
ScienceCloud 2010 Workshop Preprint. Do not distribute.

Comparison of Resource Platform Selection Approaches
for Scientific Workflows

Yogesh Simmhan
Microsoft Research, Los Angeles CA

yoges@microsoft.com

Lavanya Ramakrishnan
Lawrence Berkeley National Lab, Berkeley CA

LRamakrishnan@lbl.gov

ABSTRACT
Cloud computing is increasingly considered as an additional

computational resource platform for scientific workflows. The

cloud offers opportunity to scale-out applications from desktops

and local cluster resources. Each platform has different properties

(e.g., queue wait times in high performance systems, virtual

machine startup overhead in clouds) and characteristics (e.g.,

custom environments in cloud) that makes choosing from these

diverse resource platforms for a workflow execution a challenge

for scientists. Scientists are often faced with deciding resource

platform selection trade-offs with limited information on the

actual workflows. While many workflow planning methods have

explored resource selection or task scheduling, these methods

often require fine-scale characterization of the workflow that is

onerous for a scientist. In this paper, we describe our early

exploratory work in using blackbox characteristics for a cost-

benefit analysis of using different resource platforms. In our

blackbox method, we use only limited high-level information on

the workflow length, width, and data sizes. The length and width

are indicative of the workflow duration and parallelism. We

compare the effectiveness of this approach to other resource

selection models using two exemplar scientific workflows on

desktop, local cluster, HPC center, and cloud platforms. Early

results suggest that the blackbox model often makes the same

resource selections as a more fine-grained whitebox model. We

believe the simplicity of the blackbox model can help inform a

scientist on the applicability of a new resource platform, such as

cloud resources, even before porting an existing workflow.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms
Algorithms, Performance. Experimentation

Keywords
Workflow Patterns, Workflow Structure, Cloud Computing, High

Performance Computing, Resource Management, eScience

1. INTRODUCTION
Scientific experiments and applications are often composed of a

number of tasks with diverse computation and data needs. The

tasks form a dataflow pipeline between logical stages that are

represented and executed as workflows or scripts. Each task may

have loosely coupled, asynchronous interactions or be a tightly

bound MPI application, among others. Many of these workflows

are beginning to exceed the available capacity on their preferred

resource platform and continuously exploring other options.

Cloud computing has recently gained popularity as a resource

platform for on-demand, high-availability, and high-scalability

access using a pay-as-you-go model. Web applications have

benefited from this paradigm leading to reduction or even

elimination of computing and storage infrastructure investments.

Scientists are beginning to explore the feasibility of the virtualized

cloud resource model for running their computation and data

analysis at small and large scales [3].

In addition to commercial cloud offerings, scientists can access

several execution resource platforms for running their workflows

including local workstations, small clusters owned by research

groups, and shared supercomputing resources at national labs.

Each platform presents trade-offs in terms of performance, policy,

and cost with significant differences among them.

Resource selection for scientific workflows is frequently ad hoc

and involves offline decisions by users. A user may choose to run

applications based on familiarity with an environment or thumb-

rules based on earlier experiences. Given the dynamic nature of

the resources, both in the short and long terms, such improvised

scheduling is often sub-optimal and occasionally punitive.

Several models are in use for efficient scheduling of workflows in

heterogeneous resource environments [9,10,11]. Efficiency may

be defined as any combination of reducing total wallclock time for

completing the workflow, improving resource usage, or

minimizing monetary cost. These models vary in complexity and

accuracy (though the two are not strictly correlated). The

scheduling schemes also vary in the degree of a priori knowledge

about the workflow used for resource selection, ranging from

purely structural information of the workflow to knowing fine-

grained details of each workflow task. Most workflow scheduling

approaches use fine-grained data today.

Detailed knowledge of workflow characteristics may not be

available before the workflow is run. Such knowledge entails user

overhead for collection and description. Scientists often need an

approximate estimate of a resource platform’s suitability for their

workflow by just providing high-level information about it.

In this paper, we present a blackbox model for resource selection

using limited knowledge of workflow characteristics. Our

approach is based on the idea that the workflow structure and/or

its dominant resource requirement stage are sufficient to evaluate

the trade-offs associated with each resource platform. This

approach is less studied in literature. We use (a) the workflow’s

dimensions – length and width – that signify its potential duration

and fanout, and (b) the input and output data sizes to the

ScienceCloud 2010 Workshop Preprint. Do not distribute.

workflow. We describe our early exploratory work into this high-

level model that allows users to provide just these three

characteristics of their application in order to understand its

performance trade-offs on different platforms. We test our

hypothesis using previously collected experimental data of two

eScience applications and compare the efficiency of our blackbox

prediction with more fine-grained whitebox and graybox

workflow resource selection models. Our early results show the

benefits of using limited information to make a usable estimate of

the application throughput on different platforms.

Specifically, we investigate the following questions:

• Is it possible to make intelligent selection of resource

platform from several available options using only the

workflow dimensions and data input/output sizes?

• What are the trade-offs of running applications on different

resource platforms?

The rest of this paper is organized as follows. We provide an

overview of common resource platforms and workflow

characteristics that guide resource selection in Section 2. We

introduce our blackbox model and describe it in the context of

whitebox and graybox models in Section 3. We present a

comparative evaluation of the blackbox model accuracy for two

genomics applications in Section 4. Sections 5 and 6 describe

related work and our conclusions and future work.

2. OVERVIEW
Resource decisions need a clear understanding of the workflow

characteristics and the characteristics and properties of available

resource platforms. Scientific workflows have diverse

characteristics and have a range of resource platform choices. In

this section, we summarize these characteristics.

2.1 Workflow Characteristics
Workflows exhibit features and have requirements that can be

used to determine the resource best suited to run part or all of the

workflow stages among those available.

Structural features of a workflow characterize the data and control

flow pattern. Common patterns are sequential pipeline, map-

reduce (or fork-join) pattern, and iterations of these. Besides the

pattern itself, the width of the structure (i.e. fanout of tasks), the

length in terms of number of stages and their runtime, and the

number of iterations influence resource selection decisions [11].

Resource usage features of a workflow quantify the

computational, data storage, and networking resources. The

compute usage can be specified as time taken to run the stage on a

specific core speed. The data requirement is specified in terms of

input and output file sizes and access patterns characteristics.

Some data intensive applications may also need large memory.

2.2 Resource Platforms
Common resource platforms available for scientists to run their

applications include desktop workstations, local clusters, shared

HPC resources and more recently, commercial clouds.

Desktop Workstations: A large number of science applications

today still run on the desktop. The workstation allows users

complete control over the software environment as well as on data

privacy. Multi-core machines can now match small clusters in

their compute power. However, growth of data and the nature of

analysis are exceeding what is possible even on high-end work-

stations. The interactive scientific processes can necessitate

transfer of final data to the desktop for visualization or validation.

Local Clusters: Scientists often own and operate mid-sized local

clusters (≤ 256 cores) within their research groups. Graduate

students and research staff manage these environments in-house.

The local cluster is a useful resource platform for groups that can

afford the infrastructure and management cost. The captive nature

of these resources often makes them under-subscribed and users

can get immediate access for their applications. The cluster is

often located on a LAN making large data transfers from desktop

fast. Nevertheless, these are only suitable for small to mid-range

computations that fit within the cluster’s core size.

HPC Shared Resources: Scientific workflows also use shared

resources at academic and national supercomputing centers. These

resources are typically accessible to multiple user groups through

one-to-many or peer-to-peer allocations and are often over-

subscribed [16]. While users can access a larger resource pool,

they incur queue wait times that depend on the system load when

they run their computations. HPC users often have less control

and are subject to site level policies and software changes. While

some users may be on a fast research network to these centers, this

is not universal. WAN bandwidth can limit large data transfers.

Cloud Resources: Cloud computing promises a greater degree of

freedom to end-users enabling customized and user-controlled

software environments while enabling resource scale-out

comparable to shared HPC centers. However, virtualization can

impact the performance of some scientific applications and

overheads like Virtual Machine (VM) start time and

(comparatively) low network bandwidth from desktop to cloud

can impact application runtime.

The number of concurrent resources available on a platform

depends on the number of cores available for computation. For

desktop and local clusters, users can use all the cores available

while for cloud and shared HPC, the bounds may be set by policy.

The core speed can also impact the computation since cloud

resources may be rated at a lower speed or run slower due to

virtualization. Throughput can be impacted through overheads in

batch queues on shared HPC clusters or by VM startup times.

Network bandwidth in and out of the resource platform from

desktop determines data transfer time between client and remote

compute resources. Persistence and size of available local storage

can decide if intermediate data is moved out of remote platforms

to desktop. Network latency within the resource platform can

affect communication costs of tightly coupled MPI tasks.

3. PLATFORM SELECTION APPROACHES
Workflows are often orchestrated by a workflow engine on a

client machine with the actual tasks of the workflow running on

local or remote resources. The initial input and final output of the

workflow is present in the desktop client. The parallel nature of

the workflow may allow multiple tasks to be run concurrently; we

term all tasks that can run concurrently as a stage in the workflow.

Resource platform selection models help decide which among

available resource platforms are best suited to run the workflow in

order to optimize for one or more factors. The models use an

optimization function or heuristic based on workflow and resource

attributes. In this paper, we limit our optimization factor to the

makespan (or total runtime) of the workflow. For simplicity, we

assume that all tasks of a workflow are run on the same platform.

We classify three workflow selection models based on the degree

of detail required to characterize the workflow to choose a

suitable resource platform to run it. Figure 1 illustrates the three

models for the Motif workflow introduced in the next section.

ScienceCloud 2010 Workshop Preprint. Do not distribute.

• Whitebox (or Fine-grained) Selection: This model assumes

that the workflow structure and all attributes for each workflow

task are available. This means the data input, data output and the

CPU time for each task is known before workflow’s launch. Also,

the fanout of each stage of the workflow is know from the

structure. Given this relatively fine-grained detail, each workflow

task is scheduled independently and, potentially, on a different

resource platform. Each task incurs an overhead to access one

CPU core. The overhead for waiting tasks and execution time for

concurrent tasks in a stage overlap, but overhead is incurred for

every stage as a task returns its core after use. The time-optimiza-

tion function for this model estimates the total workflow time as:

FWorkflowTime = Ʃ F i
StageTime

where Fi
StageTime is the time taken by workflow stage i given by:

 F i
StageTime = T i

OverheadOne + T i
Data +

 (T i
TaskLength × N i

TaskWidth)/N i
Cores

Where:

TiData : Time to transfer input, output data between desktop

and the execution platform for the ith stage;

TiOverheadOne : Overhead time to start executing one task in the ith

stage on one core, due to queue wait- or VM instance start- time;

TiTaskLength : Maximum task runtime among those workflow

tasks scheduled concurrently in the ith stage;

NiTaskWidth : Width or fanout of the number of tasks in ith stage;

NiCores : Number of available cores for running the tasks, such

that NiCores ≤ NiTasks.

• Graybox (or Hybrid) Selection: This assumes each stage of

the workflow is opaque with only the stage width, stage length,

and total data transferred into and out of each stage known. The

width is given by the number of parallel tasks within the stage; the

length, given by the total runtime for the stage when run fully

parallel. The tasks within each workflow stage are not known.

This model acquires the maximum possible number of CPU cores

up to its width before it runs. It can also look ahead to acquire and

retain cores for subsequent stages until the workflow completes.

The time-optimization function for this model estimates the total

workflow runtime as the sum of all i workflow stage runtimes plus

the overhead time for acquiring the largest number of cores

required for concurrent tasks from among all workflow stages:

FWorkflowTime = T OverheadMax + Ʃ F i
StageTime

Where:

TOverheadMax : Overhead time, due to queue wait or VM instance

start time, to acquire maximum possible cores for all stages; and

 F i
StageTime = T i

Data +
 (T i

TaskLength × N i
TaskWidth)/N i

Cores

• Coarse-grained (or Blackbox) Selection: The blackbox

resource selection uses just three commonly known attributes of

the workflow: (1) the maximum fanout of the workflow at any

point, which we term as the workflow width, (2) the total time to

run the workflow computation at full parallelism, which we term

the workflow length, and (3) knowledge of the initial workflow

input and final workflow output data sizes. Using this

approximation, we can reduce the workflow to a blackbox with

just one stage and use a function similar to the graybox model

above. Its time-optimization function estimates the total workflow

runtime as:

 F WorkflowTime = T OverheadMax + TData +
 (T Length × N Width)/N Cores

where:

TData : Time to transfer initial input and final output data

between desktop and the execution platform for the workflow;

TLength : Workflow length time as defined above;

NWidth : Width or maximum fanout of the workflow.

4. EARLY EVALUATION
We compare our whitebox, graybox, and blackbox models for two

eScience applications across desktop, local cluster, shared HPC

center and cloud resource platforms. We evaluate the relative

efficiency of the blackbox model for resource platform selection.

4.1 eScience Workloads
In this paper, we select eScience applications that have loosely

coupled Map-Reduce structures since these are well suited to run

in cloud environments.

• MOTIF Networks: Motif Networks can model gene

regulation dependencies that control protein synthesis and

behavior [2]. The MotifNetwork project analyses genome-sized

networks of sequences that are computationally intensive. A

typical Motif workflow has a Map-Reduce stage and two single-

task sequential stages (Fig. 1). A pre-processing task splits a

13MB input file into 135 chunks that are individually operated

upon by loosely-coupled, compute intensive Interprocscan tasks

that take 90mins to execute in parallel and produce 500KB of

output. A post-processing task gathers the outputs and generates a

71MB file, and two 599MB files. The workflow’s width is 135,

length 90mins, data input 13MB and data output 1269MB [7].

• Genome Wide Association Studies (GWAS): GWAS uses

computationally costly statistical algorithms to infer which genetic

markers are associated with a particular phenotype or disease of

interest [1]. The Linear Mixed Model GWAS workflow consists

of two parallelized, compute-intensive Map-Reduce stages and

four single-task stages. The ML stage calculates the maximum

likelihood over input genes with a parallel fanout of 1100 tasks

and takes 10mins in parallel. The subsequent expectation-

maximization stage (EM) with a fanout of 150 improves the ML

estimate and takes 9mins to complete in parallel. The input data

size to the workflow is ~150MB for 40K genes for 200 subjects.

The final EM stage produces a 10MB association matrix as result.

So the workflow width is 1100, length is 19mins, and data in and

out are 150MB and 10Mb respectively.

4.2 Resource Platforms
We use the following resource platform specifications based on

earlier measurements for our evaluation:

R

P

�I I
Interprocscan

Time: 90mins

Fanout: 135

100KB

Preprocessing Step

Time: 30secs

13MB

Postprocessing

Step

Time: 60secs

500KB

599MB

599MB

71MB

R

P

I
Interprocscan

Stage

Time: 90mins

Fanout: 135

100KB

Preprocessing

Stage

Time: 30secs

13MB

Postprocessing

Step

Time: 60secs

500KB

1269MB

M

Motif

Workflow

Length (Time):

91.5mins

Width

(Fanout): 135

13MB

1269MB

Figure 1. Motif workflow attributes used for whitebox (left),

graybox (center), and blackbox (right) scheduling.
Figure 1. Motif workflow attributes used for whitebox (left),

graybox (center), and blackbox (right) workflow scheduling.

Each model requires less workflow characterization by the user

ScienceCloud 2010 Workshop Preprint. Do not distribute.

• Local Workstation: We consider a single core workstation

with CPU rated at 2.5GHz. All input and output workflow data are

on local disk and tasks execute sequentially on local core.

• Local Cluster: We consider clusters of sizes between 1 to 256

cores that are connected by Gigabit Ethernet (128MB/s) to the

scientist’s desktop client. Each node has an identical CPU Core to

the above workstation. The desktop contains the inputs to the

workflow and all cluster outputs are transferred back to desktop.

• HPC Cluster: We consider the TeraGrid shared clusters at

Indiana University (BigRed) and at SDSC with queue wait times

at the 95% quantile predicted using the Batch Queue Prediction

Service [5]. Cores are limited to between 1 and 2048 cores for

concurrent use to simulate user quota policy. For simplicity, we

assume each node has an identical CPU to the above workstation.

The bandwidth between the HPC center and user’s desktop client

holding inputs and outputs is assumed to be 1.2MB/sec.

• Cloud: We consider Microsoft’s Azure cloud with small VM

CPU cores rated at 1.6GHz. The VM start times are measured at

200sec initial overhead and 20secs per additional VM [4] and

users are assumed to get between 1 and 2048 VMs at a time. The

bandwidth between Azure Cloud storage and user’s desktop client

holding inputs and outputs is measured at 1.2MB/sec.

4.3 Results
We calculate the total workflow runtime for GWAS and Motif

workloads on each of the four resource platforms using the time-

optimization functions for the three resource selection models

described earlier. We vary the number of available cores in local

cluster, shared HPC, and cloud in our calculations.

Figures 2(a–c) show the estimated Motif workflow runtimes (Y

Axis) as a function of the available number of concurrent cores (X

Axis). The pairwise percentage difference in time estimates

between blackbox and whitebox models, and between blackbox

and graybox models are shown in Figures 3(a) and 3(b).

The Motif workflow runtime on the local cluster and the

workstation (hidden by 1-core cluster datapoint) are highly similar

for all three models due to the predictable nature of their resource

attributes. These resource platforms do not have any queue or VM

startup overheads and have minimal data transfer time to/from the

desktop. Most time is spent running the workflow tasks.

The graybox and blackbox models provide a higher time estimate

for BigRed HPC than the whitebox model, but accurately estimate

the total time on SDSC HPC. The SDSC queue has a more

uniform wait time for different job runtimes while this varies

sharply for the BigRed.

The cloud runtime estimate is consistent on all three models. This

is because the deterministic VM start time overhead is

independent of the task runtimes and paid only once in all three

models. The intermediate data transfer times, hidden to the

blackbox model, are dwarfed by compute and VM start times.

Figure 3(b) shows that there is negligible variation between the

time estimates for blackbox and graybox models for Motif, which

means that blackbox specifications are sufficient when compared

to graybox. The errors between blackbox and whitebox shown in

Fig. 3(a) are small except for BigRed, as explained above.

The runtime estimates for GWAS, which is more complex than

Motif with its multiple map-reduce stages, are shown in Figures

4(a – c) for the three models. We can draw similar conclusions

from them.

5. RELATED WORK
Workflow systems like Pegasus [18], Swift [10], and Trident [1]

incorporate features to schedule tasks onto remote resources, such

as Grids or clusters. For example, Swift uses Falkon execution

framework to dispatch workflows tasks using multi-level

scheduling [10]. Deelman, et al. [8] describe resource costs for

running a Montage workflow on Amazon EC2. We use similar

resource performance measures for Microsoft Azure Cloud [4].

Mandal et al. [12] propose a heuristic strategy using performance

model based in-advance scheduling for optimal load-balancing on

grid resources using the GrADS infrastructure [13]. Batch queue

prediction has been used to predict queue wait times [14] and used

in the performance model for workflow scheduling [16]. Blythe et

al. [15] identify and evaluate task-based and workflow-based

resource allocation strategies for workflows. The task-based

algorithm greedily allocates tasks to resources. Workflow-based

algorithms find an optimal allocation for the entire workflow and

perform better for data-intensive applications. DAG scheduling

algorithms [9] for Grids use heuristic models to schedule

applications to meet time budgets. These strategies are similar to

our whitebox approach and require detailed knowledge of

workflow structure and requirements. Our blackbox and graybox

strategies rely on limited information about the workflows and do

not require the detailed performance models required for these

other DAG scheduling strategies.

6. CONCLUSIONS & FUTURE WORK
Our evaluation demonstrates that the blackbox approach gives

runtime estimates that are close to the graybox model for the

GWAS and Motif workflows. While the absolute time estimates

differ widely between blackbox and whitebox models, the

blackbox approach is able to order the resource platform

selections similar to the whitebox model in many cases. This

fulfills our intended goal of understanding high-level resource

platform selection with limited workflow knowledge. Thus, our

model can serve as a basis for scientists to plug in high-level

characteristics for a workflow and get estimates of a suitable

platform for it.

As future work, we will study workflows that are more complex,

and vary both in structure and in resource needs in an effort to

identify the class of workflows that are suitable for accurate

blackbox estimations. Other aspects of resource allocation

decisions, such as resource utilization and cost, need to be

compared for the different models.

7. ACKNOWLEDGMENTS
This work was supported by the Director, Office of Science, of the

U.S. Department of Energy under Contract No. DE-AC02-

05CH11231. We thank Catharine van Ingen, Roger Barga and

Jennifer Listgarten (MSR), Keith Jackson (LBL) and Emad

Soroush (UW) for detailed discussions.

8. REFERENCES
[1] Listgarten, J. 2010. Correction for Hidden Confounders in the

Genetic Analysis of Gene Expression. (In submission)

[2] Ramakrishnan, L. and Gannon, D. 2008. A Survey of

Distributed Workflow Characteristics and Resource

Requirements. Technical Report TR671, Indiana University.

[3] Nurmi, D., et al. 2009. The Eucalyptus Open-Source Cloud-

Computing System. In CCGrid.

[4] Simmhan, Y., et al. 2010. Bridging the Gap between Desktop

and the Cloud for eScience Applications. (In Submission)

[5] https://portal.teragrid.org/hpc-queue-prediction

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Figure

asing cores using

Figure 4(a). MOTIF runtime estimate difference % between

Figure

[6] Ramakrishnan, L.

workflows on grids and clouds with fault tolerance

[7] Tilson, J. L.,

Domain Analysis using Grid

[8] Deelman, E.,

Cloud. In SC

[9] Sakellariou, R.

Budget Constraints

Springer.

[10] Raicu, I., et al.

execution framework

[11] Wieczorek, M., et al. 2008.

Grid Workflow Scheduling Problem

Services, Springer

[12] Mandal, A.,

Application Workflows onto the Grid

Figure 3(a). MOTIF runtime estimate with incre

asing cores using

Figure 4(a). MOTIF runtime estimate difference % between

whitebox resource selection models with increasing number of cores.

Figure 5(a). GWAS runtime estimate with

sing cores using whitebox

Ramakrishnan, L., et al. 2009.

workflows on grids and clouds with fault tolerance

et al. 2007. MotifNetwork: Genome

Domain Analysis using Grid

 et al. 2008. The Cost of Doing Science on the

SC.

Sakellariou, R., et al. 2007. Scheduling Workflows with

Budget Constraints. Integrated

et al. 2007. Falkon: A fast and light

execution framework. In SC.

Wieczorek, M., et al. 2008.

Grid Workflow Scheduling Problem

, Springer.

 et al. 2005. Scheduling Strategies for Mapping

Application Workflows onto the Grid

MOTIF runtime estimate with incre

asing cores using whitebox model. (Linear

Figure 4(a). MOTIF runtime estimate difference % between

resource selection models with increasing number of cores.

GWAS runtime estimate with

whitebox model. (Linear plot)

ScienceCloud

2009. VGrADS: enabling e

workflows on grids and clouds with fault tolerance

MotifNetwork: Genome

Domain Analysis using Grid-enabled Workflows

The Cost of Doing Science on the

Scheduling Workflows with

tegrated Research in GRID Computing

Falkon: A fast and light

.

Taxonomies of the Multi

Grid Workflow Scheduling Problem. Grid Middleware

Scheduling Strategies for Mapping

Application Workflows onto the Grid. In HPDC

MOTIF runtime estimate with incre-

model. (Linear plot)

Figure

Figure 4(a). MOTIF runtime estimate difference % between

resource selection models with increasing number of cores.

GWAS runtime estimate with increa-

(Linear plot)

Figure

ScienceCloud 2010 Workshop

VGrADS: enabling e-Science

workflows on grids and clouds with fault tolerance. In SC.

MotifNetwork: Genome-Wide

enabled Workflows, In BIBE.

The Cost of Doing Science on the

Scheduling Workflows with

Research in GRID Computing

Falkon: A fast and light-weight task

Taxonomies of the Multi-Criteria

Grid Middleware and

Scheduling Strategies for Mapping

HPDC.

Figure 3(b). MOTIF runtime estimate with incre

asing cores using

Figure 4(a). MOTIF runtime estimate difference % between blackbox

resource selection models with increasing number of cores.

Figure 5(b). GWAS runtime estimate with incre

asing cores using

Workshop Preprint. Do not distribute.

Science

Research in GRID Computing,

Criteria

Scheduling Strategies for Mapping

[13] Kennedy

and

Sys. Prog. Workshop

[14] Brevik, J.

for Batch

[15] Blythe

Workf

[16] Nurmi

Using Integrated

Wait Time Prediction

[17] Simmhan, Y., et al. 2009.

Workflo

ADVCOMP

[18] Lee

Execution in Pegasus

MOTIF runtime estimate with incre

asing cores using graybox model. (Linear

blackbox and

resource selection models with increasing number of cores.

Figure 4(b). MOTIF runtime estimate difference % between

graybox

GWAS runtime estimate with incre

asing cores using graybox model. (Linear

Preprint. Do not distribute.

Kennedy, K., et al

and Executing Adaptive Grid Programs

Sys. Prog. Workshop

Brevik, J., et al. 2006.

for Batch-scheduled

Blythe, J., et al. 2005.

Workflow-based Applications in Grids

Nurmi, D., et al. 2006.

Using Integrated Performance Modelling and Batch

Wait Time Prediction

Simmhan, Y., et al. 2009.

Workflow Workbench for Data Management in the Cloud.

ADVCOMP.

Lee, K., et al. 2008.

Execution in Pegasus

MOTIF runtime estimate with incre-

(Linear plot)

Figure

asing cores using

Figure 4(b). MOTIF runtime estimate difference % between

graybox resource selection models with increasing number of cores.

GWAS runtime estimate with incre-

(Linear plot)

Figure

asing cores using

Preprint. Do not distribute.

et al. 2002. Toward a Framework for Preparing

Executing Adaptive Grid Programs

Sys. Prog. Workshop.

et al. 2006. Predicting Bounds on Queueing Delay

scheduled Parallel Machines

et al. 2005. Task Scheduling

based Applications in Grids

et al. 2006. Evaluation of a

Performance Modelling and Batch

Wait Time Prediction. In SC.

Simmhan, Y., et al. 2009. Building the Trident Scientific

w Workbench for Data Management in the Cloud.

, K., et al. 2008. Adaptive Workflow Processing and

Execution in Pegasus. In WaGe.

Figure 3(c) MOTIF runtime estimate with incre

asing cores using

Figure 4(b). MOTIF runtime estimate difference % between

resource selection models with increasing number of cores.

Figure 5(c). GWAS runtime estimate with incre

asing cores using

Toward a Framework for Preparing

Executing Adaptive Grid Programs. In NSF Next Gen.

Predicting Bounds on Queueing Delay

Parallel Machines. In PPoPP.

Task Scheduling Strategies for

based Applications in Grids. In CCGRID

Evaluation of a Workflow

Performance Modelling and Batch

Building the Trident Scientific

w Workbench for Data Management in the Cloud.

Adaptive Workflow Processing and

) MOTIF runtime estimate with incre

asing cores using blackbox model.

Figure 4(b). MOTIF runtime estimate difference % between

resource selection models with increasing number of cores.

GWAS runtime estimate with incre

asing cores using blackbox model.

Toward a Framework for Preparing

NSF Next Gen.

Predicting Bounds on Queueing Delay

.

Strategies for

CCGRID.

 Scheduler

Performance Modelling and Batch Queue

Building the Trident Scientific

w Workbench for Data Management in the Cloud. In

Adaptive Workflow Processing and

) MOTIF runtime estimate with incre-

 (Linear plot)

Figure 4(b). MOTIF runtime estimate difference % between blackbox and

resource selection models with increasing number of cores.

GWAS runtime estimate with incre-

 (Linear plot)

