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Abstract

Many kernel based methods for multi-task learning have been proposed, which leverage rela-
tions among tasks to enhance the overall learning accuracies. Most of the methods assume that
the learning tasks share the same kernel [e.g., 13], which could limit their applications because in
practice different tasks may need different kernels. In this paper, we consider utilizing multiple
kernels for multiple tasks. The main challenge of introducing multiple kernels into multiple tasks
is that functions from different Reproducing Kernel Hilbert Spaces (RKHSs) are not compara-
ble, making it difficult to exploit relations among tasks. This paper addresses the challenge by
defining the problem in the Square Integrable Space (SIS). Specially, it proposes a kernel based
method which makes use of a regularization term defined in the SIS to represent task relations.
We prove a new representer theorem for the proposed approach in SIS. We further derive a prac-
tical method for solving the learning problem and conduct consistency analysis of the method.
We discuss the relations between our method and the existing method by showing the inequality
relation between the two regularization terms in the two methods. We also give an SVM based
implementation of our method for multi-label classification. Experiments on an artificial exam-
ple and three real-world data sets show significant improvements of the proposed method over
existing methods.

Key words: kernel methods, multi-task learning, multi-label classification, square integrable
space, representer theorem, convergence analysis, Support Vector Machines

1. Introduction

We consider the kernel based approaches to multi-task learning in this paper. One commonly
adopted strategy is to exploit the relations between tasks (classes) to enhance the performance of
learning [cf., 8, 7]. [13], as well as [17], proposed using task relations as regularization terms in
kernel methods by assuming that the tasks share the same kernel. We point out that in practice
besides employing a single kernel for multiple tasks (SKMT), it is also necessary to employ
multiple kernels for multiple tasks (MKMT), depending on applications.

Figure 1 illustrates the importance of MKMT with an artificial example on multi-label clas-
sification (special case of multi-task learning). There are three classes, and classification of
instances to one class corresponds to one task. The instances (circle points) in the square area
on the right side belong to class 1, the instances (diamond points) in the outer circle area and
the instances (cross points) in the inner circle area on the left side belong to classes 2 and 3,
respectively. The instances (square points) in the middle belong to both classes 1 and 2 (i.e., they
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Figure 1: Artificial Data

have multiple labels). The goal of the learning problem is to train classifiers from the training
data that can classify new instances as accurately as possible. It is easy to verify that to separate
the instances in class 1 from the others, using a linear classifier is sufficient, while to separate
the instances in class 2 or the instances in class 3 from the others, it is better to use a nonlinear
classifier. Moreover, to handle those instances with double labels, it is more preferable to exploit
task relations (e.g., co-occurrence information). We conducted experiments on this artificial data
set. The results given in Section 6 show that our method can effectively utilize multiple kernels
as well as task relations to outperform the baselines.

In this paper, we propose a general approach for multi-kernel multi-task learning. The major
challenge for employing multiple kernels for multiple tasks is that models for different tasks
may come from different Reproducing Kernel Hilbert Spaces (RKHSs), making their comparison
infeasible. Thus, we formulate multi-kernel multi-task learning in a new space, named the Square
Integrable Space (SIS). Since SIS includes RKHSs for different tasks as subspaces, the task
relations can be naturally incorporated into a regularization term in the SIS. We then present a
new representer theorem which provides the form of solutions to the proposed kernel method.
We derive a practical method for solving the learning problem and further prove the convergence
of the practical solution to the ideal solution. We discuss the relations between our method and
Evgeniou et al’s method by showing the inequality relation between the regularization terms
in the two methods. We give a specific algorithm of our method based on SVM technique.
Experiments of multi-label classification on the artificial example and three real-world data sets
show the effectiveness of our approach on handling MKMT problems.

Our contribution in this paper is primarily theoretical, and it consists of three fold, (1) pro-
posal of a method of multi-task learning in Square Integrable Space, particularly for MKMT,
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(2) theoretical analysis of the method, (3) practical implementation of the method and empirical
verification of its effectiveness.

The rest of the paper is organized as follows: after a survey of related work in Section 2,
we introduce the notations used in this paper, and the background knowledge on RKHS and
Square Integrable Space (SIS) in Section 3. Then, we propose our approach in Section 4, in-
cluding showing the new representer theorem, deriving the practical solution, and analyzing the
convergence of the practical solution to the ideal solution. We give an implementation of our
approach based on SVM technique in Section 5, and empirically verify the effectiveness of our
method through several experiments in Section 6. We finally conclude the whole paper with
some remarks in Section 7. Proofs of theorems are given in Appendix.

2. Related Work

Multi-task learning aims to perform learning for multiple problems simultaneously in order
to achieve better performance for all the problems. It has been verified both theoretically and
empirically that it is feasible if one can properly leverage information across the tasks in the
learning process, and many methods have been proposed [cf., 8, 7]. One group of methods
attempt to use task relations. For example, [14], [21], [13], and [17] proposed presenting task
relations as regularization terms in the objective functions to be optimized. The regularization
terms can make closer the parameters of models for similar tasks. Another group of methods
manage to find the common structure for multi-task learning. For instance, [1], as well as [2]
proposed methods for multi-task learning by finding the common structure from data, and then
utilizing the learned structure. Our multi-task learning method belongs to the first group, and it
is more generally applicable than the existing methods (MKMT v.s. SKMT).

Kernel methods are a principled and powerful approach in machine learning [23, 15]. Con-
ventional kernel methods are defined in the Reproducing Kernel Hilbert Space (RKHS). In our
paper, we extend kernel methods to the Square Integrable Space (SIS).

One issue in kernel methods is to choose a proper kernel from a set of candidate kernels.
A common practice is to heuristically determine a set of kernels, compare the performances of
the kernels, and choose the best one. Multiple Kernel Learning (MKL) aims to solve the kernel
selection problem in a principled way. Specifically, it employs a linear combination of kernels
and learns the model (classifier) as well as the optimal weights of the linear combination at the
same time [cf., 18, 4]. MKMT is different from MKL; the former is about learning for multiple
tasks, while the latter is about kernel selection in a single task. We could adopt MKL in selection
of the best kernel for each task (the best linear combination of kernels) in our method. In this
paper, we simply use the heuristic way of kernel selection and consider integration of MKL into
our approach as future work.

The following recent work is also related to, but different from our work. [24] proposed a
method of simultaneously learning multiple kernels for multiple tasks, but they did not utilize
task relations. [16] proposed to embed data into a low dimensional space by exploiting label
correlation. They focus on learning of a better feature representation by employing MKL, while
we try to solve a multi-task learning problem. [11] proposed learning classifiers in different func-
tion spaces for different tasks in domain adaptation (similar to MKMT). They trained classifiers
separately, rather than collectively as in multi-task learning.



3. Premise

Before proposing our approach, we first introduce some notations used in this paper, and
review the background knowledge on RKHS and Square Integrable Space (SIS).

3.1. Notations

We consider multi-task learning, specifically, multi-label learning. Suppose that there are T
tasks. For each task ¢, data (x;,y,) is generated from X, X Y, according to a distribution P,(x, y).
In this paper, we suppose that X, is a compact subset in R? and Y, = {+1,—1}. Moreover, we
have a training data set S; = {(x;, y;)}i_, for each task 7 and our goal is to learn a classifier f;(x):
X; — R that can assign a label to a new instance x;. Following the proposal in [13], we assume
that X,=X for all tasks and x;; is independent from #!. Different tasks share a common marginal
distribution P(x) but have different conditional distributions P,(y|x) (i.e., we consider multi-label
classification). In MKMT, the function spaces ¥, (fi(x) € ¥,) of different tasks are assumed to
be different from each other.

We further assume a matrix A € RZ*T is provided as prior knowledge in training, where
element (s, 1) € [0, 1] represents the similarity between tasks s and 7. In this paper, we give a
heuristic way to learn A from training data in Section 6 . We use A in learning of the classifiers
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3.2. RKHS and Square Integrable Space

We review the theory on Reproducing Kernel Hilbert Space (RKHS) [cf., 3, 9] and show the
relationship between RKHS and Square Integrable Space (SIS).

A reproducing kernel Hilbert space H is a Hilbert space of functions f(-) : X — R that
satisfies that Vx € X, f — f(x) is continuous. Suppose the inner product is (:, )¢, ac-
cording to Riesz Representation Theorem, there is a function K(-,-) : X X X — R defined
such that f(x) = (f(-),K(-,x))¢. K(x,y) is called a reproducing kernel. Moreover, since
K(x,y) = (K(-, x), K(-,¥))#, the reproducing kernel K satisfies 1) K(x,y) = K(y,x), Vx,y € X;
D)V, C R {x}, C X, Z?,j:l a;ajK(x;, x;) > 0. Inversely, any function K(-,-) : XXX — R
that satisfies conditions 1) and 2) can uniquely determine a Hilbert space H endowed with inner
product (-, -)g 2, such that 1) K(-,x) € H,Vx € X;2) Vf € H, f(x) = (f(), K(-, X)). Thus, H
is a reproducing kernel Hilbert space and K is a reproducing kernel.

A continuous reproducing kernel K is a Mercer kernel. Suppose that X is endowed with a
measure u, 4(X) < co. We use £2(X, ) to denote square integrable function space of X in which
each function f(x) satisfies f fz(x)u(dx) < 00,

Given a Mercer kernel K, suppose that the reproducing kernel Hilbert space associated with
K is Hk, and the corresponding inner product is given by (-, -)x. Let us consider the following
operator from £2(X, u) to L2(X, p):

Ly : L2(X,p) = LX)
f(x) - f FOIK(x, y)u(dy).

IWe can take X = X| X X3 X --- X X7 as input space.
2<unique’ is in the sense of isomorphism



It is easy to verify that Ly is a self-adjoint compact operator. According to Hilbert-Schmidt
theorem [22], there is a sequence of real eigenvalues {/l,-}f; pAL = A2 im0 4 = 0f
N = +o0, and an orthonormal basis {e;(x)}Y| of L*(X, ), such that Lg(e;(x)) = Aie;(x), Yi, e;(x)
is a continuous function. Moreover, K(x,y) = Zf\; | Aiei(x)e;(y), and the convergence is absolute
and uniform.

Given any function f(x) € Hg, since

f FA)p(dx) = f {fC), K(, 0))k)* u(dx)
< f (O FONRP K(x, 0(d) < oo,

f(x) € L2(X,u). Thus, RKHS Hy is a subspace of SIS £2(X, u), for any Mercer kernel K.
Since Vf(x) € Hg, f(x) € L*(X, ), f(x) can be represented as f(x) = Zf\il a;e;(x), where

a; = f f(x)e;(x)u(dx). Furthermore, we have the following theorem, which characterizes RKHS

Hk by {4;}% | and the orthonormal basis of SIS {¢;(x)}Y, [9]:

Theorem 3.1. Hyx = {f € L2(X,u) | f(x) = fil a;e;i(x), Zfil % < oo}. The convergence is

absolute and uniform, thus ¥ f(x) € Hy, f(x) € C(X), where C(X) is continuous function space

of X. Moreover, suppose that f(x),g(x) € Hg, f(x) = Zﬁl aiei(x) and g(x) = Zfil b;ei(x), the

inner product {f(-), g(-))x in H is given by Zﬁl %

4. Our Approach

We propose a novel and general kernel approach to multi-task learning using task relations.
Formally, suppose that RKHS 7, is generated by kernel ; for task ¢. We learn function (model)
f; from H; . Since kernels k, may be different from each other, fi, f5,- - - , fr may be no longer in
the same space (i.e., RKHS). We consider using Square Integrable Space (SIS) as the space con-
taining all the RKHSs H;, which is supported by Theorem 3.1. We conduct multi-task learning
in SIS L2(X, ).

One advantage of the approach is that we can naturally use task relations in L2(X, i), since
SIS contains the RKHSs for different tasks. More importantly, we can offer a theoretical justifi-
cation to the approach by proving the representer theorem and the convergence of the practical
solution.

4.1. Ideal Solution
Multi-task learning is then defined as the following optimization problem:

1 T n T T
argmin — 3" 3" Ly ) + 71 Il + 5 )" os,) f (00 = 0 pn, (D)
t=1

fer AT S =1

where the second term is a normal regularization term which control the complexity of models in
their own RKHSs, and the third term is a regularization term which measure difference of models
in the common space (.e..L2(X, ). The underlying assumption is that if two tasks s and ¢ are
similar (6(s,?) is large), then the corresponding models should also be similar in the common
space.
To guarantee the existence of solution and identify the form of solution, we need a new
Representer Theorem for the new kernel method:
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Theorem 4.1 (Representer Theorem). Suppose that loss function L(-, -, ) is convex and contin-
uous, the solution to the optimization problem (1) exists and has the following form:

700 = Y a0+ [ GOm0,
i=1

where a;; € R and 6,(-) € £L*(X, ). Note that here we require loss function L to be convex and
continuous. This condition appears to be slightly strong, but is satisfied by most of the commonly
used loss functions.

We can use the marginal distribution P(x) as u. In this way, the solution of problem (1)

becomes
n

ﬁm=2ammm+fwwwmmm. 2)
i=1
Formula (2) offers an ideal solution to our approach. The proof of Theorem 4.1 can be found
in Appendix A.

4.2. Practical Solution

To obtain the ideal solution, we need to know marginal distribution P(x), and then solve a
functional optimization problem (Note 6, is a £ integrable function).

In practice, we use the empirical distribution P(x) = rl; T Lx = xp) 3 to estimate P(x).
Thus, the solution of problem (1) becomes

n

R N 1
Jix) = ; @ik (X3, X) + - D Bikixi, ). 3)

i=1

We need to answer the question whether the practical solution converges to the ideal solution
when training size goes to infinity. The difficulty is that we need to verify the convergence of
the optimal parameters {a;;} in formula (3) to the optimal parameters in formula (2), and the
convergence of optimal parameters {6} in formula (3) to the optimal functions {6,(x)} in formula
(2). Here, the optimal parameters are those obtained by solving the optimization problem (1) with
respect to P(x) and P(x), respectively. As shown below, we are able to prove the convergence,
by analyzing the relationship between the two minimums of the optimization problem (1) under
P(x) and P(x) respectively.

4.3. Convergence of Practical Solution

In this section, we further assume that L is differentiable and prove the convergence of prac-
tical solution under the condition.* Theorem 4.5 gives a bound on the difference between the
two solutions. The result indicates that the practical solution given by formula (3) converges to
the ideal solution given by formula (2) in probability. Moreover, it also gives the convergence
speed, which will enable us to estimate the number of instances necessary to make the difference

31(x = x;) = 1, if x = x;, otherwise, 1(x = x;) = 0

4Whether the same conclusion holds under a weaker condition is still an open question, in which L is only continuous.
Our hypothesis is that it may be the case, because we can use differentiable functions to approximate a continuous
function.



between the two solutions small enough with high probability. We briefly explain how to obtain
the bound and present the proofs of theorems in Appendix B.

Define D, = sup,.x |f;*(x) — f,(x)l. Suppose that max;<,;<r SUp,cy k:(x,x) < B. Define
WF,X) = supyer [Ef* = L3 20l where X = (i), F = (fIf = X, fis fi € Hislfll <
R"). Since {£*()}_, minimize (1) with respect to P(x), Xi_, IR < 7= £, Ty Lixi, v 0),
where % Zth | 2ty L(x:, y14, 0) is the value of the objective function (1) on 0. Since L is differen-

tiable, and thus continuous, we can suppose that max, , L(x,y,0) < U. Thus, Zthl I f,*llf’ < fy—f’

Similarly, Z,T:1 ||f,||ft < Ty—l]] We can let R* = /Ty—(]] thus, V¢, s, f* — f and ﬁ - ﬁ are in . We
first bound A(F, X). Using the McDiarmid inequality [5], we obtain the following theorem:

Theorem 4.2. Given an arbitrary small positive number 6, with probability more than 1 — 6, the
following inequality holds:

I(F, X) — ER(F, X)| < (TR*YB+/ w.

With this theorem, we only need to bound EA(F, X). Using the conclusion given by Theorem
12.6 and techniques in the proof of Theorem 8 and Lemma 22 in [5], we obtain

Theorem 4.3.
8(TR*)’B

\n
Combining the results in Theorem 4.2 and 4.3, we finally obtain the bound for A(F, X):

E(WF,X)) <

Theorem 4.4. With probability more than 1 — 6, we have the following inequality hold:

%2
h(F,X) < (TR')’B+| LIS g(n).
n Vn

With the results above, we reach our conclusion:

Theorem 4.5. With probability more than 1 — 6, the following inequality holds:

D, = suplf*(x) — S| <O /n%) 1<1<T.
xeX

4.4. Relation with Existing Approach

[13] formalize multi-task learning as the following optimization problem :

T n T T
L1
argmin — 3" 3" Loy )+ 1 IR+ 5 D 6Gs.0llfs = fill

fleH T o =1 sit=1

where the second term is a regularization term in RKHS, and the third term is a regularization
term based on task relations, also defined in the RKHS. In their approach , in order to make
comparison between models for different tasks and exploit task relations, models are assumed
to be in the RKHS generated by the same kernel «, which is the major difference from our
approach. The following theorem shows the relationship between the two regularization terms
of our approach and Evgeniou et al.’s approach when all tasks share the same kernel.

7



Theorem 4.6. Suppose all tasks share the same kernel k, Vs, t, the following inequality holds:

8(s. DNl fs = fill = Clk, (s, 1) f (fs(x) = £i(x))*u(dx),

where C(k, 1) is a positive constant related to kernel k and measure . Moreover, if k satisfies
k(x,y) =2 0 and fk(x, yu(dx) = 1 Yy (e.g., Gaussian kernel), C(k, 1) < 1.

The proof of Theorem 4.6 can be found in Appendix C. Theorem 4.6 indicates that for SKMT
cases our approach can work as well as existing approach.

5. Implementation

We give a specific algorithm of our approach We define the loss function L in the objective
function (1) as hinge loss, and thus define { f, _, as SVM classifiers.
The learning problem becomes:

arg min _ Z Z(l Yilfi () + b))+ + %1 Z AR, Z Z 85, (A (x1) = filxi)?.
€H; =1 =1 o Ry

Note that here following the convention we add a bias b, into each classifier f;(x). By introducing
slack variables, we obtain the prime problem:

T n
arg min Z Z &+ Z WA + 22 3% D 8. n(A) = i)

fieH 3 = sr=1i=1
subjectto  y;(fi(x) +b)=>1-&; & >0

Equation (3) gives the solution to the prime problem, and we combine parameters a;; and 6;;
together as «;; here:

n
A=) dmlxn 1<t<T
i=1

Substituting this solution into the prime problem, we obtain the following dual problem:

arg max Z Z Bi —

BeR™™ =1 i=

-1

pw ,ﬁ Y7<(7(+727«1:®1)7< KYB.

subject to Zﬁ,iy,,» =0 1<t<T, 0<B:<1
i=1

Here, 8 = (8.5, ,B7)" is the dual variable, where 8, = (81,812, .Bwn)" t = 1,2---T. Y
is a diagonal matrix whose 7 X i-th element is y,;. £ is task graph Laplacian which is constructed
by taking (s, f) as the weight of edge connecting task s and ¢ on an undirected graph. K is a
block diagonal matrix with each block K; = (K,(xi, x_,-))m

After getting the optimal 8, we can compute the optimal &’* = (a7, @7, -+ ,ar
where o,"* = (an"*, an™, -, a,"*)7T through the following equation:

/*T)T

-1
@ = — (7( + L2xre 1)7() KYB'. @)
2y 1



Algorithm 1
1: Input: training data (L slyal, 1 <t < T, task similarity matrix A
2: Choose a proper kernel «; for each task ¢
3: Choose proper | and y».

Compute matrix (‘K + Z—?'K(L ®1I )‘K)_

Compute 8* by solving the dual problem
Compute o’* by using equation (4).
Output: f;7(x) = XL, @y ki(x;, x) +bf, 1 <t < T

1

A A

The details of the algorithm are shown in Algorithm 1. At step 2, we empirically find a proper
kernel for each task, from a number of kernels. At step 5, we solve a QP problem. We specifically
employ Franke and Wolf’s method [see 12], which is a gradient descent based method. At step 4,
we need to compute inverse of matrix, which is of order O(n*). We focus on problem formulation
and theoretical analysis in this paper, and leave to future work the improvements of our method
on efficiency and kernel selection.

6. Experiments

We conducted experiments to verify the effectiveness of our approach. We used an artificial
data set given in Figure 1 and three classification data sets: protein classification data set, music
classification data set, and video classification data set. We considered two baselines: Individual
and Single (Kernel). In the former, SVM classifiers for the tasks are trained individually (i.e.,
task relations are ignored), and in the latter, SVM classifiers for tasks are trained using Evgeniou
et al.’s method. We denote our method Multiple (Kernel). For the artificial data set, we used
MicroF1 value, MacroF1 value [20], and error rate as evaluation measures. For other real-world
data sets, we utilized ROC score [19] as evaluation measure.

In our experiments, we employ the following heuristic method to learn {6(s, #)} from training
data. We create a vector for each task (class) based on training data. Each element of the vector
corresponds to an instance; and if the instance belongs to the class (task), then we set the value of
the element as 1, otherwise we set it as 0. Finally, we take the cosine of the vectors of two tasks
s and t as (s, ). We actually use positive co-occurrence of tasks (classes) as similarity between
them.

6.1. Artificial Data Classification

As shown in Figure 1, there are three classes, and classification of instances to one class
corresponds to one task. The 400 instances (circle points) in the square area on the right side
belong to class 1, the 400 instances (diamond points) in the outer circle area and the 400 instances
(cross points) in the inner circle area on the left side belong to classes 2 and 3, respectively.
The 200 instances (square points) in the middle belong to both classes 1 and 2 (i.e., they have
multiple labels). Totally, classes 1, 2 and 3 have 600, 600 and 400 instances respectively. We
randomly chose 5%, 5%, and 90% of instances in each class as training, validation, and testing
data respectively. In many real world problems usually there are small amount of training data
and large amount of testing data. We tried to simulate such kind of situation.

We used the heuristic method referred above to set the similarity between tasks 1 and 2 as
0.67, similarity between tasks 1 and 3 as 0, and similarity between tasks 2 and 3 as 0.

9



Table 1: Accuracies of methods on artificial data classification

\ Individual \ Single \ Multiple

Average MicroF1

\ 0.9 \ 0.83 \ 0.92
Average MacroF1

\ 0.89 \ 0.83 \ 0.92

Average Error Rates
class 1 0.4% 14% 0.8%
class 2 12.4% 12.8% 9.6 %
class 3 8% 7.6% 8%

We chose the best kernel for each task, from linear kernel and Gaussian kernel exp—“Y“)‘—YH2
(including parameter). At the same time, we also determined the best value for parameter .
The result indicates that for classes 1, 2, 3, the best kernels are linear kernel, Gaussian kernel
with ¥ = 0.1, and Gaussian kernel with y = 0.1, respectively. The results combined over tasks
are actually those for Individual.

Besides, we tuned parameters 7y, in Single and Multiple. We first selected the best kernel and
the best parameter /| for Individual, and then fixed them for Single and Multiple, and selected the
best parameters 7y, for Single and Multiple. Parameter selection was conducted with validation
data. ] was in {0.1,0.5,1,5}, and y, was in {0.00075,0.00375,0.0075, 0.0375,0.075,0.375,
0.75,3.75,7.5,37.5}. For Single which employs only one single kernel, we used the Gaussian
kernel which performs the best for all tasks.

We repeated the process ten times, and Table 1 gives the average results of the three methods
in terms of MicroF1 and MacroF1. Table 1 also shows the error rates for each individual task by
each method.

Multiple performs as well as Individual on classes 1 and 3, but better than Individual on class
2. (Note that the two methods employ the same kernels while Multiple uses task relations but
Individual does not.) It seems that the use of task relations can help Multiple to achieve better
performance. Multiple works as well as Single on class 3, but significantly better than Single
on classes 1 and 2. (Note that the two methods rely on the same task relation information, but
Single makes use of the same kernel for all tasks while Multiple makes use of different kernels
for different tasks). It is obvious that for class 1 employing a linear kernel is better, and that is
why for this class Multiple performs better than Single. For class 2, there are instances in both
the outer circle area and the middle area. Multiple seems to be able to leverage task relation and
multiple kernels to achieve high accuracy (Note that Multiple performs well on class 1), while it
is hard for Single to do so.

6.2. Protein Data Classification

In this experiment, a benchmark data set > on classification of protein functions was used. The
data set contains 3, 588 proteins with 13 function classes, and each protein may be associated
with one or more functions. The average number of functions per protein is 1.53. For more
details, see [19].

Shttp://noble.gs.washington.edu/proj/yeast/
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Table 2: Comparison of three methods on protein data

Individual | Single (Ky,) | Single (K, 4m,) | Multiple
class 1 0.721 0.697 0.736 0.740'2
class 2 0.666 0.652 0.638 0.657°
class 3 0.654 0.655 0.653 0.676%3
class 4 0.728 0.745 0.741 0.753%3
class 5 0.779 0.790 0.779 0.79713
class 6 0.682 0.650 0.686 0.6882
class 7 0.671 0.653 0.673 0.687123
class 8 0.635 0.641 0.621 0.636"3
class 9 0.605 0.584 0.611 0.6072
class 10 0.649 0.646 0.600 0.651°
class 11 0.541 0.557 0.542 0.541
class 12 0.881 0.826 0.887 0.891123
class 13 0.579 0.590 0.594 0.6021

We randomly chose 500 instances as training data, and evenly divided the rest into two sub-
sets for validation and testing. We used the heuristic method above to calculate task similarities
from the training data.

We selected the best kernel for each task heuristically by using the validation set. We tuned
the parameters for Individual, Single, and Multiple. In this data set, no information on features is
available, and the kernels are provided as kernel matrices. There are in total 8 kernel matrices (8
kernels). We then tuned the parameters for the three methods. We followed the parameter setting
in [19], that is, we fixed y; as 1 for all the three methods (equivalent to having C = 1). y, for
Single and Multiple was chosen from {0.01,0.05,0.1,0.5, 1, 5}.

We repeated the above process ten times, and the final results are averaged over ten trials.
For classes 2, 8, 10, and 13 the best performing kernel for Individual is Smith-Waterman kernel
(Kw), and for the other classes the best performing kernel is Enriched Pfam kernel (K, fam, ).

Table 2 gives the results of the three methods. Superscripts 1, 2, and 3 stand for that the
improvements of our methods are statistically significant over Individual, Single using kernel
K, and Single using kernel K, r4,,, , respectively.

We can see that Multiple is better than Individual on eleven classes among thirteen classes
and for eight of the outperforming cases, the improvement is statistically significant.

The results in Table 1 indicate that kernel selection is crucial for Single. With a good kernel
selection, SKMT’s performance can be comparable to Multiple, which agrees with the theoret-
ical result in Theorem 4.6, but with a bad kernel selection, the performance can be worse than
Individual. In contrast, Multiple can exploit different kernels as well as the task relations to
achieve a good performance.

6.3. Music Data Classification

We test our method on another data set ® on music emotion classification (multi-label clas-
sification). The data contains 593 pieces of music and 6 types of emotion. Each piece of music

°http://mu1an.sourceforge.net/datasets.htm]

11



Table 3: Comparison of three methods on music data

Individual | Single (Gaussian) | Single (Polynomial) | Multiple
class 1 0.723 0.675 0.727 0.73212
class 2 0.570 0.543 0.584 0.580?
class 3 0.764 0.777 0.643 0.7623
class 4 0.855 0.816 0.863 0.872%
class 5 0.748 0.653 0.755 0.76012
class6 | 0.736 0.706 0.747 0.75212

expresses one or more types of emotion. The average number of emotion types per piece of
music is 1.87.

We randomly chose 100 instances, 243 instances, and 250 instances as training data, val-
idation data, and testing data, respectively. We created Gaussian kernels (exp™"I) with o
varying in {0.01,0.05,0.1,0.5, 1, 5, 10}, linear kernel, and polynomial kernels with degree 2 — 5
as kernel candidates. We chose 7’1 from {0.1,0.5, 1, 5}, calculated task similarities, selected ker-
nels, and tuned model parameters, in the same way in the protein data experiment.

We also repeated the process ten times. Table 3 gives the average results. For classes except
3, polynomial kernel with degree 5 performs best, and for class 3, Gaussian kernel with o = 0.01
is the best performing one. Superscripts 1, 2, and 3 mean that the improvement of our method is
statistically significant when compared with Individual, Single using Gaussian kernel, and Single
using Polynomial kernel, respectively. We can make the same conclusions as in the protein data
experiment. That is, our method can effectively utilize the task relation and different kernels to
handle MKMT problems.

6.4. Video Data Classification

To further verify the effectiveness of our method, we conducted another experiment 7 on
video data classification. The data set contains 43,907 videos and totally 101 semantic concepts.
Each video is labeled with at least one concept (i.e., the data set is a multi-label data set). The
average number of concepts per video is 4.37.

To control the scale, we calculated the frequencies of the 101 concepts in the entire data set,
and chose the top 10 most frequent concepts as classes in our experiment. After removing the
videos without the top 10 concepts, there were 41, 583 videos left, and the average number of
classes per video became 3.17. We randomly chose 833 videos, 750 videos, and 40, 000 videos
as training data, validation data, and testing data, respectively.

As in music data classification, we created Gaussian kernels (exp’(’”x’y“z) with o varying in
{0.01,0.05,0.1,0.5, 1, 5, 10}, linear kernel, and polynomial kernels with degree 2 — 5, as kernel
candidates. We chose y] from {0.1,0.5, 1, 5}, calculated task similarities, selected kernels, and
tuned model parameters, in the same way in the music data experiment.

We repeated the process ten times. Table 4 gives the average results. There are totally 3
optimal kernels. For classes 1 — 5, Gaussian kernel with o = 1 is optimal. For classes 6 and 7,
Gaussian kernel with o = 5 is the one with the best performance. For classes 8 — 10, Gaussian
kernel with o = 0.01 is the best choice. Superscripts 1, 2, 3, and 4 indicate that the improvement

7http://mulan.sourceforge.net/datasets.htm]
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Table 4: Comparison of three methods on video data

Individual Single Single Single Multiple
(Gaussian o = 1) | (Gaussian o = 5) | (Gaussian o = 0.01)

class 1 0.805 0.804 0.799 0.766 0.787%
class 2 0.812 0.812 0.798 0.730 0.81234
class 3 0.757 0.758 0.734 0.725 0.758%4
class 4 0.778 0.778 0.758 0.727 0.7891.234
class 5 0.750 0.753 0.755 0.753 0.7597
class 6 0.645 0.634 0.648 0.615 0.648124
class 7 0.619 0.608 0.619 0.553 0.619%4
class 8 0.816 0.825 0.831 0.823 0.822T
class 9 0.661 0.677 0.677 0.680 0.6951.23
class 10 0.707 0.723 0.738 0.720 0.7541.234

of our method is statistically significant over Individual, Single using Gaussian kernel witho = 1,
Single using Gaussian kernel with oo = 5, and Single using Gaussian kernel with o = 0.01,
respectively. We can see that by exploiting task relations, our method significantly outperforms
Individual on 6 out of 10 classes. If Single uses the best kernel, its performance is comparable
with our method, but if not, our method usually significantly outperforms Single. We can make
the same conclusions as in the other experiments. That is, our method can effectively leverage
both task relations and different kernels to handle MKMT problem:s.

7. Conclusion

In this paper, we have proposed a new kernel approach to multi-task learning using task
relations. The main characteristics of the approach is to formalize the problem in the Square
Integrable Space in order to employ multiple kernels for multiple tasks. Specifically, our method
incorporates task relations into a regularization term in the objective function. We have addressed
the theoretical issues of the learning method, specifically, proved the representer theorem, derived
a practical solution, proved the convergence of the practical solution to the ideal solution, and
verified the relation between our method and an existing method. We have also proposed an
algorithm for implementing our approach for multi-label classification, on the basis of SVM. We
have conducted experiments and empirically verified that our method is indeed very effective for
multi-task learning.

As future work, we plan (1) to study the generalization ability of our method, (2) to study
principled ways of selecting kernels in our approach, (3) to develop more efficient learning algo-
rithms, and (4) to conduct experiments on other data sets.
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Appendix A.

Proof of Theorem 4.1 (Representer Theorem)

To prove Theorem 4.1, we need two lemmas:

Lemma .1. Given Mercer kernels {K,}ZT \» H; is the reproducing kernel Hilbert space generated

by k;. Ball B, = {f = (Lol fi € H, Z, 1 ||f,||2 } is a compact subset of C(X),
where r > 0 and C(X) is continuous function space of X.

Proof. We first consider an embedding:

H — C(X)
fef

where H = H; X H, X - - - Hy, and the corresponding norm is defined as IIfIIw = ,/Z,ll I£112 .
As the first step, we try to prove that the embedding above is a compact embedding. To achieve
this goal, we only have to prove that for any sequence { f:: = (fu1> fuz,-++ » fur)} that satisfies
I f:llq.( < M, there exists a subsequence that converges in C(X).

Suppose that max; ;<7 Sup,cy k:(x, x) < B. This is possible because X is compact and «;
is continuous. Since ¥x € X, |fu(X) = [(fu(): ki Y| < Nfpull, Vie(x, x) < M VB, we have
I f:: lle < TM VB. Thus, { f:} is uniformly bounded.

For any fixed xj € X,

| () = frur (o)l = [ e (), k(- X) = Ko (-, X0)), |
< W foulle, Vie(x, X) = 26(x, X0) + ki(X0, Xo)

< M i (x, x) = 2K,(x, X0) + Ky (X0, X0)-

Since V1, ; is continuous, thus, Ye, 30 > 0, when |x—xq| < 6, Ztrzl Vi (x, x) = 2x,(x, x0) + k:(x0, x0) <
ﬁ Thus, when |x — x| < 6, Zthl [fre(x) = frur(x0)| < €, ¥n. This means {f:} is equicontinuous.

Since { f;} is uniformly bounded and equicontinuous, according to Ascoli Theorem [10], we
know that there is a subsequence of { f;: } that converges uniformly. The uniformly convergent
subsequence is the subsequence that converges in C(X). Thus, the embedding H — C(X) is a
compact embedding.

Since H is compactly embedded in C(X), to prove B, is compact in C(X), we only need to
prove that 8B, is closed in C(X).

A ﬁ: } C B,,if ﬁ converges to f in C(X), we try to prove that j? € B,. According to Theorem
3.1, we know f;,,(x) = ZN’I a'el(x), where {e{(x)} is the orthonormal basis of square integrable
N, (@9

o . Sup-

pose fi(x) = Zl | dtel(x), using the fact that ! = f fix)el(xu(dx), a' = f Su()el(x)u(dx), and
fur = f; in C(X) (i.e., uniform convergence), we know that lim,_,, ! = a}. Thus , we have

i (az)z ) Z . ( nt 2 lm Z (anz)Z

= =1 o

space associated with kernel k;, and N, is finite or infinite. Moreover, || f,,,||fx =
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Using the inequality above, we have

T T N t)2 T N (ant)Z T N (ant)Z
2 . i
NIEDMIE =2, lim =i < dim ) ), T <
=1 =1 i=1 i =1 i=1 " 4 ® =1 i=1 i
Thus, we know f € B,. We proved that B, is a compact subset of C(X). O

Lemma .2. Given a Mercer kernel «, the corresponding reproducing kernel Hilbert space is
given by H. Suppose that the eigenvalues and the orthonormal basis assoc iated with k are given
by {4, } , and {e,(x)}l \» Trespectively. For any f € H and f(x) = ;L la,e (x), there exists a

function g € L*(X, ) such that f(x) = f gWk(x, y)u(dy) if and only if

N

LSS
2

i=1 l

This lemma is given by [6].
With the two lemmas above, we can prove Theorem 4.1:

Proof. To prove the existence of the minimizer of optimization problem (1) (denote the objective
function as H( f)), we equivalently consider the following optimization problem:

arg min Z Z L(xi, yir ) + 5 Z 8(s,1) f (/i) = [0 p(dn) 5)

fieH, n =1 i= s,t=1
2
Z AR < M
t=1

where M is a constant related to y;. From Lemma .1, we know that {flf, € H, Zthl ||f,||,%f < M}
is compact in C(X). Since L(-, -, -) is continuous, the objective function (5) is continuous in C(X).
Thus, the minimizer exists. We denote it as f_)*.

To get the form of fj(, we first assume that L is differentiable. The “differentiable” condition
can ultimately be eliminated by approximating a non-differentiable function appropriately and
passing to the limit. By using Theorem 3.1, f* = 3’ ; a’j*e;.(x). Substituting this formula to H( f)

and differentiating H( ]?) with respect to a;*, we have:

tx

OH 1 2yi1a
(f ) - Z63L<xl,yn,Za,ﬁ*e@(x))e;-m)+ -

oy [ 3 60,07 09 - 1 000 om) =
s=1

Thus,

T
L(xi yii Z a* el (0)e(x;) - %A} f D760 @) = £ e ().
s=1
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Using the equation above, we have

) = Z Z A3 L(xi, yis Z a;” €} (x))e(x;)el(x)

-2 %43 f Zl 81, )\ (%) = [ () (Du(dx)e; ().
J =

By defining —

2” O3 L(x;, Vi 2ok ak ek(x)) as ay;, the equation above can be represented as

f,*(x>=ZZa,,A'e’(x,>e ) - Z ”ﬂ’ f Zao ) = £ (el (pu(dx)el(x)

—Zankt(x,,x) Z /1’ f Zé(t S (x) = [ )ef(xu(dx)e;(x).

Finally, since Zle 8, s)(fF(x) — fr(x) € L2(X, 1), we have
[, [ X 8 ) () = fF )ef(udnP

T
3 L — = D[ 60070 - £ Cone omcanr
j 7Y

J

T
= f 1> 606 )0 () = £ () Pp(di) < oo,
s=1
By using Lemma .2, we know that there is a 6;(x) € L2(X, () such that

)= Zankz(xi, X) + f 0:()k:(x, y)u(dy),
i=1

and we obtain the conclusion of the representer theorem. O

Appendix B.

Proofs of Theorems Related to Convergence Theorem

Proof of Theorem 4.2

Proof. W(F,X) = suplEf* — 3 3L, f*(x)l, where X = {x;}1_,, UIf = Lk €
feF

H, N fill, < R*}. Consider X' = {xj}’j;ll U {xj};f:m U {x]}, since Ye > 0, there is a function
f € F such that h(F,X) < |Ef? = 1 37| f2(x)| + €, we have

T, X) - h(F,X') < |Ef? - Zf (x) -~ Z P - —f )

/l+l
Zf (x,)—— Z P ,)— Pl +e
Jj=i+1
1
< S0 + D1 +
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Since

T T
Fl < ZIM—ZMMxM D lfill, VB < TR VB,
t=1 t=1 t=1

we have 5
WF,X) - h(F,X') < “T’R*’B +e.
n

Let € be a small number close to zero, we have
’ 2 2 p*2
hWF,X)-hF,X)< -T°R*’B.
n
Using the same technique, we know
WF,X') — h(F,X) < 2R*2B

Thus, |A(F,X') = h(F,X)| < 2T?R**B. According to the McDiarmid inequality [5], for any
e>0,

€n
P(WF,X)— EWF,X)| > ¢€) < 2exp(————).
(hTF,X) = BN, X0l > € < 2expl(=2 )
Given0 < § < 1, let 2exp(—2T4;+BZ) = ¢, we have
2log 2
€= TZR*ZB\/—g 2.
n
We get the conclusion given by Theorem 4.2. O

Proof of Theorem 4.3
To prove this theorem, we need a lemma given by Theorem 12 in [5]:

Lemma 3. For1 < g < oo, let Lypg = {If —hl? : f € F}, where h and |f — h| are uniformly
bounded. We have

h1loo
Ru(Lrng) < 21f = hlo(Ru(F) + %),

where the Rademacher complexity R, (F) is defined as

R,(F) = &waZmM»

fET i=1

Here oi,i = 1, -+ ,n are independent +1-valued uniform random variables.

With the lemma above, we can prove Theorem 4.3:
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Proof.

1 n n
Exh(F,X) = Ex (ZSfuf_IEx (Z f%@)) -2, f2<x,~>|]
JE i=1

i=1

] n
< Exx [;i“g Z 120 — f2<x,->|]
€ =1

= EXX

Laup S o200 - G
i)

2
< Ex(oy [ sup Z O'ifz(xi)] ,

nfeT i=1

where X = {)?,-}l’f:l isi.i.d with X, and 0,i = 1, -- - , n are independent +1-valued uniform random
variables.
Using the conclusion given by Lemma .3, let ¢ = 2, h = 0, we have

1 n
Exh(F,X) < 8|flw [Ex,w,-}(;?uy Z f(xi)O'il)] .
& =1

Since f = Y, f; and f; € H;, fi(x) = (wr, ¢,(x)), where ;(-) is the feature mapping with respect
to kernel «; and w; is the weight vector. Thus, we have

n

1 T
Exion(Zsup) > ow, a,»got(xi»b)
. t=1

eF i=1

T n
1
Ex (o) (; ;21?3 I ;(Wz, ; m%(%))lﬂ

T n
1

> Exo (—sup we, m»sm(xﬁﬂﬂ
t=1 nfET i=1
T n

1

Ex o) [-SUP [Iw| 00 K (Xis X ')] .

; n fer 2,7) !

i,j=1

= 8|flw

< 8fle

< 8fle

Since [[wil| = || fill,, < R* and max sup «(x, x) < B, we have
SIST xeX

T n
8R*|fo
" ZEx,[ml ZUinKz(xi,x_,-)
t=1

ij=1

T n
8R"|fleo
n Z Ex,{mlztfﬂjkr(xi,xj)
t=1

ij=1

Exh(¥,X) <

<

_ 8TR VB|fle
X \/ﬁ .
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From the proof of Theorem 4.2, we know |fl.. < TR* VB, thus, we finally have

8T?R**B
Exh(F,X) < ———.
xh(F, X) Nr
O
Proof of Theorem 4.5 (Convergence Theorem)
Proof. For ease of explanation, we define
H(f) = ZZL(x,,yn M+ leﬁ||2 > 55,0 f (/1) = fi(x)P(dx)
=1 i=1 s,1=1
P
Af=->" L(xi,y,,-,ﬁ>+y12||ﬁ||i, Za(s f)Z(fs(Xz) Fx))

n t=1 i=1 t=1 .)I 1

Suppose Af; = —f* + fi. Since f = (fi, f,- -, fr) is the minimizer of ﬁ(f), by using Theorem
4.4, with probability more than 1 — 7(T — 1)6/2, we have

(T - 1)

) g(n). 6)

A < AG <H) +

On the other hand, by Theorem 3.1, we know f,(x) = Z atel(x) and f*(x) = Z 2 a e’ (x),
where {eﬁ(x)}fi’ | is the orthornormal basis of square integrable space associated with kernel «;,
and MV, is finite or infinite. Since f_)* is the minimizgr of i](f), and H(f) can also be viewed as a
function of {a}}, by taking Taylor expansion of H(f) on f*, we have:

N, N

T
2020 2 O Ha! D@, ~ a)@; ~ @),

sit=1i=1 j=1

H(f) = H(f*) +

N -
~.

where a?' = /laf, +(1- /l)aﬁ*, A € [0, 1].(Note that the gradient of H( ﬁ vanishes on f#* since it is
the minimizer.) Since L is convex, by property of convex function, it is easy to show that

N Ny f

T T N (&I_at*)Z T
/ X\ As K i i
> 0y HUa D@~ )@ = a) >3 ) >~ =n1 ) IAfIE.
v =1

st=1 i=1 j=1 =1 i=1

N —
~.

By using Theorem 4.4 and the inequality above, with probability more than 1 — T(T - 1)§/2, we
have

2 T(T -
A > HP) - )’2( Dy > H(f*)mZuAftnz

t=1

(T -1
=D @

Combining inequalities (6) and (7), we finally have

Dy = suplf () = 0l < Iafil VB < /w VB = 0(1/n}).
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Appendix C.

Proof of Theorem 4.6

Proof. According to Theorem 3.1, suppose that the eigenvalues and the orthonormal basis of
L2X, ) associated with kernel « are given by {/l,»}ﬁ , and {e,-(x)}f\i |» respectively. Given s,1,
fi0) = 3, alei(x) and fi(x) = T, dlei(x).

N t )2
(@ - a))
2
fe = fslle = E —.
‘ Ai
i=1
Since 4} =2 A, = -,
(a} - a})?

A

Ifi = fill2 > Z

N
i=1

On the other hand,
N
f (i) = £ (0 u(dn) = > (@l - a))?.
i=1
Thus, we know

1
R f (00 — FL0un), Vst

We can take C(k, u) as % Moreover, if k(x,y) > 0 and f k(x, y)u(dx) = 1, we assert that Ay = 1.

Since f k(x,y)u(dx) = 1, 1 is an eigenvalue and the corresponding eigenfunction is 1. We
only have to prove that 1; < 1. Since X is compact and e;(x) is continuous, we can define

Xo = arg max|e;(x)|.
xeX

ler(xp)| > 0. Since
fK()C, xO)el(x)ﬂ(dx) = /llel(xO),
we have

Atlei(xo)l = |f’<(x, xo)er(Du(dx)| < fK(X, xo)ler(0)u(dx) < fK(X, xo)u(dx)ler (xo)| = ley (xo)l.

This means
A3 < 1.

Thus, we know that we can take C(X,u) < 1. O
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