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ABSTRACT 
Cloud computing is increasingly considered as an additional 

computational resource platform for scientific workflows. The 

cloud offers opportunity to scale-out applications from desktops 

and local cluster resources. Each platform has different properties 

(e.g., queue wait times in high performance systems, virtual 

machine startup overhead in clouds) and characteristics (e.g., 

custom environments in cloud) that makes choosing from these 

diverse resource platforms for a workflow execution a challenge 

for scientists. Scientists are often faced with deciding resource 

platform selection trade-offs with limited information on the 

actual workflows. While many workflow planning methods have 

explored resource selection or task scheduling, these methods 

often require fine-scale characterization of the workflow that is 

onerous for a scientist. In this paper, we describe our early 

exploratory work in using blackbox characteristics for a cost-

benefit analysis of using different resource platforms. In our 

blackbox method, we use only limited high-level information on 

the workflow length, width, and data sizes. The length and width 

are indicative of the workflow duration and parallelism. We 

compare the effectiveness of this approach to other resource 

selection models using two exemplar scientific workflows on 

desktop, local cluster, HPC center, and cloud platforms. Early 

results suggest that the blackbox model often makes the same 

resource selections as a more fine-grained whitebox model. We 

believe the simplicity of the blackbox model can help inform a 

scientist on the applicability of a new resource platform, such as 

cloud resources, even before porting an existing workflow. 

Categories and Subject Descriptors 
C.2.4 [Distributed Systems]: Distributed applications 

General Terms 
Algorithms, Performance. Experimentation 

Keywords 
Workflow Patterns, Workflow Structure, Cloud Computing, High 

Performance Computing, Resource Management, eScience 

1. INTRODUCTION 
Scientific experiments and applications are often composed of a 

number of tasks with diverse computation and data needs. The 

tasks form a dataflow pipeline between logical stages that are 

represented and executed as workflows or scripts. Each task may 

have loosely coupled, asynchronous interactions or be a tightly 

bound MPI application, among others. Many of these workflows 

are beginning to exceed the available capacity on their preferred 

resource platform and continuously exploring other options.  

Cloud computing has recently gained popularity as a resource 

platform for on-demand, high-availability, and high-scalability 

access using a pay-as-you-go model. Web applications have 

benefited from this paradigm leading to reduction or even 

elimination of computing and storage infrastructure investments. 

Scientists are beginning to explore the feasibility of the virtualized 

cloud resource model for running their computation and data 

analysis at small and large scales [3]. 

In addition to commercial cloud offerings, scientists can access 

several execution resource platforms for running their workflows 

including local workstations, small clusters owned by research 

groups, and shared supercomputing resources at national labs. 

Each platform presents trade-offs in terms of performance, policy, 

and cost with significant differences among them.  

Resource selection for scientific workflows is frequently ad hoc 

and involves offline decisions by users. A user may choose to run 

applications based on familiarity with an environment or thumb-

rules based on earlier experiences. Given the dynamic nature of 

the resources, both in the short and long terms, such improvised 

scheduling is often sub-optimal and occasionally punitive.  

Several models are in use for efficient scheduling of workflows in 

heterogeneous resource environments [9,10,11]. Efficiency may 

be defined as any combination of reducing total wallclock time for 

completing the workflow, improving resource usage, or 

minimizing monetary cost. These models vary in complexity and 

accuracy (though the two are not strictly correlated). The 

scheduling schemes also vary in the degree of a priori knowledge 

about the workflow used for resource selection, ranging from 

purely structural information of the workflow to knowing fine-

grained details of each workflow task. Most workflow scheduling 

approaches use fine-grained data today. 

Detailed knowledge of workflow characteristics may not be 

available before the workflow is run. Such knowledge entails user 

overhead for collection and description. Scientists often need an 

approximate estimate of a resource platform’s suitability for their 

workflow by just providing high-level information about it.  

In this paper, we present a blackbox model for resource selection 

using limited knowledge of workflow characteristics. Our 

approach is based on the idea that the workflow structure and/or 

its dominant resource requirement stage are sufficient to evaluate 

the trade-offs associated with each resource platform. This 

approach is less studied in literature. We use (a) the workflow’s 

dimensions – length and width – that signify its potential duration 

and fanout, and (b) the input and output data sizes to the 
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workflow. We describe our early exploratory work into this high-

level model that allows users to provide just these three 

characteristics of their application in order to understand its 

performance trade-offs on different platforms. We test our 

hypothesis using previously collected experimental data of two 

eScience applications and compare the efficiency of our blackbox 

prediction with more fine-grained whitebox and graybox 

workflow resource selection models. Our early results show the 

benefits of using limited information to make a usable estimate of 

the application throughput on different platforms. 

Specifically, we investigate the following questions: 

• Is it possible to make intelligent selection of resource 

platform from several available options using only the 

workflow dimensions and data input/output sizes?   

• What are the trade-offs of running applications on different 

resource platforms?  

The rest of this paper is organized as follows. We provide an 

overview of common resource platforms and workflow 

characteristics that guide resource selection in Section 2. We 

introduce our blackbox model and describe it in the context of 

whitebox and graybox models in Section 3. We present a 

comparative evaluation of the blackbox model accuracy for two 

genomics applications in Section 4. Sections 5 and 6 describe 

related work and our conclusions and future work. 

2. OVERVIEW 
Resource decisions need a clear understanding of the workflow 

characteristics and the characteristics and properties of available 

resource platforms. Scientific workflows have diverse 

characteristics and have a range of resource platform choices. In 

this section, we summarize these characteristics. 

2.1 Workflow Characteristics 
Workflows exhibit features and have requirements that can be 

used to determine the resource best suited to run part or all of the 

workflow stages among those available. 

Structural features of a workflow characterize the data and control 

flow pattern. Common patterns are sequential pipeline, map-

reduce (or fork-join) pattern, and iterations of these. Besides the 

pattern itself, the width of the structure (i.e. fanout of tasks), the 

length in terms of number of stages and their runtime, and the 

number of iterations influence resource selection decisions [11]. 

Resource usage features of a workflow quantify the 

computational, data storage, and networking resources. The 

compute usage can be specified as time taken to run the stage on a 

specific core speed. The data requirement is specified in terms of 

input and output file sizes and access patterns characteristics. 

Some data intensive applications may also need large memory. 

2.2 Resource Platforms   
Common resource platforms available for scientists to run their 

applications include desktop workstations, local clusters, shared 

HPC resources and more recently, commercial clouds.  

Desktop Workstations: A large number of science applications 

today still run on the desktop. The workstation allows users 

complete control over the software environment as well as on data 

privacy. Multi-core machines can now match small clusters in 

their compute power. However, growth of data and the nature of 

analysis are exceeding what is possible even on high-end work-

stations. The interactive scientific processes can necessitate 

transfer of final data to the desktop for visualization or validation. 

Local Clusters: Scientists often own and operate mid-sized local 

clusters (≤ 256 cores) within their research groups. Graduate 

students and research staff manage these environments in-house. 

The local cluster is a useful resource platform for groups that can 

afford the infrastructure and management cost. The captive nature 

of these resources often makes them under-subscribed and users 

can get immediate access for their applications. The cluster is 

often located on a LAN making large data transfers from desktop 

fast. Nevertheless, these are only suitable for small to mid-range 

computations that fit within the cluster’s core size. 

HPC Shared Resources: Scientific workflows also use shared 

resources at academic and national supercomputing centers. These 

resources are typically accessible to multiple user groups through 

one-to-many or peer-to-peer allocations and are often over-

subscribed [16]. While users can access a larger resource pool, 

they incur queue wait times that depend on the system load when 

they run their computations. HPC users often have less control 

and are subject to site level policies and software changes. While 

some users may be on a fast research network to these centers, this 

is not universal. WAN bandwidth can limit large data transfers. 

Cloud Resources: Cloud computing promises a greater degree of 

freedom to end-users enabling customized and user-controlled 

software environments while enabling resource scale-out 

comparable to shared HPC centers. However, virtualization can 

impact the performance of some scientific applications and 

overheads like Virtual Machine (VM) start time and 

(comparatively) low network bandwidth from desktop to cloud 

can impact application runtime.  

The number of concurrent resources available on a platform 

depends on the number of cores available for computation. For 

desktop and local clusters, users can use all the cores available 

while for cloud and shared HPC, the bounds may be set by policy. 

The core speed can also impact the computation since cloud 

resources may be rated at a lower speed or run slower due to 

virtualization. Throughput can be impacted through overheads in 

batch queues on shared HPC clusters or by VM startup times. 

Network bandwidth in and out of the resource platform from 

desktop determines data transfer time between client and remote 

compute resources. Persistence and size of available local storage 

can decide if intermediate data is moved out of remote platforms 

to desktop. Network latency within the resource platform can 

affect communication costs of tightly coupled MPI tasks. 

3. PLATFORM SELECTION APPROACHES 
Workflows are often orchestrated by a workflow engine on a 

client machine with the actual tasks of the workflow running on 

local or remote resources. The initial input and final output of the 

workflow is present in the desktop client. The parallel nature of 

the workflow may allow multiple tasks to be run concurrently; we 

term all tasks that can run concurrently as a stage in the workflow.  

Resource platform selection models help decide which among 

available resource platforms are best suited to run the workflow in 

order to optimize for one or more factors. The models use an 

optimization function or heuristic based on workflow and resource 

attributes. In this paper, we limit our optimization factor to the 

makespan (or total runtime) of the workflow. For simplicity, we 

assume that all tasks of a workflow are run on the same platform. 

We classify three workflow selection models based on the degree 

of detail required to characterize the workflow to choose a 

suitable resource platform to run it. Figure 1 illustrates the three 

models for the Motif workflow introduced in the next section.  
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• Whitebox (or Fine-grained) Selection: This model assumes 

that the workflow structure and all attributes for each workflow 

task are available. This means the data input, data output and the 

CPU time for each task is known before workflow’s launch. Also, 

the fanout of each stage of the workflow is know from the 

structure. Given this relatively fine-grained detail, each workflow 

task is scheduled independently and, potentially, on a different 

resource platform. Each task incurs an overhead to access one 

CPU core. The overhead for waiting tasks and execution time for 

concurrent tasks in a stage overlap, but overhead is incurred for 

every stage as a task returns its core after use. The time-optimiza-

tion function for this model estimates the total workflow time as: 

FWorkflowTime  = Ʃ F i
StageTime  

where Fi
StageTime  is the time taken by workflow stage i given by: 

 F i
StageTime  =  T i

OverheadOne   +  T i
Data   +  

            (T i
TaskLength  × N i

TaskWidth )/N i
Cores 

Where:  

TiData           : Time to transfer input, output data between desktop 

and the execution platform for the ith stage; 

TiOverheadOne : Overhead time to start executing one task in the ith 

stage on one core, due to queue wait- or VM instance start- time; 

TiTaskLength : Maximum task runtime among those workflow 

tasks scheduled concurrently in the ith stage;  

NiTaskWidth   : Width or fanout of the number of tasks in ith stage; 

NiCores : Number of available cores for running the tasks, such 

that NiCores ≤ NiTasks. 

• Graybox (or Hybrid) Selection: This assumes each stage of 

the workflow is opaque with only the stage width, stage length, 

and total data transferred into and out of each stage known. The 

width is given by the number of parallel tasks within the stage; the 

length, given by the total runtime for the stage when run fully 

parallel. The tasks within each workflow stage are not known. 

This model acquires the maximum possible number of CPU cores 

up to its width before it runs. It can also look ahead to acquire and 

retain cores for subsequent stages until the workflow completes. 

The time-optimization function for this model estimates the total 

workflow runtime as the sum of all i workflow stage runtimes plus 

the overhead time for acquiring the largest number of cores 

required for concurrent tasks from among all workflow stages: 

FWorkflowTime  = T OverheadMax  + Ʃ F i
StageTime  

Where:  

TOverheadMax : Overhead time, due to queue wait or VM instance 

start time, to acquire maximum possible cores for all stages; and 

    F i
StageTime  =  T i

Data   +  
    (T i

TaskLength  × N i
TaskWidth )/N i

Cores 

• Coarse-grained (or Blackbox) Selection: The blackbox 

resource selection uses just three commonly known attributes of 

the workflow: (1) the maximum fanout of the workflow at any 

point, which we term as the workflow width, (2) the total time to 

run the workflow computation at full parallelism, which we term 

the workflow length, and (3) knowledge of the initial workflow 

input and final workflow output data sizes. Using this 

approximation, we can reduce the workflow to a blackbox with 

just one stage and use a function similar to the graybox model 

above. Its time-optimization function estimates the total workflow 

runtime as: 

     F WorkflowTime  = T OverheadMax   +  TData  +  
       (T Length × N Width )/N Cores 

where:  

TData   : Time to transfer initial input and final output data 

between desktop and the execution platform for the workflow; 

TLength   : Workflow length time as defined above; 

NWidth   : Width or maximum fanout of the workflow. 

4. EARLY EVALUATION 
We compare our whitebox, graybox, and blackbox models for two 

eScience applications across desktop, local cluster, shared HPC 

center and cloud resource platforms. We evaluate the relative 

efficiency of the blackbox model for resource platform selection.  

4.1 eScience Workloads 
In this paper, we select eScience applications that have loosely 

coupled Map-Reduce structures since these are well suited to run 

in cloud environments.  

• MOTIF Networks: Motif Networks can model gene 

regulation dependencies that control protein synthesis and 

behavior [2]. The MotifNetwork project analyses genome-sized 

networks of sequences that are computationally intensive. A 

typical Motif workflow has a Map-Reduce stage and two single-

task sequential stages (Fig. 1). A pre-processing task splits a 

13MB input file into 135 chunks that are individually operated 

upon by loosely-coupled, compute intensive Interprocscan tasks 

that take 90mins to execute in parallel and produce 500KB of 

output. A post-processing task gathers the outputs and generates a 

71MB file, and two 599MB files. The workflow’s width is 135, 

length 90mins, data input 13MB and data output 1269MB [7]. 

• Genome Wide Association Studies (GWAS): GWAS uses 

computationally costly statistical algorithms to infer which genetic 

markers are associated with a particular phenotype or disease of 

interest [1]. The Linear Mixed Model GWAS workflow consists 

of two parallelized, compute-intensive Map-Reduce stages and 

four single-task stages. The ML stage calculates the maximum 

likelihood over input genes with a parallel fanout of 1100 tasks 

and takes 10mins in parallel. The subsequent expectation-

maximization stage (EM) with a fanout of 150 improves the ML 

estimate and takes 9mins to complete in parallel. The input data 

size to the workflow is ~150MB for 40K genes for 200 subjects. 

The final EM stage produces a 10MB association matrix as result. 

So the workflow width is 1100, length is 19mins, and data in and 

out are 150MB and 10Mb respectively. 

4.2 Resource Platforms  
We use the following resource platform specifications based on 

earlier measurements for our evaluation: 
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Figure 1. Motif workflow attributes used for whitebox (left), 

graybox (center), and blackbox (right) scheduling. 
Figure 1. Motif workflow attributes used for whitebox (left), 

graybox (center), and blackbox (right) workflow scheduling.

Each model requires less workflow characterization by the user 
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• Local Workstation: We consider a single core workstation 

with CPU rated at 2.5GHz. All input and output workflow data are 

on local disk and tasks execute sequentially on local core. 

• Local Cluster: We consider clusters of sizes between 1 to 256 

cores that are connected by Gigabit Ethernet (128MB/s) to the 

scientist’s desktop client. Each node has an identical CPU Core to 

the above workstation. The desktop contains the inputs to the 

workflow and all cluster outputs are transferred back to desktop. 

• HPC Cluster: We consider the TeraGrid shared clusters at 

Indiana University (BigRed) and at SDSC with queue wait times 

at the 95% quantile predicted using the Batch Queue Prediction 

Service [5]. Cores are limited to between 1 and 2048 cores for 

concurrent use to simulate user quota policy. For simplicity, we 

assume each node has an identical CPU to the above workstation. 

The bandwidth between the HPC center and user’s desktop client 

holding inputs and outputs is assumed to be 1.2MB/sec. 

• Cloud: We consider Microsoft’s Azure cloud with small VM 

CPU cores rated at 1.6GHz. The VM start times are measured at 

200sec initial overhead and 20secs per additional VM [4] and 

users are assumed to get between 1 and 2048 VMs at a time. The 

bandwidth between Azure Cloud storage and user’s desktop client 

holding inputs and outputs is measured at 1.2MB/sec. 

4.3 Results 
We calculate the total workflow runtime for GWAS and Motif 

workloads on each of the four resource platforms using the time-

optimization functions for the three resource selection models 

described earlier. We vary the number of available cores in local 

cluster, shared HPC, and cloud in our calculations. 

Figures 2(a–c) show the estimated Motif workflow runtimes (Y 

Axis) as a function of the available number of concurrent cores (X 

Axis). The pairwise percentage difference in time estimates 

between blackbox and whitebox models, and between blackbox 

and graybox models are shown in Figures 3(a) and 3(b).  

The Motif workflow runtime on the local cluster and the 

workstation (hidden by 1-core cluster datapoint) are highly similar 

for all three models due to the predictable nature of their resource 

attributes. These resource platforms do not have any queue or VM 

startup overheads and have minimal data transfer time to/from the 

desktop. Most time is spent running the workflow tasks. 

The graybox and blackbox models provide a higher time estimate 

for BigRed HPC than the whitebox model, but accurately estimate 

the total time on SDSC HPC. The SDSC queue has a more 

uniform wait time for different job runtimes while this varies 

sharply for the BigRed. 

The cloud runtime estimate is consistent on all three models. This 

is because the deterministic VM start time overhead is 

independent of the task runtimes and paid only once in all three 

models. The intermediate data transfer times, hidden to the 

blackbox model, are dwarfed by compute and VM start times. 

Figure 3(b) shows that there is negligible variation between the 

time estimates for blackbox and graybox models for Motif, which 

means that blackbox specifications are sufficient when compared 

to graybox. The errors between blackbox and whitebox shown in 

Fig. 3(a) are small except for BigRed, as explained above. 

The runtime estimates for GWAS, which is more complex than 

Motif with its multiple map-reduce stages, are shown in Figures 

4(a – c) for the three models. We can draw similar conclusions 

from them. 

5. RELATED WORK 
Workflow systems like Pegasus [18], Swift [10], and Trident [1] 

incorporate features to schedule tasks onto remote resources, such 

as Grids or clusters. For example, Swift uses Falkon execution 

framework to dispatch workflows tasks using multi-level 

scheduling [10]. Deelman, et al. [8] describe resource costs for 

running a Montage workflow on Amazon EC2. We use similar 

resource performance measures for Microsoft Azure Cloud [4]. 

Mandal et al. [12] propose a heuristic strategy using performance 

model based in-advance scheduling for optimal load-balancing on 

grid resources using the GrADS infrastructure [13]. Batch queue 

prediction has been used to predict queue wait times [14] and used 

in the performance model for workflow scheduling [16]. Blythe et 

al. [15] identify and evaluate task-based and workflow-based 

resource allocation strategies for workflows. The task-based 

algorithm greedily allocates tasks to resources. Workflow-based 

algorithms find an optimal allocation for the entire workflow and 

perform better for data-intensive applications. DAG scheduling 

algorithms [9] for Grids use heuristic models to schedule 

applications to meet time budgets. These strategies are similar to 

our whitebox approach and require detailed knowledge of 

workflow structure and requirements. Our blackbox and graybox 

strategies rely on limited information about the workflows and do 

not require the detailed performance models required for these 

other DAG scheduling strategies.  

6. CONCLUSIONS & FUTURE WORK 
Our evaluation demonstrates that the blackbox approach gives 

runtime estimates that are close to the graybox model for the 

GWAS and Motif workflows. While the absolute time estimates 

differ widely between blackbox and whitebox models, the 

blackbox approach is able to order the resource platform 

selections similar to the whitebox model in many cases. This 

fulfills our intended goal of understanding high-level resource 

platform selection with limited workflow knowledge. Thus, our 

model can serve as a basis for scientists to plug in high-level 

characteristics for a workflow and get estimates of a suitable 

platform for it. 

As future work, we will study workflows that are more complex, 

and vary both in structure and in resource needs in an effort to 

identify the class of workflows that are suitable for accurate 

blackbox estimations. Other aspects of resource allocation 

decisions, such as resource utilization and cost, need to be 

compared for the different models.  
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