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Abstract

Many application problems such as data visualization, document retrieval, image annotation, col-
laborative filtering, and machine translation can be formalized as a task that utilizes a similarity
function between objects in two heterogeneous spaces. In this paper, we address the problem
of automatically learning such a similarity function using labeled training data. Conventional
metric learning can be viewed as learning of similarity function over one single space, while the
‘metric learning’ problem in this paper can be regarded as learning of similarity function over
two different spaces. We assume that the objects in the two original spaces are linearly mapped
into a new space and dot product in the new space is defined as the similarity function. The
metric learning problem then becomes that of learning the two linear mapping functions from
training data. We then give a general and theoretically sound solution to the learning problem.
Specifically, we prove that although the learning problem is non-convex, the global optimal solu-
tion exists and one can find the optimal solution using Singular Value Decomposition (SVD). We
also show that the solution is ‘generalizable’ to unobserved data and it is possible to kernelize
the method. We conducted two experiments; one experiment shows that keywords and images
can be visualized in the same space based on the similarity function learned with our method,
and the other experiment shows that the accuracy of document retrieval can be improved with
the similarity function (relevance function) learned with our method.
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1. Introduction

Many application problems can be viewed as a task utilizing a similarity function between
objects in two spaces. For example, in document retrieval, queries belong to the query space and
documents belong to the document space1. Given a query, we want to retrieve the most similar
(relevant) documents with respect to the query. The retrieval is actually performed with the sim-
ilarity function. Similarly, in image annotation, collaborative filtering, and machine translation,
there are two spaces and given an object in one space, we want to find the most similar (rele-
vant) objects in the other space. In those cases, the spaces are defined over keyword and image,

1Although sometimes query and document can be represented by bag of words (elements in the same space), it is more
natural to assume that they belong to different spaces, because they have different characteristics (length, conciseness of
representation).
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user and item, and source language and target language, respectively. In all the problems, the
similarity function plays an important role.

In this paper, we address the problem of automatically learning the similarity function over
two heterogeneous spaces using labeled training data. Let us take image data visualization as
example. Suppose that we are given some labeled training data consisting of keyword and image
pairs and their similarity labels (similar or dissimilar). Our goal is to learn a similarity function
which can represent the similarity between any keyword and image pairs. With the learned
similarity function, we can plot keywords and images into the same space, in which distance in
the space represents the similarity, as shown in Figure 1.

We formalize the problem of learning similarity function over two spaces and propose a
general and theoretically sound method for addressing the learning task. Conventional metric
learning is conducted over a single space. The learning problem in this paper is actually an
extension of it: from one space to two spaces.

Given two spaces of objects, we assume that there are two transformation functions mapping
the objects into a new space. The dot product between the images of the objects in the new
space is then defined as similarity function. Given training data which contains information on
similarities between objects, we aim to maximize the agreement between the training data and
the learned similarity function.

One technical challenge for solving the learning (optimization) issue is that it is not convex.
We prove, however, that for the current problem, the global optimal solution exists and it is
possible to find the optimal solution by using Singular Value Decomposition (SVD). We show
that the solution is ‘generalizable’ to unobserved data. We also kernelize the method, which
can be employed when non-linear features are utilized through kernels, and when the number of
training instances is smaller than the dimensions of input spaces.

We have conducted experiments to verify the effectiveness of our method in two tasks. The
first experiment is about image data visualization, in which we learn the similarities between
keywords and images with some labeled instances, and plot them in the same space based on the
similarity function learned. We give an example of the learned results to show that the learned
similarity function can indeed put similar keywords and images (from two different spaces) to-
gether. The second experiment is about document retrieval, in which we learn the relevance
(similarity) function between queries and documents. We demonstrate that the learned similarity
function can indeed enhance the relevance ranking in terms of Mean Average Precision (MAP),
when compared with several other baseline methods including a conventional metric learning
method.

The remaining part of the paper is organized as follows. In section 2, we introduce existing
work on metric (similarity) function learning. In section 3, we give the formalization of the new
metric (similarity) learning problem. In section 4 we explain our solution to the problem, and
describe property of the solution and kernelization of the method. We show our experiments in
section 5, and conclude the paper in section 6.

2. Related Work

Our work in this paper can be viewed as an extension of conventional metric learning. In
metric learning, a distance metric is automatically learned from training data. The metric is
usually defined as Euclidean distance in a new space into which the data is mapped by a linear
transformation. There are two approaches to distances metric learning. The first approach such
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as Principal Component Analysis (PCA) [12], Linear Discriminant Analysis (LDA) [5], Relevant
Component Analysis (RCA) [19], and Neighborhood Components Analysis (NCA) [6] manages
to directly learn a linear transformation from the data and then defines a metric based on the
transformation. LDA, RCA, and NCA are supervised learning methods, and PCA is an unsuper-
vised learning method. For example, the objective function of PCA is to maximize variance of
data in the new space with respect to linear transformation, while the objective function of LDA
is to maximize between-class variance of data and minimize within-class variance of data in the
new space with respect to linear transformation. The other approach [23, 17, 22, 4, 11, 24, 18]
tries to directly learn the metric as a Mahalanobis distance which can be represented as a positive
semi-definite matrix. The approach takes advantage of the fact that the optimization is convex
and employs efficient algorithms to solve the problem. For example, in [23], information on
similarity or dissimilarity between pairs of objects is utilized to learn a Mahalanobis distance
for clustering. In [22], a metric is learned for k-nearest neighbor by pulling neighboring objects
closer and pushing objects with different labels farther away. Both optimization problems can be
solved efficiently. In the existing work, learning of metric is conducted over one single space,
while in this paper learning of metric (similarity) is performed over two spaces.

Recently, methods of learning similarity functions are proposed in some specific settings. In
[7], for example, a similarity function is learned to match text queries to images. The key idea is
to learn a transformation from the image space to the text space and measure similarity between
texts and images with dot product in the text space. The proposed model called PAMIR is actually
a special case of our model. In [1], the authors learn a relevance (similarity) function from
relevant (or irrelevant) query and document pairs in which the relevance function is formalized
as a low rank model. The most significant difference between their work and our work is that
their method does not learn a metric function. For other related work, see [13, 3].

Canonical Correlation Analysis (CCA) [20] or its kernelized version KCCA [9, 10] is also
related to our work. CCA is a method to learn two mappings from training data to capture cor-
relations between pairs of objects. Specifically, it attempts to maximize correlations between
object pairs which are labeled as similar (relevant). In our work, we also try to learn two map-
pings from training data. There are stark differences between our method and CCA, however.
CCA only takes positive instances as input, while our method takes both positive and negative
instances as input. CCA learns correlation coefficients while our method learns a similarity func-
tion.

3. Formulation of Learning Problem

Suppose that there are two spaces X ⊂ Rm and Y ⊂ Rn. Let x and y be elements (objects)
in the two spaces, respectively, and f (x, y) be a function which measures the similarity between
x and y. Further assume that labeled training data {(xi, yi, ri)}Ni=1 is given, where (xi, yi) denotes a
pair of objects, and ri denotes its label from {+1,−1}. +1 means that the two objects are similar,
and −1 means that they are dissimilar.2 Our goal is to automatically learn the similarity function
f (x, y) from the training data.

The challenge in the above problem is that objects x and y are from two heterogeneous spaces
X and Y with different features (e.g. dimensions). It is not trivial how to define the similarity
function. Our proposal is to define the similarity function as dot product based on two linear

2Note that it is also possible to extend r from binary values to multiple values.
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transformations. More specifically, we linearly map objects x and y into a new space, and define
dot product in the space as similarity function between them. (In this paper, we restrict ourselves
to linear mapping and take the study of non-linear mapping as future work.) Suppose that the
two linear mapping functions for X and Y are represented as LX and LY, respectively. Suppose
that the new space is a subspace of Rk. Then, LX is an m × k matrix and LY is an n × k matrix.
Given a pair of objects (x, y), we first transform x and y to L⊤Xx and L⊤Yy respectively. Next, we
define the similarity between x and y as ⟨L⊤Xx, L⊤Yy⟩ = x⊤LXL⊤Yy, where ⟨·, ·⟩ denotes dot product
in Rk.

Our formulation naturally extends conventional distance metric learning from one single
space to two different spaces. In conventional distance metric learning, one linear transforma-
tion is (either explicitly or implicitly) learned and usually Euclidean distance in the new space
is utilized as metric function. In our formulation, two linear transformations are learned and dot
product ⟨L⊤Xx, L⊤Yy⟩ in the new space is taken as similarity function. In our case, a metric func-
tion can be further defined based on the similarity function, d(x, y) = ⟨L⊤Xx, L⊤Xx⟩ + ⟨L⊤Yy, L⊤Yy⟩ −
2⟨L⊤Xx, L⊤Yy⟩, where d(x, y) denotes a metric function3.

We aim to learn LX and LY by using the training data {(xi, yi, ri)}ni=1. We formalize the learning
problem as the following optimization problem :

arg max
LX,LY

∑
ri=+1

x⊤i LXL⊤Yyi −
∑

ri=−1
x⊤i LXL⊤Yyi (1)

subject to L⊤XLX = Ik×k, L⊤YLY = Ik×k.
The intuitive explanation is that with the optimization similar objects will become closer and

dissimilar objects will become farther apart. The constraint of the optimization problem requires
that the mapping functions (transformations) are orthonormal. Such a constraint is natural and
widely used in machine learning. We will show in the following sections that with this constraint
we can find the global optimal solution and guarantee the generalizability of the solution.

4. Our Learning Method

4.1. Solution by SVD
The optimization problem is not convex with respect to LX and LY. Nonetheless we can prove

that the global optimal solution exists for the problem. The optimal solution can be obtained
using Singular Value Decomposition (SVD).

The objective function in (1) can be re-written as:

Trace(LXL⊤Y
∑
ri=1

yix⊤i ) − Trace(LXL⊤Y
∑

ri=−1

yix⊤i ) = Trace
(
L⊤Y(MS − MD)LX

)
,

where MS and MD are defined as
∑

ri=1 yix⊤i and
∑

ri=−1 yix⊤i , respectively. Equivalently, we need
to solve the following optimization problem:

arg max
LX,LY

Trace
(
L⊤Y(MS − MD)LX

)
(2)

subject to L⊤XLX = Ik×k, L⊤YLY = Ik×k.

With regard to the new optimization problem, the following theorem holds. Note that in opti-
mization problem (1), k 6 min(n,m) holds, since L⊤XLX = Ik×k and L⊤YLY = Ik×k are required.

3It is easy to verify that it is a metric.
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Algorithm 1 Algorithm of prime problem (2)
1: Input: training data {(xi, yi, ri)}Ni=1, parameter k 6 min(n,m).
2: Calculate MS and MD through

∑
ri=1 yix⊤i and

∑
ri=−1 yix⊤i , respectively.

3: Calculate SVD of MS − MD.
4: Choose left and right singular vectors (u1, · · · , uk) and (v1, · · · , vk) w.r.t the top k singular

values.
5: Output: LY = (u1, · · · , uk) and LX = (v1, · · · , vk).

Theorem 4.1. ∀k 6 min(n,m), the global optimal solution of the optimization problem (2) exists.
Furthermore, suppose that MS −MD = UΣV⊤, where Σ is an n×m diagonal matrix with singular
values λ1 > λ2 > · · · λp > 0, p = min(n,m), U = (u1, u2, · · · , un) where {ui} are left singular
vectors, and V = (v1, v2, · · · , vm) where {vi} are right singular vectors. The global optimal L̂X
and L̂Y are given by L̂X = (v1, v2, · · · , vk) and L̂Y = (u1, u2, · · · , uk).

The proof is given in Appendix. The algorithm of finding global optimal using SVD is
summarized in Algorithm 1.

4.2. Generalizability of Solution

We show that the similarity function learned by our method is generalizable to unobserved
object pairs.

Intuitively, given an object x ∈ X, for any x′ ∈ X that is similar to x, for any y ∈ Y, similarity
functions f (x, y) and f (x′, y) should be close to each other. This is also true for objects y, y′ ∈ Y,
if y and y′ are similar inY then for any x ∈ X, the difference between similarity functions f (x, y)
and f (x, y′) should be small. Consequently, if x is similar to x′ and y is similar to y′, then the
similarity between x and y will be close to the similarity between x′ and y′. We call this property
generalizability of similarity function.

Suppose that ∀x ∈ X and ∀y ∈ Y, ||x||X = ||y||Y = 1, where || · ||X and || · ||Y are the norms
defined in X and Y, respectively. If ||x − x′||X < ϵ where ϵ > 0 is a small number, we have

| f (x, y) − f (x′, y)| = |(x − x′)LXL⊤Yy| 6 ||L⊤X(x − x′)|| · ||L⊤Yy||.

Since ||L⊤X(x − x′)||2 = ∑k
i=1⟨lXi , (x − x′)⟩2 and L⊤XLX = Ik×k, then ||L⊤X(x − x′)||2 6 ||x − x′||2X.

Similarly, ||L⊤Yy||2 6 ||y||2Y = 1. Thus, we have

| f (x, y) − f (x′, y)| 6 ||x − x′||X < ϵ.

Similarly, if ||y − y′||Y < ϵ, then | f (x, y) − f (x, y′)| < ϵ.
That is to say, we can estimate the similarity between any object pair x and y, if we know the

similarity between the object pairs in its neighborhood.

4.3. Kernelization

We can also derive the dual problem of the optimization problem (1) and employ the kernel
trick [16]. Solving the dual problem (kernelized version) is more preferable when the dimensions
of input spaces are high compared with number of training instances. It is also necessary, when
non-linear features that can composite a kernel are used. Time complexity of the dual problem
is a function of number of instances.
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We use ϕX(x) and ϕY(y) to respectively denote the feature vectors of objects x ∈ X and
y ∈ Y. The corresponding kernels are denoted by kX(·, ·) and kY(·, ·), respectively. Thus, the
optimization problem (1) becomes

arg max
LX,LY

∑
ri=1
ϕX(xi)⊤LXL⊤YϕY(yi) −

∑
ri=−1
ϕX(xi)⊤LXL⊤YϕY(yi)

subject to L⊤XLX = Ik×k, L⊤YLY = Ik×k.

Suppose that LX = (lX1 , · · · , lXk ) and LY = (lY1 , · · · , l
Y
k ). With the property of Hilbert space, we

have lXi = zXi + vXi and lYi = zYi + vYi , ∀i, where zXi and zYi are from the spaces spanned by
{ϕX(xi)}Ni=1 and {ϕY(yi)}Ni=1, respectively, and vXi and vYi are orthogonal to the spaces spanned by
{ϕX(xi)}Ni=1 and {ϕY(yi)}Ni=1, respectively. Since for any x j, vXi , ⟨ϕX(x j), vXi ⟩ = 0, and for any y j, vYi ,
⟨ϕY(y j), vYi ⟩ = 0, the optimal LX and LY become (zX1 , · · · , zXk ) and (zY1 , · · · , z

Y
k ), respectively.

Thus, LX can be represented as ΦX · αX and LY can be represented as ΦY · αY, where ΦX =
(ϕX(x1), · · · , ϕX(xN)) and ΦY = (ϕY(y1), · · · , ϕY(yN)). In this case, the optimization problem
becomes

arg max
αX,αY

Trace
(
α⊤Y(M̃S − M̃D)αX

)
subject to α⊤XKXαX = Ik×k, α

⊤
YKYαY = Ik×k,

where
M̃S =

∑
ri=1

(kY(yi, y1), · · · , kY(yi, yN))⊤ (kX(xi, x1), · · · , kX(xi, xN)) , (3)

M̃D =
∑

ri=−1
(kY(yi, y1), · · · , kY(yi, yN))⊤ (kX(xi, x1), · · · , kX(xi, xN)) , (4)

KX =
(
kX(xi, x j)

)
N×N

, and KY =
(
kY(yi, y j)

)
N×N

.
Let us further suppose that both KX and KY are full-rank matrices. Constraint α⊤XKXαX =

Ik×k is equivalent to α⊤XK
1
2
XK

1
2
XαX = Ik×k. Thus, we can define α̃X = K

1
2
XαX, and the constraint

becomes α̃⊤Xα̃X = Ik×k. Similarly, we can transform the constraint on αY to α̃⊤Yα̃Y = Ik×k, where

α̃Y = K
1
2
YαY. Under the new constraints, the optimization problem becomes

arg max
α̃X,α̃Y

Trace
(
α̃⊤YK−

1
2
Y (M̃S − M̃D)K−

1
2
X α̃X

)
(5)

subject to α̃⊤Xα̃X = Ik×k, α̃
⊤
Yα̃Y = Ik×k.

We can follow the result of Theorem 4.1 to solve the optimization problem above.
Given new objects x and y, L⊤XϕX(x) and L⊤YϕY(y) are determined by

[kX(x, x1), · · · , kX(x, xN)]K−
1
2
X · α̃X. (6)

[kY(y, y1), · · · , kY(y, yN)]K−
1
2
Y · α̃Y. (7)

When the number of training instances N is smaller than min(n,m), solving the dual problem
(5) will be more efficient than solving the prime problem (2), although we have to calculate two
matrix inverses. The algorithm of dual problem (5) is given in Algorithm 2.
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Algorithm 2 Algorithm of dual problem (5)
1: Input: training data KX = (kX(xi, x j))N×N , KY = (kY(yi, y j))N×N , {ri}Ni=1, and parameter k 6

N.
2: Calculate M̃S and M̃D through Equation (3) and (4), respectively.

3: Calculate K−
1
2
X and K−

1
2
Y .

4: Calculate SVD of K−
1
2
X (M̃S − M̃D)K−

1
2
Y .

5: Choose left and right singular vectors (u1, · · · , uk) and (v1, · · · , vk) w.r.t the top k singular
values.

6: Output: αY = K−
1
2
Y (u1, · · · , uk) and αX = K−

1
2
X (v1, · · · , vk).

5. Experiment

5.1. Image Data Visualization

We have conducted experiment on image data visualization with our similarity learning
method. In the experiment, we learned the similarity function between keywords and images
from training data. Based on the similarity function learned, we plotted the data into a two
dimensional space using Multidimensional Scaling (MDS) [2]. (MDS is a common tool for em-
bedding data from high dimensional space into low dimensional space.) We use the experimental
results to show that our method can put texts and images into the same space and preserve their
similarity relations very well. Such a technique is useful for data visualization over heteroge-
neous data. Similar things can be done on collaborative filtering data, translation data, etc.

We made use of the image data set called “ESP Game”, which was used in [8] 4. It contains
more than 20, 000 images and 268 keywords. Each image is annotated with several keywords
and the keywords represent the content of the image. Average number of keywords per image is
4.7. The whole data set is split into training and testing data sets. In our experiment, we only
used the test data set, which contains 2, 081 images and 268 keywords.

We took the annotated data as training data and learned a similarity function with our method.
The keywords are represented in a space in which each dimension corresponds to a word and the
dimensionality is 268. The images are represented in another space in which each dimension cor-
responds to an image feature and the dimensionality is 37, 152. If there is a keyword associated
with an image, we viewed them as positive instance (similar keyword and image), otherwise, we
viewed them as negative instance (dissimilar keyword and image).

To tune the parameter k in our method, we conducted 5-fold cross validation. We evaluated
each parameter value using the method in [8]. That is, we assigned each image with its most
similar 5 keywords and calculated average precision of the assignments.

We then applied our method (Algorithm 1) to learn the similarity function. The keywords
and images were then positioned in the new space with the similarity function. Note that in the
original space of keywords, the dimensions are orthogonal, and thus there is no explicit similarity
relation between keywords. In contrast, in the new space, the similarities between keyword and
keyword, image and image, and keyword and image are all incorporated.

To give a rough idea on how the result looks like, we choose 3 groups of 7 keywords and top 5
similar images for each group, and plot the keywords and images in two dimensional space with

4http://lear.inrialpes.fr/people/guillaumin/data iccv09.php
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Figure 1: Keywords and images are plotted in the same space with the learned similarity function as ‘distance ’.

MDS. Figure 1 shows the result. Although certain information has been lost during application
of MDS, we can still see that similar images and keywords are really positioned close to each
other. That is to say, similarity between heterogeneous data can be accurately learned by our
method.(Other example results are given in the supplementary material).

5.2. Document Retrieval

We have also carried out experiment on document retrieval using our similarity learning
method. Given query-document pairs and their relevance labels (+1/-1), we learned a similarity
(relevance) function with the data using our method. We then ranked documents for other queries
with our learned function. We use the experimental results to show that our method can also be
used in relevance ranking in document retrieval.

We adopted Mean Average Precision (MAP) [21] as evaluation measure. As baselines, we
chose Vector Space Model (VSM) [15], BM25 [14], and Metric Learning for Clustering (MLC)
[23]. The former two methods are state-of-the-art methods in document retrieval. In VSM and
BM25, no learning is performed and queries and documents are matched with predefined models.
In MLC, queries and documents are put into the same space, a single transformation is learned
for both queries and documents, and queries and documents are matched through dot product
after the transformation.

We made use of the TREC AP data set in the experiment. We utilized queries of year 1992
(query number 51 − 100), their associated documents, and the related judgments as our data set.
There are 50 queries and 6, 913 documents in total. The average number of documents per query
is about 156. We used tf-idf of unigrams (words) as features of queries and documents. The
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Table 1: MAP values of VSM, BM25, MLC, our method, MLC combined with BM25 and our method combined with
BM25 on testing data. Results are averaged over 10 trials. The improvements of our final method over the baselines are
statistically significant (t-test, p-value=0.037).

Method VSM BM25 MLC Our Method MLC+BM25 Our Method+BM25
MAP 0.408 0.413 0.384 0.392 0.415 0.426

total number of unigrams is 5, 634, among which 138 words appear in queries and 5, 627 words
appear in documents.

In our method, we treated query space and document space as two different spaces, in each
of which only words that appear in the space are defined as dimensions. The dimensionality
of query space becomes 138, while the dimensionality of document space becomes 5, 627. As
a result, we only need to perform SVD on a 138 × 5627 matrix and this helps to significantly
improve efficiency. In contrast, in MLC, the query space and document space are treated as the
same space, and thus learning needs to be performed on a much larger matrix (5, 634 × 5, 634).
To efficiently run MLC, we had to first conduct PCA to reduce the dimensionality. We tuned
parameter k in our method and the rank of PCA in MLC through 5-fold cross validation.

From (6) and (7), we can see that if a testing query or document is orthogonal to all training
queries or documents, then the query or document will be mapped to 0 vector and no similarity
can be calculated. To deal with the problem which all the learning based methods have, we
linearly combine a learning based model and BM25 as the final model. In other words, for
those queries or documents that are orthogonal to the training data, we rely on the conventional
relevance model.

Finally, we conducted relevance ranking experiments with the methods. We randomly chose
80% queries as training data and the remaining 20% as testing data. We repeated the processes of
learning and ranking 10 times, and took average of the results for each method, as summarized
in Table 1. We can see that our final method significantly outperforms the baselines.

6. Conclusion and Future Work

We have proposed a new metric learning problem and its solution in this paper. The met-
ric learning problem is unique in that the similarity function is defined over two heterogeneous
spaces. We assume to linearly map the objects in the two heterogeneous spaces into a new space
and define dot product in the new space as similarity function. We formalize the learning problem
as that of learning the two mapping functions given training data. Our metric learning is a natural
extension of conventional metric learning. We have then developed a general and theoretically
sound method to solve the new metric learning problem. Although the learning (optimization)
problem is not convex, we prove that the global optimal solution exists and we can find the opti-
mal solution through Singular Value Decomposition. We also show the generalizable property of
the solution and kernelization of the method. Experiments on image data visualization and doc-
ument retrieval have demonstrated the effectiveness of our method. As future work, we plan to
study extensions of the problem defined in this paper and possible solutions to them, for example,
when the mapping functions are non-linear.
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A. Proof of Theorem 4.1

Proof. Suppose F = {(LX, LY) | LX =
(
lX1 , · · · , lXk

)
, LY =

(
lY1 , · · · , lXk

)
, L⊤XLX = Ik×k, L⊤YLY =

Ik×k}, where ∀i, 0 6 i 6 k, lXi and lYi are the ith column vectors of LX and LY, respectively. Under
the norm defined as ||(LX, LY)||2 = ||LX||2F + ||LY ||2F , where || · ||F is Frobenius norm, it is easy to
see that F is compact, and the objective function (2)(or (1)) is continuous. Therefore, there exist
maximum and minimum.

Objective function (2) can be re-written as
∑k

j=1 lYj
⊤

(MS −MD)lXj , and ∀ j, lYj
⊤

(MS −MD)lXj =
⟨lYj , (MS − MD)lXj ⟩. Since MS − MD =

∑p
i=1 λiuiv⊤i , we have

⟨lYj , (MS − MD)lXj ⟩ = ⟨lYj ,
p∑

i=1

λiuiv⊤i lXj ⟩ =
p∑

i=1

λi⟨u⊤i lYj , v
⊤
i lXj ⟩ 6

p∑
i=1

λi|⟨ui, lYj ⟩||⟨vi, lXj ⟩|

= λk

p∑
i=1

|⟨ui, lYj ⟩||⟨vi, lXj ⟩| +
k∑

i=1

(λi − λk)|⟨ui, lYj ⟩||⟨vi, lXj ⟩| +
p∑

i=k+1

(λi − λk)|⟨ui, lYj ⟩||⟨vi, lXj ⟩|

6 λk

p∑
i=1

|⟨ui, lYj ⟩||⟨vi, lXj ⟩| +
k∑

i=1

(λi − λk)|⟨ui, lYj ⟩||⟨vi, lXj ⟩|

Since ||lXj || = ||l
Y
j || = 1 and {ui}pi=1 and {vi}pi=1 are orthonormal, we have

∑p
i=1 |⟨ui, lYj ⟩||⟨vi, lXj ⟩| 6[

(
∑p

i=1⟨ui, lYj ⟩2)(
∑p

i=1⟨vi, lXj ⟩2)
] 1

2 6 ||lXj || · ||lYj || 6 1. Thus, we know ⟨lYj , (MS − MD)lXj ⟩ 6 λk +∑k
i=1(λi − λk)|⟨ui, lYj ⟩||⟨vi, lXj ⟩|. By taking summation on both sides, we obtain

k∑
j=1

⟨lYj , (MS − MD)lXj ⟩ 6 kλk +

k∑
i=1

(λi − λk)(
k∑

j=1

|⟨ui, lYj ⟩||⟨vi, lXj ⟩|).

From this inequality, we obtain

k∑
i=1

λi −
k∑

j=1

⟨lYj , (MS − MD)lXj ⟩ >
k∑

i=1

(λi − λk)(1 −
k∑

j=1

|⟨ui, lYj ⟩||⟨vi, lXj ⟩|)

Since L⊤XLX = Ik×k and L⊤YLY = Ik×k, we have

k∑
j=1

|⟨ui, lYj ⟩||⟨vi, lXj ⟩| 6
( k∑

j=1

⟨ui, lYj ⟩
2)(

k∑
j=1

⟨vi, lXj ⟩2)


1
2

6 ||ui|| · ||vi|| 6 1.

Thus,
∑k

j=1⟨lYj , (MS − MD)lXj ⟩ 6
∑k

j=1 λ j.

Particularly, letting lYj = u j and lXj = v j, we can obtain the global maximum.
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