
Asymmetric Kernel Learning

Wei Wua, Jun Xub, Hang Lib, Satoshi Oyamac

aDepartment of Probability and Statistics, Peking University, No.5 Yiheyuan Road, Beijing, 100871, P. R. China
bMicrosoft Research Asia, 4F Sigma Building, No. 49 Zhichun Road, Beijing, 100190, P. R. China

cGraduate School of Information Science and Technology, Hokkaido University, Japan

Abstract

This paper addresses a new kernel learning problem, referred to as ‘asymmetric kernel learning’
(AKL). First, we give the definition of asymmetric kernel and point out that many ‘similarity
functions’ in real applications can be viewed as asymmetric kernels, for example, VSM, BM25,
and LMIR in search. Then, we formalize AKL as an optimization problem whose objective
function is a regularized loss function on supervised training data. Next, we propose an approach
to AKL, which conducts AKL by using kernel methods. In the approach, the space of asymmetric
kernels is assumed to be a reproducing kernel Hilbert space (RKHS), and thus existing kernel
methods can be employed to learn the optimal asymmetric kernel. We also show that such an
RKHS (i.e., space of asymmetric kernels) exists and refer to the kernel generating the RKHS as
‘hyper asymmetric kernel’ (HAK). We present examples of HAK as well as theoretical basis for
constructing HAKs. The proposed approach is applied to search to learn a relevance model from
click-through data. Experimental results on web search and enterprise search data show that the
model, named ‘Robust BM25’ can work better than BM25 because it can effectively deal with
the term mismatch problem which plagues BM25.

Key words: Asymmetric Kernel, Kernel Learning, Kernel Machines, Web Search

1. Introduction

Kernel methods [32, 17] as well as kernel learning [2, 21, 24, 25] are powerful technologies
in machine learning. The key notion in them is kernel function, which is defined as dot product
of images of data pairs in feature space (Hilbert space) mapped from input space (Euclidean
space or discrete set). A natural interpretation of kernel is similarity function between data
points. Conventionally, kernels are symmetric and positive semi-definite. That means kernels
are similarity functions over data pairs in a single input space.

We point out that there are many applications in which we need to measure similarities be-
tween data pairs from two different input spaces. For example, in web search, we rank documents
based on their relevance to the query. We need to measure relevance (similarity) of queries and
documents which are from two different spaces: query space and document space. In collabora-
tive filtering, we recommend items to users based on users’ preference to items. Preference can
be viewed as similarity between items and users which are elements in two different spaces. The
same thing can be said to other applications such as image annotation and machine translation.
We can represent such similarity functions as ‘asymmetric kernels’.

In this paper, we address the problem of learning an asymmetric kernel from training data.
As far as we know, this is the first work on the topic. We first formally define asymmetric kernel,
Microsoft Research Technical Report June 22, 2010

and then explain the importance of the notion by indicating that conventional relevance models
in search such as Vector Space Model (VSM), BM25, and Language Models for Information
Retrieval (LMIR) are all asymmetric kernels. Asymmetric kernel contains conventional positive
semi-definite kernels as special cases. Next, we give a formal definition of asymmetric kernel
learning (AKL) and propose performing AKL using kernel methods. AKL is defined as a su-
pervised learning problem in which the optimal asymmetric kernel is selected from the class of
possible ones which minimizes the regularized loss function. The key idea of our method is to
define the space of asymmetric kernels as a reproducing kernel Hilbert space (RKHS). In this
way, existing kernel methods can be employed to perform the learning task and the form of the
optimal solution can also be given by the representer theorem. We theoretically demonstrate that
such RKHS and the kernel generating the RKHS exist and refer to the kernel as hyper asym-
metric kernel (HAK). We also provide theoretical basis for constructing HAKs. Our method for
AKL can be viewed as an extension of the method proposed by [24] for positive semi-definite
kernel learning. Ong et al.’s method employs hyperkernel and HAKs in this paper are extensions
of hyperkernels.

The proposed AKL method is applied to search. Specifically, it is utilized to train a relevance
model, to tackle the challenge of term mismatch. The model, named as ‘Robust BM25’, is based
on the traditional BM25 and HAK. The learned Robust BM25 model determines the relevance
score of a query document pair on the basis of not only the BM25 score of the query document
pair, but also the BM25 scores of similar query and similar document pairs. All the calcula-
tions are naturally incorporated in the model of our AKL method. Experimental results on two
large scale data sets show that Robust BM25 can indeed solve term mismatch and significantly
outperform the baselines.

The contributions of this paper include: 1) formulation of asymmetric kernel learning prob-
lem, 2) proposal of a method for asymmetric kernel learning, and 3) demonstration of the use-
fulness of asymmetric kernel learning in search.

The rest of the paper is organized as follows. A survey of related work is conducted in
Section 2, and then asymmetric kernel is defined in Section 3. Section 4 formalizes the problem
of AKL and proposes conducting AKL using kernel methods. Section 5 describes how to apply
the method to search. Section 6 reports experimental results and Section 7 concludes this paper.

2. Related work

Kernel methods, including the famous Support Vector Machines (SVM) [35], refer to a class
of algorithms in machine learning which can be employed in a variety of tasks such as classifica-
tion, regression, ranking, correlation analysis, and principle component analysis [17, 32]. Kernel
methods make use of kernel functions which map a pair of data in the input space (Euclidean
space or discrete set) into the feature space (Hilbert space) and compute the dot product between
the images in the feature space. Conventional kernels are symmetric and positive semi-definite,
in the sense that they are defined over one single input space. The kernel function is called Mercer
kernel when it is continuous [32]. In contrast, in this paper, we consider learning of asymmetric
kernels [20] which are defined over two different input spaces.

Asymmetric kernels have only been studied by a small number of research groups [34, 31,
20]. For example, in [34], a method of learning an SVM model with asymmetric kernel has
been proposed. In [20], asymmetric kernel is defined and applied to Fisher’s linear discriminant.
We adopt the same definition of asymmetric kernel as in previous work [20], but focus on the
learning of it in this paper.

2

Choosing a suitable kernel function is crucial for all kernel methods. Kernel learning, which
aims to automatically learn a kernel function from training data, becomes an important technique
[2, 21, 33, 27, 24, 25]. In [21] as well as [2], methods for multiple kernel learning have been
proposed, in which the optimal kernel is selected from a class of linear combination of kernels.
[24, 25] have proposed learning kernel by using kernel methods, in which the optimal kernel is
chosen from the RKHS generated by ‘hyperkernel’. The method for asymmetric kernel learning
(AKL) in this paper can be viewed as an extension of that of Ong et al.’s.

Term mismatch is one of the major challenges for search, because most of traditional ranking
models, including VSM [30], BM25 [28], and LMIR[26, 39], are based on term matching and the
ranking results will be inaccurate when term mismatch occurs. To solve the problem, heuristic
methods of query expansion or (pseudo) relevance feedback [cf., 29, 37, 30, 3, 23, 7, 40] and
Latent Semantic Indexing (LSI) [12] or Probabilistic Latent Semantic Indexing (PLSI) [16] have
been proposed and certain progresses have been made. The former approach tackles the problem
at the term level and the latter at the topic level. In this paper, we apply AKL to address the term
mismatch challenge with a term level approach, and demonstrate that we can learn an asymmetric
kernel as ranking model, referred to as Robust BM25.

Click-through data, which records the URLs clicked by the users after their query submis-
sions at a search engine, has been widely used in web search [1, 19, 10]. For example, click-
through data has been utilized in training of Ranking SVM model, in which preference pairs
over documents given queries are derived from click-through data [19]. Click-through data has
also been used for calculating query similarity, because queries which link to the same URL in
click-through data may represent the same search intent [5, 11, 36]. In this paper, we utilize
click-through data for training Robust BM25 as well as calculating query similarity.

Learning to rank refers to machine learning techniques for constructing ranking models using
labeled data [cf., 22]. Several approaches to learning to rank have been proposed and it becomes
one of the important technologies in the development of modern search engines [e.g., 8, 38,
14]. The Robust BM25 method proposed in this paper can also be viewed as a learning to rank
method. Robust BM25 runs on the top of conventional learning to rank methods. Specifically,
it trains a ‘re-ranking’ model online to deal with term mismatch, while conventional learning to
rank methods train a ranking model offline for basic ranking. The learning method of Robust
BM25 based on SVM proposed in this paper has some similarities to Ranking SVM proposed
by [15] and [19], a popular learning to rank algorithm. However, it also has differences from
Ranking SVM. For example, the model (kernel function) in Robust BM25 differs from that in
Ranking SVM.

3. Asymmetric Kernel

Asymmetric kernel is defined as follows.

3.1. Definition and Properties
Asymmetric kernel measures similarity between two objects from two different spaces. The

similarity function is in fact a dot product in the feature space into which the two objects are
mapped from their original input spaces, respectively. Asymmetric kernel is formally defined as
follows.

Definition 1 (Asymmetric Kernel). Let X and Y be two input spaces, and H be feature space
(Hilbert space). Asymmetric kernel is a function k : X×Y → R, satisfying k(x, y) = ⟨φX(x), φY (y)⟩H

3

for all x ∈ X and y ∈ Y, where φX and φY are mapping functions from X and Y to H , respec-
tively.

Asymmetric kernel is a natural extension of conventional positive semi-definite kernel. If the
two input spaces (also the two mapping functions) are identical in Definition 1, then asymmetric
kernel degenerates to positive semi-definite kernel. Asymmetric kernel has the properties as
shown below, which enable us to construct more complicated asymmetric kernels from simple
asymmetric kernels.

Lemma 1 (Properties of asymmetric kernel). Let k1(x, y) and k2(x, y) be asymmetric kernels
on X × Y, then the following functions k : X × Y → R are also asymmetric kernels: (1) α · k1
(for all α ∈ R), (2) k1 + k2, (3) k1 · k2.

Proof Since k1(x, y) and k2(x, y) are asymmetric kernels, suppose that k1(x, y) = ⟨φ1
X(x), φ1

Y (y)⟩1
and k2(x, y) = ⟨φ2

X(x), φ2
Y (y)⟩2, where ⟨·, ·⟩1 is the dot product in N1-dimensional Hilbert space

and ⟨·, ·⟩2 is the dot product in N2-dimensional Hilbert space. N1 and N2 are finite or infinite.
Let φ1

Xi(·) and φ1
Yi(·) be the ith elements of vectors φ1

X(·) and φ1
Y (·), respectively (i = 1, 2, · · · ,N1),

and φ2
Xi(·) and φ2

Yi(·) be the ith elements of vectors φ2
X(·) and φ2

Y (·), respectively (i = 1, 2, · · · ,N2).

(1) Let φ1
X
′(x) = α · φ1

X(x), we obtain α · k1(x, y) = ⟨φ1
X
′(x), φ1

Y (y)⟩1. α · k1 is an asymmetric
kernel, ∀α ∈ R.

(2) Let φX(x) = (φ1
X(x), φ2

X(x)), and φY (y) = (φ1
Y (y), φ2

Y (y)), we obtain ⟨φX(x), φY (y)⟩ = ⟨φ1
X(x), φ1

Y (y)⟩1+
⟨φ2

X(x), φ2
Y (y)⟩2 = k1(x, y) + k2(x, y). k1 + k2 is an asymmetric kernel.

(3) Let φX(x) = φ1
X(x) ⊗ φ2

X(x) and φY (y) = φ1
Y (y) ⊗ φ2

Y (y). φX(x) is a vector whose elements
are {φ1

Xi(x)φ2
X j(x)},1 6 i 6 N1, 1 6 j 6 N2 and φY (y) is a vector whose elements are

{φ1
Yi(y)φ2

Y j(y)}, 1 6 i 6 N1, 1 6 j 6 N2. We obtain

⟨φX(x), φY (y)⟩ =
N1∑
i=1

N2∑
j=1

φ1
Xi(x)φ2

X j(x)φ1
Yi(y)φ2

Y j(y)

=

N1∑
i=1

φ1
Xi(x)φ1

Yi(y)
N2∑
j=1

φ2
X j(x)φ2

Y j(y)

=

N1∑
i=1

φ1
Xi(x)φ1

Yi(y)k2(x, y)

= k1(x, y)k2(x, y).

k1 · k2 is an asymmetric kernel.

3.2. Asymmetric Kernel as Similarity Functions

Many similarity functions in practical applications can be viewed as asymmetric kernels.
These include document retrieval (search), collaborative filtering, and machine translation. For
example, in search given a query the relevance function assigns scores to documents which rep-
resent the relevance degrees of the documents with respect to the query. The relevance function
is defined over the query and document spaces, and measures the ‘similarity’ between query and
document. Traditionally, VSM, BM25, and LMIR have been employed as relevance models,
which can be viewed as asymmetric kernels (VSM is simply a positive semi-definite kernel).

4

Let Q and D denote query and document spaces. Each dimension in the two spaces cor-
responds to a term, and query and document are respectively represented as vectors in the
two spaces. Let H denote a Hilbert space endowed with dot product ⟨·, ·⟩ (it is in fact an n-
dimensional Euclidean space where n is the number of unique terms).

3.2.1. VSM
Given query q ∈ Q and document d ∈ D, VSM is calculated as

VSM(q, d) = ⟨φVSM
Q (q), φVSM

D (d)⟩,

where φVSM
Q (q) and φVSM

D (d) are mappings toH from Q andD, respectively.

φVSM
Q (q)t = id f (t) · t f (t, q)

and
φVSM

D (d)t = id f (t) · t f (t, d),

where t is a term, t f (t, q) is frequency of term t in query q, t f (t, d) is frequency of term t in
document d, id f (t) is inverse document frequency of term t.

3.2.2. BM25
Given query q ∈ Q and document d ∈ D, BM25 is calculated as

BM25(q, d) = ⟨φBM25
Q (q), φBM25

D (d)⟩, (1)

where φBM25
Q (q) and φBM25

D (d) are mappings toH from Q andD, respectively.

φBM25
Q (q)t =

(k3 + 1) × t f (t, q)
k3 + t f (t, q)

and
φBM25

D (d)t = id f (t)
(k1 + 1) × t f (t, d)

k1

(
1 − b + b · len(d)

avgDocLen

)
+ t f (t, d)

,

where k1, k3, and b are parameters. Moreover, len(d) is the length of document d and avgDocLen
is average length of documents in the collection.

3.2.3. LMIR
We employ Dirichlet smoothing as an example. Other smoothing methods such as Jelinek-

Mercer (JM) can also be used. Given query q ∈ Q and document d ∈ D, the LMIR with Dirichlet
smoothing is calculated as

LMIR(q, d) = ⟨φLMIR
Q (q), φLMIR

D (d)⟩,

where ϕLMIR
Q (q) and ϕLMIR

D (d) are (n+1)-dimensional mappings toH from Q andD, respectively.
For t = 1, 2, · · · , n, ϕLMIR

Q (q)t and ϕLMIR
D (d)t are defined as

φLMIR
Q (q)t = t f (t, q)

5

and

φLMIR
D (d)t = log

(
1 +

t f (t, d)
µP(t)

)
,

where µ is a free smoothing parameter, P(t) is probability of term t in the whole collection. P(t)
plays a similar role as inverse document frequency id f (t) in VSM and BM25. The (n + 1)th

entries of φLMIR
Q (q) and φLMIR

D (d) are defined as

φLMIR
Q (q)n+1 = len(q)

and
φLMIR

D (d)n+1 = log
µ

len(d) + µ
,

where len(q) and len(d) are the lengthes of query q and document d, respectively.
One can certainly define asymmetric kernels (e.g., VSM, BM25, and LMIR) and exploit

them in practice. When training data is available, it is also desirable to automatically train an
asymmetric kernel; this leads to the problem of asymmetric kernel learning.

4. Our Approach to Asymmetric Kernel Learning

We formalize the asymmetric kernel learning (AKL) problem and propose a method for the
task using kernel methods.

4.1. Formulation of Asymmetric Kernel Learning

Suppose that we are given training data S = {(xi, yi), ti}Ni=1, where xi ∈ X and yi ∈ Y are
a pair of objects, and ti ∈ T is their response. The training data can be that for classification,
regression, or ranking. AKL aims to select the optimal asymmetric kernel from the class of
possible ones which can make accurate prediction on the training data as well as future test data.
AKL is formally defined as the following optimization problem:

min
k∈K⊆A

1
N

N∑
i=1

l(k(xi, yi), ti) + Ω(k),

whereA = {k : X ×Y → R|k(x, y) = ⟨φX(x), φY (y)⟩} is the space of all asymmetric kernels,K is
a subspace ofA, l(·, ·) is a loss function, and Ω is a regularizer.

To conduct AKL, we need to specify (1) function space K , (2) regularizer Ω, and (3) loss
function l(·, ·). Function space determines the scope of learning, regularizer controls the com-
plexity of function, and loss function measures prediction accuracy.

4.2. Learning Asymmetric Kernels with Kernel Methods

In this paper, we propose performing AKL using kernel methods. The key idea in our ap-
proach is to assume that the space of asymmetric kernels K is also an RKHS.

We first specify the original AKL problem as follows

min
k∈K

1
N

N∑
i=1

l(k(xi, yi), ti) +
λ

2
∥k∥2K , (2)

6

where λ > 0 is a coefficient, K is a Hilbert space of asymmetric kernels, and ||k||K denotes
regularization on space K . If K is also an RKHS generated by a postive semi-definite kernel k̄ :
(X ×Y)×(X ×Y)→ R, then Eq. (2) is equivalent to the optimization problem of kernel methods
(note that the learned function has two arguments.). According to the representer theorem of
kernel methods [32], the optimal solution of Eq. (2) is in the form

k∗(x, y) =
N∑

i=1

αik̄((xi, yi), (x, y)), (3)

where αi ∈ R, 1 ≤ i ≤ N, and N denotes number of training instances.
That is to say, if K is also an RKHS, then the AKL problem can be solved with kernel

methods. The question then is whether there exists space K , or equivalently kernel k̄. We show
below that it is the case and refer to the kernel k̄ as hyper asymmetric kernel (HAK).

4.3. Hyper Asymmetric Kernel
4.3.1. Definition of Hyper Asymmetric Kernel

HAK is defined as follows.

Definition 2 (Hyper Asymmetric Kernel). LetX andY be two input spaces. k̄((x, y), (x′, y′)) is
called Hyper Asymmetric Kernel, if it has the following properties. (1) k̄ : (X ×Y)× (X ×Y)→
R is a positive semi-definite kernel. (2) All the elements in the RKHS generated by k̄ are also
asymmetric kernels on X and Y.

If the two input spaces X and Y are identical in Definition 2, then HAK degenerates to
hyperkernel proposed in [24, 25].

4.3.2. Example of HAK
The following kernel is an HAK.

k̄((x, y), (x′, y′)) = g(x, y)kX(x, x′)kY (y, y′)g(x′, y′), (4)

where g(·, ·) is an asymmetric kernel function, and kX and kY are two Mercer kernels [32] on
spaces X × X and Y ×Y, respectively. First, we prove that k̄ is a positive semi-definite kernel.

Theorem 1. kX : X × X → R and kY : Y × Y → R are two positive semi-definite kernels. For
any function g : X ×Y → R, k̄ defined in Eq. (4) is a positive semi-definite kernel.

Proof of Theorem 1 is given in Appendix A. Next, we prove that all of the elements in the RKHS
generated by k̄ are asymmetric kernels.

Theorem 2. Suppose g(x, y) is an asymmetric kernel. Given any two Mercer kernels kX : X ×
X → R and kY : Y × Y → R, the RKHS K generated by k̄ defined in Eq. (4) is a subspace of
A = {k : X ×Y → R|k(x, y) = ⟨φX(x), φY (y)⟩}.

Proof of Theorem 2 is given in Appendix B. From Theorems 1 and 2, we conclude that k̄ is an
HAK. We will show that this HAK has an important application in search.

[4] propose a pairwise kernel for collaborative filtering. Pairwise kernel is defined as k̄C((u, i), (u′, i′)) =
kU(u, u′) · kI(i, i′), where kU and kI are kernels defined on the spaces of users and items, respec-
tively. Obviously, k̄C is a specific case of the HAK in Eq. (4).

7

4.3.3. Construction of HAK
More general and complicated HAKs can be constructed on the basis of the following two

theorems. Both of them are generalizations of the kernel in Eq. (4).

Theorem 3 (Constructing Power Series). Given two Mercer kernels kX : X × X → R and
kY : Y×Y → R, for any asymmetric kernel g(x, y) and {ci}ni=1 ⊂ R+, k̄P defined below is a hyper
asymmetric kernel.

k̄P((x, y), (x′, y′)) =
∞∑

i=0

ci · g(x, y)
(
kX(x, x′)kY (y, y′)

)i g(x′, y′),

where the convergence radius of
∑∞

i=0 ciξ
i is R, |kX(x, x′)| <

√
R, |kY (y, y′)| <

√
R, for any

x, x′, y, y′.

Theorem 4 (Combining Multiple Kernels). Given two finite sets of Mercer kernels KX =
{
kX

i (x, x′)
}n

i=1

and KY =
{
kY

i (y, y′)
}n

i=1
. For any asymmetric kernel g(x, y) and {ci}ni=1 ⊂ R+, k̄M defined below is

a hyper asymmetric kernel.

k̄M((x, y), (x′, y′)) =
n∑

i=1

ci · g(x, y)kX
i (x, x′)kY

i (y, y′)g(x′, y′).

Proofs of Theorem 3 and Theorem 4 are given in Appendix C and Appendix D, respectively.

5. Application to Search

In this section we show how our approach to asymmetric kernel learning can be applied to
search, in order to address one of the most critical challenges: term mismatch.

5.1. Term Mismatch in Search

Existing relevance ranking models in search, including VSM, BM25, and LMIR (as ex-
plained above, all of them can be viewed as asymmetric kernels) calculate the relevance of the
document with respect to the query on the basis of term matching, i.e., the terms (words) shared
by the query and document (cf., Eq. (1)). However, a document and a query can still be relevant,
even when they do not share any term, for example, the query is ‘NY’ while the document only
contains ‘New York’. In such case the document cannot be ranked high by the conventional rel-
evance models, and term mismatch occurs. In fact, term mismatch poses one of the most critical
challenges in search.

5.2. Robust BM25

We try to learn a more reliable ranking model from data as an extension of BM25 to deal
with term mismatch, called ‘Robust BM25’. Robust BM25 is actually an asymmetric kernel. We
first give the definition of Robust BM25 and then explain why it has the capability to handle term
mismatch.

First, we can specify the HAK in Eq. (4) as follows

k̄((q, d), (q′, d′)) = kBM25(q, d)kQ(q, q′)kD(d, d′)kBM25(q′, d′),
8

query space document space

qi

q d

di

kBM25(q, d)

kBM25(qi, di)

kQ(q, qi) kD(d, di)

Figure 1: Robust BM25 deals with term mismatch by using the neighbors in query spaces and document spaces.

where kBM25(q, d) is the BM25 asymmetric kernel, kQ : Q × Q → R and kD : D × D → R
are positive semi-definite kernels on query space and document space, which represent query
similarity and document similarity, respectively.

With training data and our AKL method (cf., Eq. (3)), we can learn the following asymmetric
kernel, which is referred to as Robust BM25 (RBM25)1.

kRBM25(q, d) = kBM25(q, d) ·
N∑

i=1

αi · kQ(q, qi)kD(d, di)kBM25(qi, di), (5)

where αi is learned from training data.
Robust BM25 can effectively deal with the term mismatch problem, as shown in Figure 1.

Suppose that the query space contains queries as elements and has the kernel function kQ as
similarity function. Given query q, one can find its similar queries qi based on kQ(q, qi) (its
neighbors). Similarly, the document space contains documents as elements and has the kernel
function kD as similarity function. Given document d, one can find its similar documents di

based on kD(d, di) (its neighbors). The relevance model BM25 is defined as an asymmetric
kernel between query and document over the two spaces. Term mismatch means that BM25
score kBM25(q, d) is not reliable.

One possible way to deal with the problem is to use the neighboring queries qi and documents
di to smooth the BM25 score of q and d, as that of in the k-nearest neighbor algorithm [9, 13]. In
other words, we employ the k-nearest neighbor method in both the query and document spaces
to calculate the final relevance score (cf., Figure 1). This is exactly what Robust BM25 does.
More specifically, Robust BM25 determines the ranking score of query q and document d, not
only based on the relevance score between q and d themselves (i.e., kBM25(q, d)), but also based
on the relevance scores between similar queries qi and similar documents di (i.e., kBM25(qi, di)),
and it makes a weighted linear combination of the relevance scores (5).

5.3. Implementation
To learn Robust BM25, we need to decide the query similarity kernel, document similarity

kernel, training data creation technique, and optimization technique. We explain one way of
implementing them using click-through data.

1To avoid zero value of kBM25(q, d), one can add a small constant, i.e., to assume kBM25(q, d) ≥ ϵ.
9

First, the document similarity kernel kD(d, d′) between d and d′ is simply defined as co-
sine similarity between the titles and URLs of the two documents. The query similarity kernel
kQ(q, q′) between q and q′ is defined as Pearson Correlation Coefficient between clicked URLs
of the two queries on a click-through bipartite graph:

kQ(q, q′) =
∑n

i=1(ui − ū)(vi − v̄)√∑n
i=1(ui − ū)2

√∑n
i=1(vi − v̄)2

,

where ui and vi denote numbers of clicks on URL i by query q and q′ respectively, ū and v̄ denote
average numbers of clicks for q and q′, and n denotes total number of clicked URLs by q and
q′. Intuitively, if two queries have many co-clicked URLs, then they will be regarded similar,
e.g., ‘NY’ and ‘New York’ may have many co-clicked URLs. Note that Pearson Correlation
Coefficient is a kernel.

Following the proposal in [19], we generate pairwise training data from click-through data.
More precisely, For each query qi we derive preference pairs (d+i , d

−
i), where d+i and d−i mean

that document d+i is more preferred than d−i with respect to query qi.
Finally, we take the pairwise training data as input to AKL method and learn the optimal

asymmetric kernel (Robust BM25). We use the Hinge loss as loss function, the objective function
then becomes

min
k∈K

M∑
i=1

[
1 − (k(qi, d+i) − k(qi, d−i))

]
+ +

λ

2
∥k∥2K ,

where M is number of preference pairs in training data (note that this is similar to Ranking SVM
[15]). The dual problem may be written as

max
θ⃗

M∑
i=1

θi −
1
2

M∑
i=1

M∑
j=1

θiθ jW(i, j) s.t. 0 ≤ θi ≤
1
λ
,

where

W(i, j) = kQ(qi, q j)·
[
kD(d+i , d

+
j)kBM25(qi, d+i)kBM25(q j, d+j)

− kD(d+i , d
−
j)kBM25(qi, d+i)kBM25(q j, d−j)

− kD(d−i , d
+
j)kBM25(qi, d−i)kBM25(q j, d+j)

+ kD(d−i , d
−
j)kBM25(qi, d−i)kBM25(q j, d−j)

]
.

We can solve the dual problem and obtain the following solution

kRBM25(q, d) = kBM25(q, d) ·
M∑

i=1

θi · kQ(q, qi)
[
kBM25(qi, d+i)kD(d+i , d) − kBM25(qi, d−i)kD(d−i , d)

]
.

In online search, given a query, we first retrieve the queries similar to it, then individually retrieve
documents with the original query and the similar queries, combine the retrieved documents,
train a Robust BM25 model using click-through data, and rank the documents with their Robust
BM25 scores (note that we need a Robust BM25 for each query). The time complexities of
training Robust BM25 is of order O(M2), where M is number of preference pairs. Since the
number of retrieved documents is small, search with Robust BM25 can be carried out efficiently.

10

Table 1: Statistics on web search and enterprise search datasets.
Web search Enterprise search

of judged queries 8,294 2,864
of judged query-URL pairs 1,715,844 282,130
of search impressions in click-through 490,085,192 17,383,935
of unique queries in click-through 14,977,647 2,368,640
of unique URLs in click-through 30,166,304 2,419,866
of clicks in click-through 2,605,404,156 4,996,027

6. Experiment

6.1. Experiment Setting

We conducted experiments to test the performances of Robust BM25. In our experiments, we
used two large scale datasets from a commercial web search engine and an enterprise search en-
gine running in an IT company. The two datasets consist of query-URL pairs and their relevance
judgments. The relevance judgments can be ‘Perfect’, ‘Excellent’, ‘Good’, ‘Fair’, or ‘Bad’. Be-
sides, we also collected large scale click-through data from both search engines. Table 1 shows
the statistics on the two datasets. The click-through data in both datasets was split into two parts,
one for learning query similarity kernel and the other for learning Robust BM25.

BM25 and query expansion [37] were selected as baselines. The pairwise kernel, which was
initially proposed for collaborative filtering [4], was chosen as another baseline. As evaluation
measures, we used MAP [3] and NDCG [18] at positions 1, 3, and 5. When calculating MAP,
we define the ranks ‘Perfect’ and ‘Excellent’ as relevant and the other three ranks as irrelevant.

6.2. Experimental Results

Table 2 reports the results on the web search data and enterprise data. We can see that Ro-
bust BM25 outperforms the baselines, in terms of all measures on both datasets. We conducted
significant tests (t-test) on the improvements. The results show that the improvements are all
statistically significant (p-value < 0.05). We have conducted analysis on the cases in which Ro-
bust BM25 performs better and found that the reason is that Robust BM25 can indeed effectively
address the term mismatch problem. Pairwise kernel outperforms BM25 and query expansion,
which indicates that it is better to learn a ranking model in search. However, its performance is
still lower than Robust BM25, suggesting that it is better to include BM25 in the final relevance
model, as in Robust BM25.

6.3. Discussions

We investigated the reasons that Robust BM25 can outperform the baselines, using the ex-
periments on web search data as examples. It seems that Robust BM25 can effectively deal with
term mismatch with its mechanisms: using query similarity and document similarity.

Table 3 gives an example. The query, web page, and label are ‘wallmart’, which is a typo,
‘http://www.walmart.com’ with title ‘Walmart.com: Save money. Live better’, and ‘Perfect’,
which means that the page should be ranked at top one position, respectively. BM25 cannot give
a high score to the page, as there is a mismatch between query and page. (Note that there is
difference between the query term ‘wallmart’ and the document term ‘walmart’.) In contrast,

11

Table 2: Ranking accuracies on web search and enterprise search data.
MAP NDCG@1 NDCG@3 NDCG@5

Robust BM25 0.1192 0.2480 0.2587 0.2716
Web search Pairwise Kernel 0.1123 0.2241 0.2418 0.2560

Query Expansion 0.0963 0.1797 0.2061 0.2237
BM25 0.0908 0.1728 0.2019 0.2180
Robust BM25 0.3122 0.4780 0.5065 0.5295

Enterprise search Pairwise Kernel 0.2766 0.4465 0.4769 0.4971
Query Expansion 0.2755 0.4076 0.4712 0.4958
BM25 0.2745 0.4246 0.4531 0.4741

Table 3: Example 1 from web search.
Query wallmart
Similar queries ‘walmart’, ‘wal mart’, ‘walmarts’
Page http://www.walmart.com
Title Walmart.com: Save money. Live better
Rate Perfect

Robust BM25 can effectively leverage the similar queries such as ‘walmart’, ‘wal mart’, and
‘walmarts’ and rank the web page to position one.

Table 4 gives another example. The query is ‘mensmagazines’, which is a tail query and does
not have a similar query found in the click-through data. The web page is ‘http://en.wikipedia.org/
wiki/List of men’s magazines’ (referred to as Page1) and the relevance label is ‘Excellent’.
There is a mismatch, because there is no sufficient knowledge to break query ‘mensmagazines’
into ‘mens’ and ‘magazines’. As a result, BM25 cannot rank Page1 high. In contrast, Ro-
bust BM25 uses similar documents to calculate the relevance. Specifically, it utilizes a similar
web page ‘http://www.askmen.com/links/sections/mensmagazines.html’ (referred to as Page2),
which contains the term ‘mensmagazines’ in its URL. The original query can match well with
Page2. Besides, Page1 and Page2 are also similar because they have the common terms ‘men’
and ‘magazines’ in titles. Therefore, Robust BM25 can assign a high score to Page1.

7. Conclusion

In the paper, we have studied the problem of asymmetric kernel learning (AKL). We have
pointed out the importance of asymmetric kernel functions in practice by showing the relevance
models in search such as VSM, BM25, and LMIR are actually asymmetric kernels. We have
then proposed a method for AKL using kernel methods. The key idea is to assume that the space
of asymmetric kernels is also an RKHS, and employ existing kernel methods to perform the
learning task. We refer to the kernel generating the RKHS as hyper asymmetric kernel (HAK).
We have then given examples of HAK and provided theoretical basis for constructing HAK.
Finally, we have shown that we can apply our method of AKL to search in order to effectively
deal with the term mismatch problem. The learned model Robust BM25 is a natural and more
reliable extension of conventional BM25 model.

12

Table 4: Example 2 from web search.
Query mensmagazines
Page1 http://en.wikipedia.org/wiki/List of men’s magazines
Title1 List of men’s magazines - Wikipedia, the free encyclopedia
Rate1 Excellent
Page2 http://www.askmen.com/links/sections/mensmagazines.html
Title2 AskMen.com - Men’s magazines

References

[1] Agichtein, E., Brill, E., Dumais, S., 2006. Improving web search ranking by incorporating user behavior infor-
mation. In: SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, New York, NY, USA, pp. 19–26.

[2] Bach, F. R., Lanckriet, G. R. G., Jordan, M. I., 2004. Multiple kernel learning, conic duality, and the smo algorithm.
In: ICML ’04: Proceedings of the twenty-first international conference on Machine learning. ACM, New York, NY,
USA, p. 6.

[3] Baeza-Yates, R. A., Ribeiro-Neto, B., 1999. Modern Information Retrieval. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

[4] Basilico, J., Hofmann, T., 2004. Unifying collaborative and content-based filtering. In: ICML ’04: Proceedings of
the twenty-first international conference on Machine learning. ACM, New York, NY, USA, pp. 65–72.

[5] Beeferman, D., Berger, A., 2000. Agglomerative clustering of a search engine query log. In: KDD ’00: Proceedings
of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, New York,
NY, USA, pp. 407–416.

[6] Berg, C., Christensen, J., Ressel, P., 1984. Harmonic analysis on semigroups: theory of positive definite and related
functions. Springer.

[7] Broder, A., Ciccolo, P., Gabrilovich, E., Josifovski, V., Metzler, D., Riedel, L., Yuan, J., 2009. Online expansion of
rare queries for sponsored search. In: WWW ’09: Proceedings of the 18th international conference on World wide
web. ACM, New York, NY, USA, pp. 511–520.

[8] Burges, C. J., Ragno, R., Le, Q. V., 2007. Learning to rank with nonsmooth cost functions. In: Schölkopf, B., Platt,
J., Hoffman, T. (Eds.), Advances in Neural Information Processing Systems 19. MIT Press, Cambridge, MA, pp.
193–200.

[9] Cover, T., Hart, P., 1967. Nearest neighbor pattern classification 13 (1), 21– 27.
[10] Craswell, N., Szummer, M., 2007. Random walks on the click graph. In: SIGIR ’07: Proceedings of the 30th

annual international ACM SIGIR conference on Research and development in information retrieval. ACM, New
York, NY, USA, pp. 239–246.

[11] Cui, H., Wen, J.-R., Nie, J.-Y., Ma, W.-Y., 2003. Query expansion by mining user logs. IEEE Trans. on Knowl. and
Data Eng. 15 (4), 829–839.

[12] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., Harshman, R., 1990. Indexing by latent semantic
analysis. Journal of the American Society for Information Science 41, 391–407.

[13] Dudani, S., April 1976. The distance-weighted k-nearest-neighbor rule 6 (4), 325–327.
[14] Geng, X., Liu, T.-Y., Qin, T., Arnold, A., Li, H., Shum, H.-Y., 2008. Query dependent ranking using k-nearest

neighbor. In: SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, New York, NY, USA, pp. 115–122.

[15] Herbrich, R., Graepel, T., Obermayer, K., 2000. Large margin rank boundaries for ordinal regression. In: Smola, A.,
Bartlett, P., Schölkopf, B., Schuurmans, D. (Eds.), Advances in Large Margin Classifiers. MIT Press, Cambridge,
MA, pp. 115–132.

[16] Hofmann, T., 1999. Probabilistic latent semantic indexing. In: SIGIR ’99: Proceedings of the 22nd annual interna-
tional ACM SIGIR conference on Research and development in information retrieval. ACM, New York, NY, USA,
pp. 50–57.

[17] Hofmann, T., Scholkopf, B., Smola, A., 2008. Kernel methods in machine learning. Annals of Statistics 36 (3),
1171.

[18] Järvelin, K., Kekäläinen, J., 2000. Ir evaluation methods for retrieving highly relevant documents. In: SIGIR ’00:
Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information
retrieval. ACM, New York, NY, USA, pp. 41–48.

[19] Joachims, T., 2002. Optimizing search engines using clickthrough data. In: KDD ’02: Proceedings of the eighth

13

ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, New York, NY, USA,
pp. 133–142.

[20] Koide, N., Yamashita, Y., 2006. Asymmetric kernel method and its application to fisher’s discriminant. In: ICPR
’06: Proceedings of the 18th International Conference on Pattern Recognition. IEEE Computer Society, Washing-
ton, DC, USA, pp. 820–824.

[21] Lanckriet, G. R. G., Cristianini, N., Bartlett, P., Ghaoui, L. E., Jordan, M. I., 2004. Learning the kernel matrix with
semidefinite programming. J. Mach. Learn. Res. 5, 27–72.

[22] Liu, T.-Y., 2009. Learning to rank for information retrieval. Found. Trends Inf. Retr. 3 (3), 225–331.
[23] Mitra, M., Singhal, A., Buckley, C., 1998. Improving automatic query expansion. In: SIGIR ’98: Proceedings of

the 21st annual international ACM SIGIR conference on Research and development in information retrieval. ACM,
New York, NY, USA, pp. 206–214.

[24] Ong, C. S., Smola, A. J., Williamson, R. C., ???? Hyperkernels. In: S. Becker, S. T., Obermayer, K. (Eds.),
Advances in Neural Information Processing Systems 15. MIT Press.

[25] Ong, C. S., Smola, A. J., Williamson, R. C., 2005. Learning the kernel with hyperkernels. J. Mach. Learn. Res. 6,
1043–1071.

[26] Ponte, J. M., Croft, W. B., 1998. A language modeling approach to information retrieval. In: SIGIR ’98: Proceed-
ings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval.
ACM, New York, NY, USA, pp. 275–281.

[27] Rakotomamonjy, A., Bach, F. R., Canu, S., Grandvalet, Y., November 2008. Simplemkl. Journal of Machine Learn-
ing Research 9, 2491–2521.

[28] Robertson, S. E., Hull, D. A., 2000. The TREC-9 filtering track final report. In: TREC-9. pp. 25–40.
[29] Salton, G., Buckley, C., 1997. Improving retrieval performance by relevance feedback, 355–364.
[30] Salton, G., McGill, M. J., 1986. Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York, NY,

USA.
[31] Schölkopf, B., Mika, S., Burges, C. J. C., Knirsch, P., Müller, K. R., Rätsch, G., Smola, A. J., 1999. Input space

versus feature space in kernel-based methods. IEEE Transactions on Neural Networks 10 (5), 1000–1017.
[32] Schölkopf, B., Smola, A. J., 2001. Learning with Kernels: Support Vector Machines, Regularization, Optimization,

and Beyond. MIT Press, Cambridge, MA, USA.
[33] Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B., 2006. Large scale multiple kernel learning. J. Mach. Learn.

Res. 7, 1531–1565.
[34] Tsuda, K., 1998. Support vector classifier with asymmetric kernel functions. In: in European Symposium on Arti-

ficial Neural Networks (ESANN). pp. 183–188.
[35] Vapnik, V. N., 1995. The nature of statistical learning theory. Springer-Verlag New York, Inc., New York, NY,

USA.
[36] Wen, J., Nie, J., Zhang, H., 2002. Query clustering using user logs. ACM Trans. Inf. Syst. 20 (1), 59–81.
[37] Xu, J., Croft, W. B., 1996. Query expansion using local and global document analysis. In: SIGIR ’96: Proceedings

of the 19th annual international ACM SIGIR conference on Research and development in information retrieval.
ACM, New York, NY, USA, pp. 4–11.

[38] Xu, J., Li, H., 2007. Adarank: a boosting algorithm for information retrieval. In: SIGIR ’07: Proceedings of the
30th annual international ACM SIGIR conference on Research and development in information retrieval. ACM,
New York, NY, USA, pp. 391–398.

[39] Zhai, C., Lafferty, J., 2004. A study of smoothing methods for language models applied to information retrieval.
ACM Trans. Inf. Syst. 22 (2), 179–214.

[40] Zhuang, Z., Cucerzan, S., 2006. Re-ranking search results using query logs. In: CIKM ’06: Proceedings of the
15th ACM international conference on Information and knowledge management. ACM, New York, NY, USA, pp.
860–861.

14

A. Proof of Theorem 1

Proof We need to show k̄(·, ·) is symmetric and positive semi-definite.

Symmetric Since kX(·, ·) and kY (·, ·) are symmetric, ∀x, x′ ∈ X and y, y′ ∈ Y, we have

k̄((x, y), (x′, y′)) = g(x, y)kX(x, x′)kY (y, y′)g(x′, y′)
= g(x′, y′)kX(x′, x)kY (y′, y)g(x, y)
= k̄((x′, y′), (x, y)).

Positive semi-definite ∀{αi}ni=1 ⊂ R, {(xi, yi)}ni=1 ⊂ X × Y, we have

n∑
i, j=1

αiα jg(xi, yi)g(x j, y j) =

 n∑
i=1

αig(xi, yi)

2

> 0.

Since kX(·, ·) and kY (·, ·) are positive semi-definite, we conclude that g(x, y)g(x′, y′)kX(x, x′)kY (y, y′)
is positive semi-definite [cf., 6, Theorem 1.12].

B. Proof of Theorem 2

To prove the theorem, we need the following two lemmas:

Lemma 2. Suppose that g(x, y) is an asymmetric kernel, and kX and kY are two Mercer kernels.
Given any finite example set {(xi, yi)}Ni=1 ⊂ X×Y, kN(x, y) =

∑N
i=1 αig(x, y)kX(x, xi)kY (y, yi)g(xi, yi)

is an asymmetric kernel.

Proof Since g(x, y) is an asymmetric kernel, according to Lemma 1, we only need to show that∑N
i=1 αikX(x, xi)kY (y, yi)g(xi, yi) is an asymmetric kernel.

Since kX(x, x′) and kY (y, y′) are Mercer kernels, we obtain

kX(x, x′) = ⟨ψX(x), ψX(x′)⟩HX ,

kY (y, y′) = ⟨ψY (y), ψY (y′)⟩HY ,

where ψX : X → HX and ψY : Y → HY are corresponding feature mappings, and HX and HY

are Hilbert spaces with respect to ψX and ψY , respectively.
LetH = HX and φX(x) = ψX(x),

φN
Y (y) =

N∑
i=1

αig(xi, yi)ψX(xi)ψ⊤Y (yi)ψY (y).

Note that φN
Y = γN ◦ ψY , where γN =

∑N
i=1 αig(xi, yi)ψX(xi)ψ⊤Y (yi) is a linear operator fromHY to

15

HX = H . Thus, we have

⟨φX(x), φN
Y (y)⟩H = ⟨ψX(x),

N∑
i=1

αig(xi, yi)ψX(xi)ψ⊤Y (yi)ψY (y)⟩HX

= ψ⊤X (x)
N∑

i=1

αig(xi, yi)ψX(xi)ψ⊤Y (yi)ψY (y)

=

N∑
i=1

αig(xi, yi)ψ⊤X (x)ψX(xi)ψ⊤Y (yi)ψY (y)

=

N∑
i=1

αikX(x, xi)kY (y, yi)g(xi, yi).

This means
∑N

i=1 αikX(x, xi)kY (y, yi)g(xi, yi) is an asymmetric kernel. Thus, we conclude that
kN(x, y) is an asymmetric kernel.

Lemma 3. Given any two positive semi-definite kernels kX : X × X → R and kY : Y × Y → R.
Suppose ψY : Y → HY is the feature mapping of kY (·, ·). HY is a Hilbert space endowed with
inner product ⟨·, ·⟩HY . Given any sets {xi}Ni=1 ⊂ X and {yi}Ni=1 ⊂ Y, for an arbitrary z ∈ HY , the
following matrix inequality holds:(

kX(xi, x j)⟨ψY (yi), z⟩HY ⟨ψY (y j), z⟩HY

)
N×N

4
(
kX(xi, x j)kY (yi, y j)⟨z, z⟩HY

)
N×N

.

Proof Since kX(·, ·) is a positive semi-definite kernel, following the conclusion given in Propo-
sition 4 in [17], we only need to prove(

kY (yi, y j)⟨z, z⟩HY − ⟨ψY (yi), z⟩HY ⟨ψY (y j), z⟩HY

)
N×N

is positive semi-definite, which means given any {αi}Ni=1 ⊂ R, we need to prove

N∑
i, j=1

αiα j

(
kY (yi, y j)⟨z, z⟩HY − ⟨ψY (yi), z⟩HY ⟨ψY (y j), z⟩HY

)
> 0.

Since

N∑
i, j=1

αiα jkY (yi, y j)⟨z, z⟩HY =

N∑
i, j=1

αiα j⟨ψY (yi), ψY (y j)⟩HY ⟨z, z⟩HY

=

⟨ N∑
i=1

αiψY (yi),
N∑

i=1

αiψY (yi)
⟩
HY

⟨z, z⟩HY ,

and

N∑
i, j=1

αiα j⟨ψY (yi), z⟩HY ⟨ψY (y j), z⟩HY =

⟨ N∑
i=1

αiψY (yi), z⟩HY

2

,

according to the Cauchy inequality, we get the conclusion.
16

We prove Theorem 2 on the basis of Lemma 1, Lemma 2, and Lemma 3.

Proof Given a function k(x, y) in K , there is a sequence {kN(x, y)} in K such that

kN(x, y) =
N∑

i=1

αig(x, y)kX(x, xi)kY (y, yi)g(xi, yi) k(x, y) = lim
N→∞

kN(x, y).

We need to prove that k(x, y) is an asymmetric kernel.
Define k̃N(x, y) =

∑N
i=1 αikX(x, xi)kY (y, yi)g(xi, yi), we have k(x, y) = limN→∞ kN(x, y) =

limN→∞ k̃N(x, y)g(x, y) = k̃(x, y)g(x, y), where k̃(x, y) = limN→∞ k̃N(x, y).
From the proof of Lemma 2, we know k̃N(x, y) = ⟨φX(x), φN

Y (y)⟩H , whereH is a Hilbert space
determined by kX , φN

Y = γN ◦ ψY , and γN =
∑N

i=1 αig(xi, yi)ψX(xi)ψT
Y (yi). Here ψX : X → HX and

ψY : Y → HY are feature mappings for kX and kY , respectively.
Next, we prove {γN} is a Cauchy sequence. ∀z ∈ HY ,

||γN(z)||2HX
=

N∑
i, j=1

αiα jg(xi, yi)g(x j, y j)kX(xi, x j)⟨ψY (yi), z⟩HY ⟨ψY (y j), z⟩HY .

According to Lemma 3, we have
N∑

i, j=1

αiα jg(xi, yi)g(x j, y j)kX(xi, x j)⟨ψY (yi), z⟩HY ⟨ψY (y j), z⟩HY

6
N∑

i, j=1

αiα jg(xi, yi)g(x j, y j)kX(xi, x j)kY (yi, y j)⟨z, z⟩HY

=

N∑
i, j=1

αiα jg(xi, yi)g(x j, y j)kX(xi, x j)kY (yi, y j) ∥ z ∥2HY
.

Therefore,

∥ γN ∥26
N∑

i, j=1

αiα jg(xi, yi)g(x j, y j)kX(xi, x j)kY (yi, y j).

Note that
∑N

i, j=1 αiα jg(xi, yi)g(x j, y j)kX(xi, x j)kY (yi, y j) is just the square of the norm of kN(x, y)
in K . Given the fact that {kN(x, y)} is a Cauchy sequence in K , we conclude that {γN} is also a
Cauchy sequence. Then, there exists a linear operator γ which satisfies γ = limN→∞ γN and
k̃(x, y) = ⟨φX(x), φY (y)⟩, where φY = γ◦ψY . Thus, k(x, y) = g(x, y)k̃(x, y) is an asymmetric kernel
and therefore K ⊂ A.

C. Proof of Theorem 3

To prove the theorem, first we need to prove k̄P((x, y), (x′, y′)) is a kernel. According to The-
orem 1, we know that for any i ∈ Z+, cig(x, y) (kX(x, x′)kY (y, y′))i g(x′, y′) is a kernel (considering√

ciki
X and

√
ciki

Y as ‘kX’ and ‘kY ’ in that theorem, respectively). Since the summation of kernels
is also a kernel, we know that k̄P((x, y), (x′, y′)) is a kernel.

Second, given g(x, y) is an asymmetric kernel, suppose KP is the reproducing kernel Hilbert
space generated by k̄P. Since k̄P is a kernel, we only need to prove that KP ⊂ A = {k : X×Y →
R|k(x, y) = ⟨φX(x), φY (y)⟩}.

To prove the theorem, we need the following lemma.
17

Lemma 4. Suppose that g(x, y) is an asymmetric kernel, and kX and kY are Mercer kernels.
Given any finite example set {(x j, y j)}Nj=1 ⊂ X×Y, and any {α j}Nj=1 ⊂ R,

∑N
j=1 α jk̄P((x, y), (x j, y j))

is an asymmetric kernel.

Proof

N∑
j=1

α jk̄P((x, y), (x j, y j)) =
N∑

j=1

α jg(x, y)
∞∑

i=0

ci

(
kX(x, x j)kY (y, y j)

)i
g(x j, y j)

= g(x, y)
N∑

j=1

α j
˜̄kP((x, y), (x j, y j)),

where
˜̄kP((x, y), (x j, y j)) =

∞∑
i=0

ci

(
kX(x, x j)kY (y, y j)

)i
g(x j, y j).

Since g(x, y) is an asymmetric kernel, according to Lemma 1, to prove
∑N

j=1 α jk̄P((x, y), (x j, y j))

is an asymmetric kernel, we only need to show that
∑N

j=1 α j
˜̄kP((x, y), (x j, y j)) is an asymmetric

kernel.
For any i > 0, i ∈ Z+, since

√
ciki

X(x, x′) and
√

ciki
Y (y, y′) are both Mercer kernels, we obtain

√
ciki

X(x, x′) = ⟨ψi
X(x), ψi

X(x′)⟩H i
X

and √
ciki

Y (y, y′) = ⟨ψi
Y (y), ψi

Y (y′)⟩H i
Y
,

where ψi
X(·) : X → H i

X and ψi
Y (·) : Y → H i

Y are feature mappings, and H i
X and H i

Y are Hilbert
spaces with respect to ψi

X and ψi
Y , respectively.

Let Hi = H i
X , φi

X(x) = ψi
X(x), and φi

YN(y) =
∑N

j=1 α jg(x j, y j)ψi
X(x j)ψi

Y
⊤(y j)ψi

Y (y). Note that
φi

YN = γi
N ◦ ψi

Y , where γi
N =

∑N
j=1 α jg(x j, y j)ψi

X(x j)ψi
Y
⊤(y j) is a linear operator from H i

Y to
H i

X = Hi. Thus, we have

N∑
j=1

α jci(kX(x, x j)kY (y, y j))ig(x j, y j) = ⟨φi
X(x), φi

YN(y)⟩Hi .

LetH = H0 ×H1 × · · ·Hk × · · · ,

φX :X → H
x 7→ (φ0

X(x), φ1
X(x), · · · , φk

X(x), · · ·),

and

φYN :Y → H
y 7→ (φ0

YN(y), φ1
YN(y), · · · , φk

YN(y), · · ·),

18

we have

N∑
j=1

α j
˜̄kP((x, y), (x j, y j)) =

N∑
j=1

α j

∞∑
i=0

ci(kX(x, x j)kY (y, y j))ig(x j, y j)

=

∞∑
i=0

N∑
j=1

α jci(kX(x, x j)kY (y, y j))ig(x j, y j)

=

∞∑
i=0

⟨φi
X(x), φi

YN(y)⟩Hi

= ⟨φX(x), φYN(y)⟩H ,

where the inner product in H is naturally defined as
∑∞

i=0⟨·, ·⟩Hi . Note that
∑∞

i=0⟨·, ·⟩Hi can be
defined only when (z0, · · · , zk, · · ·) ∈ H ,

∑∞
i=0⟨zi, zi⟩Hi < ∞. Obviously, for any x ∈ X and y ∈ Y,

φX(x) and φYN(y) satisfy this condition.

We prove k̄P is a hyper asymmetric kernel on the basis of above lemma.

Proof Given a function k(x, y) in KP, there is a sequence {kN(x, y)} in KP such that

kN(x, y) =
N∑

j=1

α jk̄P((x, y), (x j, y j))

=

N∑
j=1

α jg(x, y)
∞∑

i=0

ci

(
kX(x, x j)kY (y, y j)

)i
g(x j, y j)

= g(x, y)
N∑

j=1

α j
˜̄kP((x, y), (x j, y j));

k(x, y) = lim
N→∞

kN(x, y),

where ˜̄kP((x, y), (x j, y j)) =
∑∞

i=0 ci

(
kX(x, x j)kY (y, y j)

)i
g(x j, y j).

We try to prove that k(x, y) is an asymmetric kernel. Let k̃N(x, y) =
∑N

j=1 α j
˜̄kP((x, y), (x j, y j)),

k(x, y) = limN→∞ kN(x, y) = limN→∞ k̃N(x, y)g(x, y) = k̃(x, y)g(x, y), where k̃(x, y) = limN→∞ k̃N(x, y).
According to Lemma 1, we only need to prove that k̃(x, y) is an asymmetric kernel. From the

proof of Lemma 4, we know k̃N(x, y) = ⟨φX(x), φYN(y)⟩H , whereH is a Hilbert space determined
by { √ciki

X}∞i=0.
φYN(y) = (φ0

YN(y), φ1
YN(y), · · · , φk

YN(y), · · ·),
and we defineHY = H0

Y × · · ·Hk
Y × · · · ,HX = H0

X × · · ·Hk
X × · · · , and

γN :HY → HX

z = (z0, · · · , zk, · · ·) 7→ (γ0
N(z0), · · · , γk

N(zk), · · ·),

whereH i
X andH i

Y are the Hilbert spaces with respect to feature mappings ψi
X(·) and ψi

Y (·) defined
by Mercer kernels

√
ciki

X and
√

ciki
Y , respectively, ⟨·, ·⟩H i

Y
is the inner product defined inH i

Y , and
γk

N(zk) =
∑N

j=1 α jg(x j, y j)ψk
X(x j)⟨ψk

Y (y j), zk⟩Hk
Y
. The inner products for HX = H0

X × · · ·Hk
X × · · ·

19

and HY = H0
Y × · · ·Hk

Y × · · · are naturally defined as
∑∞

i=0⟨·, ·⟩H i
X

and
∑∞

i=0⟨·, ·⟩H i
Y
, respectively.

Note that to make the inner products well defined, we require that input (z0, · · · , zk, · · ·) satisfies∑∞
i=0⟨zi, zi⟩H i

Y
< ∞. From the following proof, we will see that this condition will guarantee that∑∞

i=0⟨γi
N(zi), γi

N(zi)⟩H i
X
< ∞. Thus, γN is well defined.

Then the key point we need to prove is that {γN} is a Cauchy sequence. ∀z ∈ HY , ||z||HY < ∞,

∥ γN(z) ∥2HX
=

∞∑
i=0

N∑
k, j=1

αkα jg(xk, yk)g(x j, y j)
√

ciki
X(xk, x j)⟨ψi

Y (yk), zi⟩H i
Y
⟨ψi

Y (y j), zi⟩H i
Y
.

Using the conclusion given by Lemma 3, we have

∞∑
i=0

N∑
k, j=1

αkα jg(xk, yk)g(x j, y j)
√

ciki
X(xk, x j)⟨ψi

Y (yk), zi⟩H i
Y
⟨ψi

Y (y j), zi⟩H i
Y

6
∞∑

i=0

N∑
k, j=1

αkα jg(xk, yk)g(x j, y j)ci(kX(xk, x j)kY (yk, y j))i⟨zi, zi⟩H i
Y

6
 ∞∑

i=0

N∑
k, j=1

αkα jg(xk, yk)g(x j, y j)ci(kX(xk, x j)kY (yk, y j))i

 ∞∑

i=0

⟨zi, zi⟩H i
Y

 .
Thus,

∥ γN(z) ∥2HX
6

∞∑
i=0

N∑
k, j=1

αkα jg(xk, yk)g(x j, y j)ci(kX(xk, x j)kY (yk, y j))i ∥ z ∥2HY
.

So

∥ γN ∥26
∞∑

i=0

N∑
k, j=1

αkα jg(xk, yk)g(x j, y j)ci(kX(xk, x j)kY (yk, y j))i

=

N∑
k, j=1

αkα jk̄P((xk, yk), (x j, y j)).

Note that
∑N

k, j=1 αkα jk̄P((xk, yk), (x j, y j)) is just the square of the norm of kN(x, y) inKP. From
the fact that {kN(x, y)} is a Cauchy sequence inKP, we know that {γN} is also a Cauchy sequence.
Then there is a linear operator γ which satisfies γ = limN→∞ γN and k̃(x, y) = ⟨φX(x), φY (y)⟩H ,
where φY is given by

(γ0 ◦ ψ0
Y , · · · , γk ◦ ψk

Y , . . .).

D. Proof of Theorem 4

We first prove that k̄M((x, y), (x′, y′)) is a kernel. Using the conclusion given by Theorem 1,
we know that ∀i, cig(x, y)kX

i (x, x′)kY
i (y, y′)g(x′, y′) is a kernel (considering

√
cikX

i and
√

cikY
i as

‘kX’ and ‘kY ’ in that theorem, respectively). Since summation of kernels is also a kernel, we
obtain our conclusion that k̄M((x, y), (x′, y′)) is a kernel on (X ×Y) × (X ×Y).

Let KM be the reproducing kernel Hilbert space generated by k̄M , we try to prove that KM is
a subset ofA = {k : X ×Y → R|k(x, y) = ⟨φX(x), φY (y)⟩}.

To prove the theorem, we need the following lemma.
20

Lemma 5. Suppose that g(x, y) is an asymmetric kernel, and kX and kY are Mercer kernels.
Given any {(x j, y j)}Nj=1 ⊂ X×Y, and any {α j}Nj=1 ⊂ R,

∑N
j=1 α jk̄M((x, y), (xi, yi)) is an asymmetric

kernel.

Proof
N∑

j=1

α jk̄M((x, y), (x j, y j)) =
N∑

j=1

α jg(x, y)
n∑

i=1

cikX
i (x, x j)kY

i (y, y j)g(x j, y j)

= g(x, y)
N∑

j=1

α j
˜̄kM((x, y), (x j, y j)).

Since g(x, y) is an asymmetric kernel, according to Lemma 1, to prove
∑N

j=1 α jk̄M((x, y), (x j, y j))

is an asymmetric kernel, we only have to prove that
∑N

j=1 α j
˜̄kM((x, y), (x j, y j)) is an asymmetric

kernel.
For any 0 6 i 6 n, i ∈ Z, since

√
cikX

i (x, x′) and
√

cikY
i (y, y′) are both Mercer kernels, we

obtain √
cikX

i (x, x′) = ⟨ψi
X(x), ψi

X(x′)⟩H i
X
,
√

cikY
i (y, y′) = ⟨ψi

Y (y), ψi
Y (y′)⟩H i

Y
,

where ψi
X(·) : X → H i

X and ψi
Y (·) : Y → H i

Y are feature mappings, and H i
X and H i

Y are Hilbert
spaces with respect to ψi

X and ψi
Y , respectively.

Let Hi = H i
X , φi

X(x) = ψi
X(x), and φi

YN(y) =
∑N

j=1 α jg(x j, y j)ψi
X(x j)ψi

Y
⊤(y j)ψi

Y (y). Note that
φi

YN = γi
N ◦ ψi

Y , where γi
N =

∑N
j=1 α jg(x j, y j)ψi

X(x j)ψi
Y
⊤(y j) is a linear operator from H i

Y to
H i

X = Hi. Thus, we have

N∑
j=1

α jcikX
i (x, x j)kY

i (y, y j)g(x j, y j) = ⟨φi
X(x), φi

YN(y)⟩Hi .

LetH = H1 ×H2 × · · ·Hn,

φX(x) :X → H
x 7→ (φ1

X(x), φ2
X(x), · · · , φn

X(x)),

and

φYN(y) :Y → H
y 7→ (φ1

YN(y), φ2
YN(y), · · · , φn

YN(y)),

we have
N∑

j=1

α j
˜̄kM((x, y), (x j, y j)) =

N∑
j=1

α j

n∑
i=1

cikX
i (x, x j)kY

i (y, y j)g(x j, y j)

=

n∑
i=1

N∑
j=1

α jcikX
i (x, x j)kY

i (y, y j)g(x j, y j)

=

n∑
i=1

⟨φi
X(x), φi

YN(y)⟩Hi

= ⟨φX(x), φYN(y)⟩H ,
21

where the inner product inH is naturally defined as
∑n

i=1⟨·, ·⟩Hi .

We prove that k̄M is a hyper asymmetric kernel on the basis of Lemma 5.

Proof Given a function k(x, y) in KM , there is a sequence {kN(x, y)} in KM such that

kN(x, y) =
N∑

j=1

α jk̄M((x, y), (x j, y j))

=

N∑
j=1

α jg(x, y)
n∑

i=1

cikX
i (x, x j)kY

i (y, y j)g(x j, y j)

= g(x, y)
N∑

j=1

α j
˜̄kM((x, y), (x j, y j));

k(x, y) = lim
N→∞

kN(x, y).

We try to prove that k(x, y) is an asymmetric kernel. Let k̃N(x, y) =
∑N

j=1 α j
˜̄kM((x, y), (x j, y j)),

k(x, y) = limN→∞ kN(x, y) = limN→∞ k̃N(x, y)g(x, y) = k̃(x, y)g(x, y), where k̃(x, y) = limN→∞ k̃N(x, y).
According to Lemma 1, we only have to prove that k̃(x, y) is an asymmetric kernel. From the

proof of Lemma 5, we know k̃N(x, y) = ⟨φX(x), φYN(y)⟩H , where H = H1 × H2 × · · ·Hn is a
Hilbert space andHi is the Hilbert space of the feature mapping of

√
cikX

i (·, ·).

φYN(y) = (φ1
NY (y), φ2

NY (y), · · · , φn
NY (y)),

and we defineHY = H1
Y × · · ·Hn

Y ,HX = H1
X × · · ·Hn

X , and

γN :HY → HX

z = (z1, · · · , zn) 7→ (γ1
N(z1), · · · , γn

N(zn)),

where H i
X and H i

Y are the Hilbert spaces with respect to feature mappings ψi
X(·) and ψi

Y (·) of
Mercer kernels

√
cikX

i and
√

cikY
i , respectively, ⟨·, ·⟩H i

Y
is the inner product defined in H i

Y , and
γi

N(zi) =
∑N

j=1 α jg(x j, y j)ψi
X(x j)⟨ψi

Y (y j), zi⟩H i
Y
.

Then the key point we need to prove is that {γN} is a Cauchy sequence. ∀z ∈ HY ,

∥ γN(z) ∥2HX
=

n∑
i=1

N∑
k, j=1

αkα jg(xk, yk)g(x j, y j)
√

cikX
i (xk, x j)⟨ψi

Y (yk), zi⟩H i
Y
⟨ψi

Y (y j), zi⟩H i
Y
.

Using the conclusion given by Lemma 3, we have

n∑
i=1

N∑
k, j=1

αkα jg(xk, yk)g(x j, y j)
√

cikX
i (xk, x j)⟨ψi

Y (yk), zi⟩H i
Y
⟨ψi

Y (y j), zi⟩H i
Y

6
n∑

i=1

N∑
k, j=1

αkα jg(xk, yk)g(x j, y j)cikX
i (xk, x j)kY

i (yk, y j)⟨zi, zi⟩H i
Y

6
 n∑

i=1

N∑
k, j=1

αkα jg(xk, yk)g(x j, y j)cikX
i (xk, x j)kY

i (yk, y j)

 n∑

i=1

⟨zi, zi⟩H i
Y

 .
22

Thus,

∥ γN(z) ∥2HX
6

n∑
i=1

N∑
k, j=1

αkα jg(xk, yk)g(x j, y j)cikX
i (xk, x j)kY

i (yk, y j) ∥ z ∥2HY
.

So

∥ γN ∥26
n∑

i=1

N∑
k, j=1

αkα jg(xk, yk)g(x j, y j)cikX
i (xk, x j)kY

i (yk, y j) =
N∑

k, j=1

αkα jk̄M((xk, yk), (x j, y j)).

Note that
∑N

k, j=1 αkα jk̄M((xk, yk), (x j, y j)) is just the square of the norm of kN(x, y) in KM .
From the fact that {kN(x, y)} is a Cauchy sequence in KM , we know that {γN} is also a Cauchy
sequence. Then there is a linear operator γ which satisfies γ = limN→∞ γN and k̃(x, y) =
⟨φX(x), φY (y)⟩H , where φY is given by

(γ1 ◦ ψ1
Y , · · · , γn ◦ ψn

Y).

23

