
cessor cores, specialized hardware accelerators, and dedicated co-
processors in newer architectures, that different applications lever-
age to varying degrees.

250
S 200}
o)
2 .
o 1507 3"
Bt
100

20 40 60 80 100
CPU (%)

Figure 7: Power usage is not exactly linear with processor uti-
lization. Power differences of exceeding 30W are seen at certain
CPU utilizations. (Processor frequency was set to a single level
for all measurements.)

For learning refined models, in our experiments, after a new VM
comes in, its resources are tracked for 200s and the tracked data
is used for regression. Here, 200s suffice because the VM was
actively running benchmarks after instantiation. However, practical
systems may have to wait longer as the VM may remain idle for
long periods after starting up and the model learning can only take
place after enough resource usage samples have been collected?.

After the refined model is learned, the VM resources are tracked
for an additional testing period. Figure 8(a) shows the CPU re-
source usage as an example for 3 VMs on a server, with each VM
running a different benchmark from the SPEC CPU 2006 suite.
Power data estimated using refined models in test runs is shown
in Figure 8(b).

“The base model can provide approximate power usage during the
waiting time.

30 30
471.omnetpp 471.0mnetpp
25 —— 445.gobmk 25 —— 445.gobmk
20 = = = 453.povray = = =453.povray
g g
o 15 X 9]
o =
o mp—— S
w0} ! o
1
5t 1
1
0
0 50 100 150 0 50 100 150
Time (s) Time (s)
(a) CPU (b) VM Power

Figure 8: CPU and power usage for three VMs. The refined
model assigns different power usage even when the CPU usage
is similar.

Ground Truth: To evaluate the accuracy of VM energy us-
age, we wish to compare the Joulemeter VM power estimates to
a ground truth. Obviously, no physical power meter can be con-
nected to a VM to obtain a direct ground truth. Only the total phys-
ical server power can be measured. However, if the VM powers are
estimated correctly and added to the static idle server power usage,
the sum should match the total power usage of the server. When
the sum is correct for multiple VM combinations at different times,
it is very unlikely (though possible) that incorrect VM power esti-
mates add up to the correct total power at all times. We can thus
use the error between the estimated sum of power consumptions
of multiple VMs and the measured server power as an estimate of
Joulemeter accuracy.

The estimated and measured power values from a test run are
shown in Figure 9(a). The estimate using the base server model is
also shown for comparison. Average power usage across the entire
trace assigned to different VMs for this run is shown in Figure 9(b).
The static idle server power component is attributed to the root VM
in these figures.

240 Measured I Root
220 —s— Base Est. _ 200 [471.omnetpp
= = = Refined B [445.gobmk
g ag—, 180 [__1453.povray
— o
: S
8 g 160
g
< 140
0 50 100 150 200 120

Base Est. Measured Refined

(b) Average

Time (s)

(a) Instantaneous Power

Figure 9: Comparing the power measurement from the refined
model with ground truth.

VM Power Errors: Measurements similar to Figure 9(a) are re-
peated for various mixes of workloads on multiple simultaneously
active VMs on a server. The benchmarks running within VMs are
listed in Table 2. A mixture of integer, floating point, and IO in-
tensive workloads is used. The 10 workloads include random and
sequential access. The error results are shown in Figure 10.

Clearly, the refined models yield significantly improved errors in
most cases. The error in total power is within a range of 1.6W-4.8W
across all cases tested. We expect the error for each VM would to
be even smaller: equally dividing the total error by the number of
VMs, the per VM error is expected to be in the 0.4W-2.4W range.

Mix | # VMs Benchmarks

(a) 2 471.omnetpp, IOmeter

(b) 2 445.gobmk, 444.namd

(©) 2 444 namd, IOmeter

(d) 2 453.povray, IOmeter

(e) 2 445.gobmk, 471.omnetpp

) 4 445.gobmk, 453.povray, IOmeter, 471.omnetpp
(2) 4 IOmeter, 471.omnetpp, 444.namd, IOmeter

Table 2: Workload mixes for errors shown in Figure 10.

I Base
[1Refined

15

Error (W)
[
o

CY (b) © (d) (e) ® ()
VM Mix

Figure 10: VM error evaluation on multiple VM mixes.

7. APPLICATIONS IN POWER MANAGE-
MENT

VM power metering has many potential applications in cloud
computing and virtualized data centers. We discuss two concrete
examples in detail: power provisioning and power tracking, and
describe several others briefly.

7.1 Power Provisioning

We now show how Joulemeter can be used to solve the power
capping problem for VMs, leading to significant savings in power
provisioning costs in data centers.

Power infrastructure is a major capital investment of a data cen-
ter. It can take up to 40% of the total cost of data center construc-
tion [10]. Wastage of this expensive power capacity due to under-
utilization is a prevalent and well recognized problem [6]. In tradi-
tional power provisioning practice, the number of servers allocated
to a provisioning unit (e.g. a rack or a power distribution unit) is
calculated using the total usable power divided by the peak power
consumption of a server. Since a server hardly runs at the peak
power, nor will all servers on a circuit reach their peak at the same
time, the traditional provisioning mechanism leaves a large amount
of available power unused almost all the time. This is usually re-
ferred to as stranded power. Provisioning costs wastage includes
the costs of power distribution circuits, UPS systems, backup gen-
erators, and fuel reserves maintained at the increased capacity.

Power over-subscription is actively being considered for reduc-
ing such waste [7, 18]. Since servers can only use their rated peak
power if each server component is used to its peak, the rated peak
is rarely achieved by practical applications. Thus more servers can
be hosted if provisioned for their actual peak. Further, by taking
advantage of statistical variance among power usage of multiple
servers, additional servers can be included, say provisioned to the
x—th percentile of their peak, using resource overbooking tech-
niques such as [31]. However, all over-subscription techniques re-

quire a fail-safe, to manage the low probability event where power
usage exceeds the capacity. This safety mechanism is called power
capping, which restricts the server power usage to a specified cap.
In physical servers, capping is implemented in hardware, and re-
duces the power used by throttling processor frequency lower lev-
els. Many server manufacturers now offer this capability [11, 12].

7.1.1 VM Power Provisioning and Capping

Hardware throttling, however, is too rigid for virtualized envi-
ronments. Reducing CPU frequency inevitably affects the perfor-
mance of all VMs running on that server. Excesses of one VM can
thus cause other VMs to suffer, violating the isolation property of
virtualization, causing an undesirable noisy neighbors effect. The
proposed VM power metering capability allows extending power
capping to VMs so that benefits of over-subscription continue to be
realized in spite of virtualization. In fact additional benefits can be
realized when over-subscribing with virtualization.

Suppose, given a set of VMs and their resource usage traces, it
has been consolidated to physical servers using any existing con-
solidation method. The resource constraints on the VMs automati-
cally ensure that the server rated power is not exceeded. However,
using Joulemeter data, we can determine the actual power usage,
denoted Pyc¢,v ar and its x-th percentile, denoted P, v s, for each
individual VM. Other VM power consumption statistics, including
variance and correlations among VMs, can also be computed from
the Joulemeter power data. As an example for two VMs, let P4 and
Pg be random variables representing the dynamic power consump-
tion of VMs A and B, realized by their Joulemeter data trace from
the past week. Then the consolidated server A 4+ B has statistics:

E(Pa+p) = E(Pa)+ E(Pg)
Var(Payg) = Var(Pa)+ Var(Ps)+ 2Cov(Pa, Pg)

The above formulas are easy to generalize to n VMs. The statistics
computed using Joulemeter data can be used to set power caps to
get two benefits:

Capping with Isolation: Joulemeter allows reproducing the ben-
efits of physical server capping but with VM isolation. The to-
tal power consumption for the server can be calculated as Ps =
ZLI Pact,v (). The server power cap may be set to Pserver =
Ps + A, where A,, is a safety margin. Joulemeter tracks the
actual power use per VM and allows the cap to be enforced on each
VM separately, maintaining isolation of workloads. Pseryer set in
hardware acts purely as a fail-safe as capping happens at the VM
level. The VMs to be capped may be selected based on which ones
are violating their budgets or based on importance of their work-
loads.

Risk-taking Benefit: With a good power capping technique, the
data center operators can take more risk when consolidating VMs,
and even set Pserver < Ps. For instance, they could set the cap to
Picrver = >y Pu v vy + Am, which ensures that each VM is
provisioned to its x—th percentile.

This will allow even more VMs to be consolidate into fewer
servers, much like statistical over-subscription of physical servers
to a rack. However, the benefit of virtualization is that the peak
of the total power will exceed the total server cap much less than
(100-x)% of the time due to statistical variations among VMs. The
risk taking benefit will be higher if correlations among VMs are
low.

7.1.2 Capping Mechanism

Joulemeter also facilitates the capping mechanisms. With vir-
tualization, in case the peak is exceeded, and the cap has to be
enforced, the capping mechanism is not restricted purely to throt-

tling the processor. One may migrate certain VMs to servers that
are not exceeding their caps. Again, Joulemeter power metering
outputs help determine how the migration of each VM will affect
power levels. Without the VM power data one would be restricted
to using resource utilizations for making power related migration
decisions and that resource usage is only an approximate indicator
of actual power use (Figure 7).

Of course, migration may not always be feasible such as when
no server within the migration cluster has excess capacity and then
power use has to be reduced locally. While frequency scaling is not
possible in current hardware for individual VMs, the CPU usage
of individual VMs can be controlled resulting in per VM power
caps [20]. Joulemeter models can help determine how much the
CPU usage of different VMs will have to be reduced to achieve the
desired power level.

7.1.3 Production Traces

To evaluate the benefits of VM power capping, we use server re-
source usage traces from three thousand servers from a production
data center serving real world applications hosted in Microsoft data
centers. In particular, we use two datasets:

Online Application: We collected resource utilization traces from
1000 servers hosting a single large online application, Windows
Live Messenger, that serves millions of users. We use the utiliza-
tion traces as if they came from 1000 VMs hosting the same ap-
plication. The peaks and resource usage in these traces are highly
correlated since the servers are hosting the same application and
serving the common user workload.

Cloud Applications: The same data center also contains other
servers hosting a variety of small applications that perform very
different functions, ranging from serving media files and internal
enterprise data processing. We use the resource usage traces from
2000 of these servers to represent heterogeneous customer VMs
hosted in a cloud computing environment. These traces are not sig-
nificantly correlated in their usage patterns.

Sample CPU utilizations from both sets are shown in Figure 11.

100
S
= 50
=
o
O

0
Cloud

g 10
2 s el
O

0 _.L.L‘x,‘.w U \A/A\A}l/ A va g u/\,/\or‘v U (VQﬁ/\J‘“\

Time(s)

Figure 11: Sample server usage traces.

7.1.4 Evaluation

Isolation Savings: Using the above provisioning and capping
method, we can achieve the same kind of over-subscription sav-
ings on VMs, as with physical server power capping. For the above
datasets the savings in provisioned capacity, with respect to provi-
sioning for possible peak, are shown in Table 3 (at A,, = 10%),
where Cloud and Cloud’ represent two different sets of 1000 servers
from the cloud dataset.

Even though these savings are similar to what was earlier achieved
with physical servers, they are important because they are in ad-
dition to the consolidation savings from virtualization and would
have been lost without VM power metering. The consolidation

‘Workload
Savings

Cloud
24.18%

Cloud’
27.80%

Online
13.81%

Table 3: Savings due to VM power metering and capping.

savings are themselves significant. For instance, for the Online ap-
plication workload virtualization allowed consolidating the servers
to 15% fewer servers®, leading to a reduction in the idle power re-
quired for those 15% servers. The Cloud workload had much lower
CPU utilization and was consolidated to 63% fewer servers. With-
out the capability of VM power metering and capping, one could
achieve either the consolidation savings (15% to 63% consolida-
tion via virtualization, no capping) or the over-subscription savings
(Table 3 savings via hardware capping, no consolidation), but not
both. Using Joulemeter allows achieving both at the same time.

Risk-taking Savings: As mentioned, VMs make it easier to pro-
vision for z-th percentile instead of actual peak. Figure 12 shows
the additional reduction in provisioned power achieved for the On-
line and Cloud application datasets when provisioning for Py v s,
compared to provisioning for P,c:, v, for varying and with
A,, = 10%. The power characteristics of the Dell PowerEdge
server are used in computing the savings.

20 -+
ECloud @Online

15 A
g
% 10 -
£
>
g 5 _B

0 - T T T

99 95 90 80

Percentile Provisioned

Figure 12: Provisioned capacity savings with Joulemeter.

The savings are shown when every server is provisioned for a
common capacity, based on the capacity required for the server
drawing the highest power. This makes it easier for the consoli-
dation algorithms to treat all servers homogeneously. Joulemeter
is itself used to profile the power usage of VMs and find the x-th
percentiles of their peak powers.

The actual percent of the time when the VMs have to be mi-
grated (i.e., the cap has to be enforced) are plotted in Figure 13. As
expected, for the Online application, since the VMs are highly cor-
related in usage, the cap is enforced more often than for the Cloud
applications. However, in either case the cap is enforced signif-
icantly less often than the tolerable limit (100 — x)% set during
provisioning.

Figures 12 and 13 show that additional savings of 8% to 12% of
provisioned power can be achieved, with migrations required for
less than 0.5% of the time (z = 95).

The reductions shown in provisioning cost can be used to add
more servers thereby postponing the construction of the next data
center saving significant capital expense. For a mid sized data cen-
ter, typically provisioned at 15 MW, a 10% reduction in provisoned
capacity amounts to an additional capacity of 1.5MW that is suffi-
cient for approximately 5400 servers.

Metering Error: Note that the metering mechanism has some
errors as shown in the previous section. An over-estimation er-

3Considerable prior work exists in determining appropriate con-
solidation strategies for VMs, and for this experiment and we use a
commonly used heuristic, first fit decreasing, for consolidation.

ECloud @Online

Capped Time (%)
o - N w E=y w

I

99 95 90 80
Percentile Provisioned

R

Figure 13: Percent of time capping had to be enforced.

ror does not lead to any problems, other than reduction in savings.
However, sometimes the error can cause the peak usage of a VM to
be under-estimated, causing a server’s allocated cap to be exceeded
even when no VM is inferred by Joulemeter to exceed its allocated
VM cap. To address this concern, we can use the histogram of the
VM energy metering error and determine the y-th percentile of the
error, say A,. Then, if we provision with a margin A, the provi-
sioned peak will not be exceeded due to metering errors, more than
(100 — y)% of the time. When exceeded, the hardware cap may
kick in. Of course, in reality not all VMs peak simultaneously, and
the hardware cap will kick in much less frequently than (100—y)%.

7.2 Power Tracking

Another application of VM level power measurement is to follow
a particular power availability level. Many data centers are consid-
ering using renewable energy such as solar, wind, or tidal power as
part of the power supply [28]. Usually renewable energy produc-
tion varies with weather conditions. Also, electricity price varies
every few minutes on the whole sale market and can be exploited
by large data centers to reduce operating costs [21].

To take advantage of these variations, we can control resources
such that certain VMs consume only the amount of energy available
from the low cost source. Among data center workloads, some are
customer facing and must be processed in real time, but there are
many others, such as search index crawlers, financial data analysis,
database back-ups, and disk scrubbing, that are flexible and can be
scheduled to opportunistically take advantage of lower power price
or renewable energy availability.

This can be modeled as a control problem that tracks a target en-
ergy consumption level based on renewable energy availability. We
describe a simplified version in this section, to illustrate the benefit
of using VM power metering. Assume a server is hosting two kinds
of workload. Let z1 (k) be the amount of high priority workload at
discrete time step k, and z2 (k) be the amount of low priority work-
load at k. Let di1k and d2(k) be a amount of workload arrived
between time k to k£ + 1. Assume that we use CPU utilization caps
w1 and ug as the control knobs for resources allocated to workload
1 and 2. Then we have,

:vl(k + 1) = :L'1(k) —+ alzxz(k)) —+ d1(l€) — b1U1(]€) (11)
LEQ(IC =+ 1) .’L’Q(k) —+ azll’l(k)) + dz(k‘) — bQUQ(k) (12)

where a12 and ag; represents the cross interference between the
two classes of workload, and b, and b represents how much work-
load can be processed by per unit of CPU allocation.

Now the total power consumption of the server is

P(k) = alzl(k) —+ a21:2(k).

where a1 and a2 are power model coefficients for the two VMs.
Assume that we can only measure the total power consumption P

and have to use that to determine 1 and u2 such that 1 (k+ 1) =
0. From control theory, we know that if a12 = 0 and a2; = 0,
i.e., there is no interference between the two VMs, then the system
is not observable and one cannot design a controller based on P
alone. If there is interference among the workloads, then designing
a controller is possible but the controller is sensitive to the accuracy
of the interference model. On the other hand, if we can measure
VM power values a1 z1 and a2 directly, then designing a stable
controller is trivial.

7.3 Discussion

In addition to the VM power capping and provisioning cost sav-
ings enabled using Joulemeter, the same metering capability can
also be leveraged for several other uses in virtualized environments,
as follows.

Developer Visibility: Providing visibility into energy use is often
a valuable motivator for developers to redesign their applications
for saving energy. While developers can measure the energy use
on their developer workstations or in-house servers, by connecting
hardware power meters, they do not have that visibility on the ac-
tual cloud servers, where the VM behavior could be different due
to differences in processor micro-architecture, cache hierarchies, or
IO speeds. Joulemeter can provide energy visibility for individual
workloads, even on a shared cloud platform.

Pay-as-you-go billing: The cloud operators can use Joulemeter
mechanisms to offer energy use based pricing schemes. This will
enable them to extend their own benefits from demand-response
electricity pricing and renewable energy availability to their cus-
tomers and align the usage patterns in a jointly optimal manner.

Energy Budgets: Prior work [33] proposed using fixed energy
budgets for applications. Similar budgets can be applied to VMs
to control energy costs. Joulemeter can be combined with the hy-
pervisor’s resource scheduling mechanisms to enforce the energy
budgets on each VM.

8. CONCLUSIONS

We presented a VM power metering approach that can be imple-
mented on current virtualized platforms without adding any addi-
tional hardware or software instrumentation. The guest VMs are
not modified and existing hardware capabilities are used. We ad-
dressed the challenges involved in obtaining a low estimation error
for cloud scenarios with several different types of workloads shar-
ing the same hardware. Our solutions also adapts to changes in
workload characteristics and hardware configurations. The end re-
sult is a mechanism that extends the current physical server power
monitoring solutions to VM power monitoring.

The proposed VM power metering capability was used to realize
significant power provisioning cost savings in virtualized data cen-
ters. Experiments using production server data sets from a commer-
cial data center showed 8% to 12% additional savings aside from
reproducing the savings that existed without virtuzlization but with
the benefits of application isolation. Several other uses for VM
energy metering were discussed. We believe that providing VM
level energy visibility can enable both cloud platform operators and
cloud application developers to improve the efficiency of their sys-
tems.

9. REFERENCES

[1] Y. Bao, M. Chen, Y. Ruan, L. Liu, J. Fan, Q. Yuan, B. Song,
and J. Xu. HMTT: A platform independent full-system
memory trace monitoring system. In ACM Sigmetrics, June
2008.

(2]

(3]

(4]

(5]

(6]

(7]

[8

—_—

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

F. Bellosa. The benefits of event-driven energy accounting in
power-sensitive systems. In In Proceedings of the 9th ACM
SIGOPS European Workshop, 2000.

W. L. Bircher and L. K. John. Complete system power
estimation: A trickle-down approach based on performance
events. In International Symposium on Performance Analysis
Systems and Software (ISPASS), 2007.

D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a
framework for architectural-level power analysis and
optimizations. In ISCA ’00: Proceedings of the 27th annual
international symposium on Computer architecture, pages
83-94, 2000.

D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan.
Full-system power analysis and modeling for server
environments. In Workshop on Modeling, Benchmarking and
Simulation (MoBS), June 2006.

X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning
for a warehouse-sized computer. In Proceedings of the
International Symposium on Computer Architecture (ISCA),
June 2007.

M. Femal and V. Freeh. Safe overprovisioning: Using power
limits to increase aggregate throughput. In Workshop on
Power-Aware Computer Systems (PACS), Portland, OR,
December 2004.

J. Flinn and M. Satyanarayanan. Powerscope: A tool for
profiling the energy usage of mobile applications. In
WMCSA 99: Proceedings of the Second IEEE Workshop on
Mobile Computer Systems and Applications, 1999.

R. Fonseca, P. Dutta, P. Levis, and 1. Stoica. Quanto:
Tracking energy in networked embedded systems. In
Symposium on Operating System Design and Implementation
(OSDI), December 2008.

J. Hamilton. Cost of power in large-scale data centers. Blog
entry dated 11/28/2008 at
http://perspectives.mvdirona.com. Also in
Keynote, at ACM SIGMETRICS 2009.

HP. Dynamic power capping TCO and best practices white
paper. http://h71028.www7.hp.com/ERC/downloads/4 A A2-
3107ENW.pdf.

IBM. IBM active energy manager.
http://www-03.ibm.com/systems/
management/director/about
/director52/extensions/actengmrg.html.

C.Im and S. Ha. Energy optimization for latency- and
quality-constrained video applications. IEEE Des. Test,
21(5):358-366, 2004.

C. Isci and M. Martonosi. Runtime power monitoring in
high-end processors: Methodology and empirical data. In
36th annual International Symposium on Microarchitecture
(MICRO), 2003.

J. Janzen. Calculating memory system power for ddr sdram.
Micro Designline, 10(2), 2001.

J. Jenne, V. Nijhawan, and R. Hormuth. Dell energy smart
architecture (desa) for 11g rack and tower servers.
http://www.dell.com.

Y. Kim, S. Gurumurthi, and A. Sivasubramaniam.
Understanding the performancetemperature interactions in
disk i/o of server workloads. In The Symposium on
High-Performance Computer Architecture, pages 176— 186,
February 2006.

C. Lefurgy, X. Wang, and M. Ware. Server-level power

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

control. In Fourth International Conference on Autonomic
Computing (ICAC), page 4, 2007.

A. Mabhesri and V. Vardhan. Power consumption breakdown
on a modern laptop. In Power-Aware Computer Systems, 4th
International Workshop (PACS), Portland, OR, USA,
December 2004.

R. Nathuji, P. England, P. Sharma, and A. Singh. Feedback
driven qos-aware power budgeting for virtualized servers. In
Fourth International Workshop on Feedback Control
Implementation and Design in Computing Systems and
Networks (FeBID), April 2009.

A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and

B. Maggs. Cutting the Electric Bill for Internet-Scale
Systems. In ACM SIGCOMM, Barcelona, Spain, August
20009.

F. Rawson. Mempower: A simple memory power analysis
tool set. Technical report, IBM Austin Research Laboratory,
2004.

S. Rivoire, P. Ranganathan, and C. Kozyrakis. A comparison
of high-level full-system power models. In HotPower’08:
Workshop on Power Aware Computing and Systems,
December 2008.

A. Sinha and A. P. Chandrakasan. Jouletrack: a web based
tool for software energy profiling. In 38th Conference on
Design Automation (DAC), pages 220-225, 2001.

D. C. Snowdon, E. L. Sueur, S. M. Petters, and G. Heiser.
Koala: A platform for os-level power management. In
Proceedings of the 4th EuroSys Conference, Nuremberg,
Germany, April 2009.

P. Stanley-Marbell and M. Hsiao. Fast, flexible,
cycle-accurate energy estimation. In Proceedings of the
International Symposium on Low power Electronics and
Design, pages 141-146, 2001.

T. Stathopoulos, D. Mclntire, and W. J. Kaiser. The energy
endoscope: Real-time detailed energy accounting for
wireless sensor nodes. In 7th international conference on
Information processing in sensor networks (IPSN), pages
383-394, 2008.

C. Stewart and K. Shen. Some joules are more precious than
others: Managing renewable energy in the datacenter. In
Workshop on Power Aware Computing and Systems
(HotPower), at SOSP, October 2009.

J. Stoess, C. Lang, and F. Bellosa. Energy management for
hypervisor-based virtual machines. In USENIX Annual
Technical Conference, pages 1-14, 2007.

V. Tiwari, S. Malik, A. Wolfe, and M. T.-C. Lee. Instruction
level power analysis and optimization of software. In 9th
International Conference on VLSI Design, page 326, 1996.
B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource
overbooking and application profiling in a shared internet
hosting platform. ACM Trans. Internet Technol., 9(1):1-45,
20009.

J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy,
and R. Wang. Modeling hard-disk power consumption. In
2nd USENIX Conference on File and Storage Technologies
(FAST), 2003.

H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat.
Ecosystem: managing energy as a first class operating
system resource. In ASPLOS-X: Proceedings of the 10th
international conference on Architectural support for
programming languages and operating systems, pages
123-132, 2002.

