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ABSTRACT
Mobile applications often need location data, to update lo-
cally relevant information and adapt the device context. While
most smart-phones do include a GPS receiver, its frequent
use is restricted due to high battery drain. We design and
prototype an adaptive location service for mobile devices,
a-Loc, that helps reduce this battery drain. Our design is
based on the observation that the required location accuracy
varies with location, and hence lower energy and lower ac-
curacy localization methods, such as those based on WiFi
and cell-tower triangulation, can sometimes be used. Our
method automatically determines the dynamic accuracy re-
quirement for mobile search-based applications. As the user
moves, both the accuracy requirements and the location sen-
sor errors change. A-Loc continually tunes the energy ex-
penditure to meet the changing accuracy requirements using
the available sensors. A Bayesian estimation framework is
used to model user location and sensor errors. Experiments
are performed with Android G1 and AT&T Tilt phones, on
paths that include outdoor and indoor locations, using war-
driving data from Google and Microsoft. The experiments
show that a-Loc not only provides significant energy sav-
ings, but also improves the accuracy achieved, because it
uses multiple sensors.

1. INTRODUCTION
Mobile applications often need location information and a

large number of methods for mobile device localization have
been developed [22]. With GPS receivers becoming increas-
ingly commonplace in mobile phones and the widespread
availability of WiFi and cell-tower signature based location
services from Google [9] and other providers, such loca-
tion information is now becoming a reality. However, mo-
bile applications still cannot assume continuous and ubiq-
uitous location access in their design because of the high
energy expense of using the location sensors such as GPS
receivers [12]. The variability in accuracy provided by var-
ious location sensors and the limits on their coverage areas
pose additional challenges for application developers. Using
multiple location sensors simultaneously to make up for this
variability in accuracy would further increase energy use.

Our goal is to develop location as a system service that au-

tomatically manages location sensor availability, accuracy,
and energy. From an application developer perspective, this
simplifies the use of the multiple existing, and potentially
forthcoming, location technologies with varying characteris-
tics. From a mobile user experience perspective, this allows
the system to optimize battery life by intelligently managing
the location energy and accuracy trade-offs based on avail-
able sensor capabilities. This is beneficial for mobile plat-
forms that allow several third party applications to run on
the platform, but at the same time must ensure long battery
life for acceptable user experience.

To realize the above goal, we develop an approach based
on two observations. First, location applications do not al-
ways need the highest available accuracy, such as that pro-
vided by GPS in open sky view locations. The accuracy
needs vary as the user moves and we can exploit the slack in
required accuracy to save energy. Second, a phone has mul-
tiple modalities to sense location aside from the GPS: WiFi
triangulation [16, 3], cell-tower triangulation [22], Bluetooth
vicinity, audio-visual sensing [2], among others [4]. The
availability and accuracy of these modalities vary as the user
moves, and appropriate modalities can be selected to effi-
ciently meet the location needs at lower energy costs.

A typical scenario may involve the user starting a mobile
search application such as Google Maps on their phone, and
searching for a keyword, say “pizza.” The search applica-
tion wishes to determine the nearest pizza stores to display.
If the user is in a densely populated area with multiple pizza
stores, a high accuracy is needed to correctly determine the
nearest entries. However, if the user is in a remote area with
few pizza stores, knowing the location to the nearest mile
may suffice to determine the correct entry. Clearly, in the
latter case, a low energy location modality, simply based on
cell tower association, could be used. Figure 1 illustrates the
accuracy required at different locations in Portland, if the
application was searching for the nearest five pizza stores.
Variable accuracy requirements also apply to most search
based scenarios including those where the user does not ini-
tiate a search but the application displays information proac-
tively, such as show times for nearest movies. Another sce-
nario may involve the mobile device adapting its role based
on the user context where this context is resolved through
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Figure 1: Contour plot of accuracy requirements for
finding nearest five pizza stores in Portland region
(darker shades represent higher accuracy requirement).

distinguishing among locations with distinct activities, such
as home, office, shopping mall, beach etc. Again, the re-
quired location accuracy depends on the geographical sepa-
ration among these places. Finally, variable accuracy needs
also emerge for idle screen advertising and social network-
ing applications [15].

Previous works have presented effective methods to re-
duce the energy overhead of GPS, but they do not fully lever-
age the energy-accuracy trade-off. One approach [12] to re-
duce energy use is to increase the time for which the GPS
remains powered down by detecting when the user is sta-
tionary, using an accelerometer and predicting how far the
user moved based on past speed. However, when a new lo-
cation reading is required, the GPS is still used. Our goal is
to further reduce the energy by using lower energy sensors
when appropriate. Location based on WiFi was used in [23]
to reduce reliance on GPS. However, a static model for avail-
ability and accuracy for both WiFi and GPS was used, that
is not applicable in all scenarios. Our method uses dynamic
models for both location accuracy requirements as well as
the sensor characteristics, and continually tunes the loca-
tion energy-accuracy trade-off to satisfy application needs.
Specifically, we make the following contributions:

First, we develop a system service, named a-Loc, that au-
tomatically adapts location energy and accuracy based on
dynamically varying sensor characteristics as well as appli-
cation needs. Our method can be simply used as a system
provided location service by multiple applications through a
standard interface that accepts the accuracy requirement and
returns the location. Internally, a-Loc minimizes the energy
consumed for achieving the specified accuracy.

Second, we present experimentally measured data that char-
acterizes some of the commonly available location sensors in
terms of their accuracy and energy. We use this data to de-
velop practical models used in our prototype implementation
of a-Loc on a mobile phone. Bayesian estimation is used as
the mathematical machinery behind our models. The a-Loc

framework is extensible; additional localization techniques
may be included by adding their sensor models. This allows
battery performance to improve as new localization capabil-
ities are added to mobile devices, without requiring changes
to applications.

Third, we evaluate the effectiveness of the proposed meth-
ods through real-world experiments with an Android G1 phone
using multiple built-in location modalities and the Android
OS 1.6 interface to a Google location service for WiFi lo-
calization. Additional experiments are performed in emu-
lation and presented using a Windows Mobile phone based
on Microsoft’s internal WiFi and cell-tower based war-drive
data that allows us to generate several additional user trajec-
tories, representing different realistic motion patterns. The
performance of a-Loc is compared to existing techniques as
well as a method to use multiple location modalities without
considering the dynamic variations in sensor availability and
accuracy.

2. RELATED WORK
Many location sensing modalities have been developed

for mobile phones [22]. WiFi radios, available on many
mobile devices, have been explored for localization [16, 24,
3] and WiFi war-driving data for many regions is available
commercially. Encoding of location in WiFi SSID’s has
also been proposed [4]. Additional methods exist based on
cell-tower signal strengths [16, 22] and FM radio station
signal strengths [13]. More recently, the phone’s camera
and microphone have also been used for localization [2, 20,
18]. The focus of this paper is complementary to the above
works. The goal of our system is to use the available loca-
tion modalities, such as the above, and provide an energy
efficient mechanism to obtain location to just the required
accuracy.

Energy usage of some location modalities was studied be-
fore. In Microblog [6, 8], methods to reduce GPS use by
predicting the user’s path were presented. We add to such
methods by explicitly trading off accuracy and energy. Our
framework incorporates user movement models, sensor char-
acteristics, energy models, shared real world sensor accuracy
data, and methods to automatically determine evolving ac-
curacy needs. Another method to reduce the energy use of
GPS was presented in [12]. Accelerometer data was used
to determine when the user is stationary and power down
the GPS. Further the velocity of the user estimated by the
GPS was used to infer time durations for which the user will
stay within tolerable location error range, and GPS was shut
down for those durations. Another method to reduce GPS
energy was considered in [7], where GPS updates were as-
sumed required only when the mobile device enters a spec-
ified region. Location prediction based on known mobile
device velocity was used to infer time durations for which
the device could not reach the specified region from its prior
location, and GPS sampling was suppressed for those dura-
tions. In comparison, we use multiple location modalities,
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account for their variable accuracies and availability, and al-
low using enhanced user location prediction based on a Hid-
den Markov Model. We also incorporate variable location
accuracy requirements. Techniques to determine when lo-
cation data is not needed [12, 7] can of course be used in
addition to our proposed method.

The use of WiFi based location to reduce the reliance on
GPS was also explored in [23]. The focus of the work how-
ever was on road traffic estimation. An initial method for re-
ducing GPS use was included by reducing GPS sampling to
once every k seconds, and using WiFi for the interim period
of k seconds. Energy was optimized by choosing a value
of k that allowed achieving the accuracy constraint. How-
ever, static models for GPS and WiFi error and energy were
assumed, which do not apply in general. We use dynamic
models for sensor accuracy that are acquired based on real
world data, and also allow using multiple additional sensors.

3. SYSTEM OVERVIEW
As a real-world example that provides a concrete test-

case for a-Loc, we consider mobile search. Mobile search
is an important application for two reasons. First, there is
a much larger number of mobile devices than desktops, and
these devices are rapidly becoming capable of obtaining in-
formation from the Internet, through either full fledged smart
phone browsers such as Mobile Safari or limited capabil-
ity browsers using WAP, iMode etc. This has made mo-
bile search the fastest growing mode of search usage. Sec-
ondly, mobile search is especially important to search ser-
vice providers such as Google, Yahoo, and Microsoft be-
cause a significant fraction of mobile searches involve search-
ing for local services or products. This type of mobile search
is easiest to monetize, not merely through advertisements ac-
companying search results but also through transactions ini-
tiated based on those results. This importance is evidenced
by the rapid release of search-centric mobile applications
such as Google Mobile 1, competing applications from other
search providers, and voice-based search applications such
as GOOG-411 for mobile devices without Internet capabili-
ties.

We assume that location data is needed continually for the
durations that the application is active, and the user has not
been classified as stationary using techniques such as [12].
Search based applications may display nearest movie show
times, nearest deals and coupons on products the user has
expressed an interest in, locations of other mobile users from
the user’s social network, and contextually relevant idle screen
advertisements. Mobile search is already known to be sig-
nificantly slower than desktop search [11], and so it makes
sense to not add the additional localization delay to every
user initiated action in the search-based applications. Con-
tinuous access to location is also required for many other
mobile applications, including those that act based on user’s
location, to control home thermostats [10], for instance. All
1http://m.google.com

these search-based applications naturally have a dynamically
varying location accuracy requirement.

At a high level, a-Loc considers multiple factors that af-
fect location estimation, including a prediction of the user’s
location, the error performance of location sensors, energy
costs, and application accuracy requirements. Figure 2 shows
the key components of our proposed system, and they are
discussed below.
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Model

Sensor 
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Location

Sensor Energy 
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Dynamic Sensor 
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Figure 2: System block diagram.

Dynamic Accuracy Requirement: This block provides the
location accuracy needed by the applications. For the mo-
bile search-based applications, we provide a method to com-
pute the accuracy requirement based on the entities searched
(Section 5.2) but in other cases, the accuracy need may be
directly specified by the application.

Sensor Energy Model: These models characterize the en-
ergy used by each available location sensor for obtaining lo-
cation. We experimentally measure this for the modalities
used and also compare the data to similar measurements on
other phones in Section 4.2. In some cases, the energy spent
depends on the location where the observation is made and
we experimentally measure this effect.

Dynamic Sensor Accuracy Model: This model is devel-
oped for each sensor to characterize the quality of location
information that it offers. A key challenge, not usually ad-
dressed in prior work, is that the availability and accuracy
of location sensors varies with location. For example, the
GPS may not work indoors or work poorly in areas with ob-
structed satellite view, WiFi triangulation may work better
where the number of access points is high, and so on. The
dynamic sensor model systematically characterizes such ef-
fects. The model is built using past sensor data for each
location. In a real world deployment, this data, collected by
multiple mobile devices for various regions, may be shared
to build up a model with widespread geographical coverage,
and appended to WiFi war-drive data sets. In our experi-
ments, we learn the models on the mobile device itself. Sec-
tion 4.1 describes these models in detail.

Sensor Selection Algorithm: The sensor selection algo-
rithm determines the location sensor to be used at each time
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step. The algorithm includes a method to model the user lo-
cation trajectory and uses the sensor data as available to im-
prove the location estimates. Maintaining a motion model
and location estimate allows the algorithm to use the sensor
accuracy and energy models in a location dependent man-
ner. A Bayesian estimation framework is used to combine
the sensor data and predicted location to provide a maximum
likelihood estimate (Section 4.3).

After a location sensor has been selected, energy is spent
to use that sensor, yielding sensor data that is used to gen-
erate a location estimate. The location estimate is output to
the client application. Additionally, the location and sensor
data may be used to enhance the sensor accuracy model.

Discretization: Before we describe the above models and
methods in detail, it is worth noting that both space and time
are discretized in these models. We use discrete probabil-
ity distributions in the Bayesian framework. In general, the
space discretization granularity may be set to be smaller than
the minimum resolution provided by any sensor. A-Loc uses
a 10m step size for space discretization. Time granularity de-
pends on the frequency of location updates. A-Loc uses time
granularity of 1 minute, which is the same order of magni-
tude as in [12]. These discretization steps are appropriate for
the types of applications mentioned above, though they are
unlikely to work for certain other applications such as street
navigation which require high frequency and high accuracy
location updates.

4. SYSTEM DESIGN
This section describes the key components of a-Loc. We

use the following location modalities that were available on
both the Android G1 and AT&T Tilt phones: GPS, WiFi,
Bluetooth, and cell-tower.

4.1 Accuracy Models
The dynamic sensor sensor models characterize the accu-

racy and its variation with location, due to various factors
that affect the performance of the sensor. For instance, the
WiFi radio may be used to infer location by matching a list of
visible WiFi access points, referred to as the scan fingerprint,
to a database of known locations and fingerprints. This will
yield varying accuracies depending on the density of access
points and the spatial coverage of the database.

To facilitate the use of this model in the standard Bayesian
framework used in the sensor selection algorithm, we rep-
resent the accuracy model for modality i using a probabil-
ity distribution, p (zi(t)∣x(t)). This distribution gives the
likelihood that modality i yields observed location zi(t) at
time t, when the true (and unknown) location is x(t), where
i ∈ ℒ and ℒ represents the set of location modalities avail-
able. This distribution depends on location x(t) and hence
captures the variations in accuracy with changing location.
The form of the distribution is assumed to be a two dimen-

sional Gaussian distribution centered at x(t):

p(zi(t)∣x(t)) =
1

�2
x(t)

√
2�

exp

(
−∣zi(t)− x(t)∣2

�2
x(t)

)
Figure 13(b) visually illustrates such a distribution. The

sensor errors in the two spatial dimensions are assumed to
be independent and identically distributed (zero correlation
and same variance in both spatial dimensions).

Here, the standard deviation �x(t) depends on the error
for the sensor at location x(t) and is learned from real world
data, as described below.

GPS: A GPS receiver typically reports its estimate of er-
ror as horizontal dilution of precision (HDOP). Figure 3 shows
the HDOP achieved with different number of visible satel-
lites. An HDOP of 6 or less implies location error less than
12m [19]. For most outdoor locations in our experiments
we observed 4 or more satellites, yielding an HDOP below
6 (acquisition times varied with location). We use 10m as
the spatial discretization step and so the GPS sensor model
uses �x(t) = 1.2, for locations where GPS is available, and
infinity where unavailable.
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Figure 3: Experimentally measured GPS accuracy.

WiFi: Methods to convert a visible access point list to a
location have been studied in [16, 3, 24]. The error, �x(t), is
expressed as a function of the number of access points, n(t),
visible at x(t). Our experiments use the conversion relation
between �x(t) and n(t) found in one of the prior works [16].
The value of n(t) can easily be determined at each location
when WiFi is used and the conversion relationship provides
the �x(t) at that location.

As an alternative, an error estimate for WiFi localization
is also provided by the Google location service used via the
Android. This estimate, for all locations of interest to a mo-
bile device can easily be cached on the phone. An example
of WiFi location errors observed in our experiments for a
sample user path of 0.55km is shown in Figure 4.

Bluetooth: For Bluetooth, location is based on finding at
least one static Bluetooth device in radio range (a computer
mouse in an office, a Bluetooth advertisement device in a
shopping mall [1], etc.).The error is taken to be the Blue-
tooth range, nominally set at 10m for the commonly used
class 2 Bluetooth devices, implying �x(t) = 1 based on the
spatial discretization step of 10m, where a static Bluetooth
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Figure 4: WiFi location error with Android G1. Errors
above 500m are capped to 500m for plotting.

device is visible and infinity at other locations. Bluetooth
localization can be extended to use multiple visible devices,
if multiple static devices are indeed visible in a region, but
refining Bluetooth localization methods is beyond the scope
of this work.

Cell-Tower: Most current phones from cellular providers
in the US only allow reading the currently connected cell-
tower, even though the radio stack in the device maintains a
larger list that includes other cell-towers within range. With
only one tower’s identity, the location error is essentially
equal to the size of the cell within which that tower is likely
to be the one with the strongest signal for a mobile device.
We use the cell-size based on typical cell-tower density for
dense urban areas since the experimentation region is a dense
urban area. In the future or with certain cellular providers,
if phones do allow reading the list of multiple visible cell-
towers and their signal strengths, localization methods based
on matching the visibility fingerprints or triangulation may
be used [16, 22]. The error value could then be based on
observed error performance of those methods.

4.2 Energy Models
We experimentally measured the energy usage for mul-

tiple location modalities on an AT&T Tilt (HTC TyTN II)
mobile phone. This phone includes a Qualcomm gpsOne
a-GPS, Bluetooth 1.2 and an 802.11 b/g WiFi radio. The
phone’s battery was removed and instead power was sup-
plied from a Monsoon Solutions Power Monitor that allows
logging the power supplied to the phone, at 200 microsec-
ond intervals. Energy was measured using a location modal-
ity and external factors that may affect energy use were var-
ied. All measurements are made based on application layer
access to the underlying sensing modalities. Measurements
include the energy in turning on, reading, and turning off the
relevant sensing modality. The processing of sensor data and
the sensor selection algorithm are not a part of the energy
model. The energy model for modality i is denoted Ei(t)
and may depend on the location at time t.

4.2.1 WiFi Triangulation
Using WiFi entails powering up the WiFi radio, scanning2

2Active scan is used as it is more energy efficient than a passive
scan due to reduced listening time.

the access point identities (SSID’s), and powering down the
WiFi radio. Association with access points is not needed as
localization only requires the SSID’s of the access points.

Figure 5 shows the power drawn for scanning WiFi access
points (obtained by subtracting the baseline power used by
the phone when idle with all sensing modalities powered off
from the measured total power drawn). The graphs shows
that there is an initial energy spurt possibly for initialization,
followed by a longer period of energy usage for the scan
itself.
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Figure 5: Measured power profile for WiFi.

One external factor suspected to affect the energy of the
scan is the number of access points visible at a given loca-
tion. The scan energy usage for WiFi measured at different
locations and averaged for similar number of visible access
points, is shown in Figure 6. The vertical bars represent
standard deviation across measurements. Here, the energy
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Figure 6: Energy usage for WiFi.

cost does not vary significantly with number of visible ac-
cess points. Based on this data, we use the energy model
Ei(t) = 545.07mJ, ∀t, i = WiFi. Part of this cost is the
energy to turn on WiFi, measured to be 115mJ and turn off
WiFi, measured at 65mJ, averaged. If the WiFi radio is al-
ready on for other uses, the power up and down cost may be
ignored. The latency of conducting the scan was 0.7s on an
average. Given that the location update interval is a minute
or larger in our scenarios of interest, this latency is not a
concern.

We assume all data for matching the SSID’s or triangula-
tions is locally available on the phone. The data size required
for such data for one of cities used in our tests was 20MB and
this very reasonable for local storage given the multi-giga-
byte flash storage capacities on most phones. On the other
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hand, we also measured the energy used for communicating
with a central server, using the 3G radio and its energy over-
head (6000mJ-12000mJ depending on data size, Figure 21)
was found to be higher than all the location modalities. Us-
ing server communication for localization would thus signif-
icantly increase energy overheads.

4.2.2 Bluetooth Vicinity
Localization using Bluetooth entails scanning the identi-

ties of Bluetooth devices in vicinity. Since Bluetooth has a
short range of about 10m, visibility of a device suggests a
distance of less than 10m from it. Most Bluetooth enabled
devices are mobile and their visibility may not necessarily
indicate a fixed location but if a device with a known static
location is found, location can be determined.

The Bluetooth scan energy for different number of visi-
ble devices is shown in Figure 7. At first glance, comparing
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Figure 7: Bluetooth energy usage variation.

this energy with Figure 6, this data may appear surprising
in that Bluetooth is using more energy than WiFi. However,
the power measured for Bluetooth (Figure 8), was indeed
much lower than the WiFi power draw. The energy use is
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Figure 8: Bluetooth power usage during scan.

higher because Bluetooth takes much longer to perform a
scan of visible devices. This is caused by the complexity
of the Bluetooth scan protocol. The multiple steps and fre-
quency hopping defined in the Bluetooth scan protocol [5]
cause the scan phase to take considerably more time than a
WiFi scan.

The energy does depend on the number of visible devices
and would hence vary with location. Bluetooth scanning
can be set to stop after a fixed number of devices are found,

bounding the energy spent on a scan. The energy to power
up and power down the Bluetooth radio was measured to be
160mJ and 35mJ respectively. Suppose N(t) represents
the number of visible Bluetooth devices at time t. Figure 9
shows linear and quadratic curves fit to the data. We take
the linear model for simplicity, that gives Ei(t) = 1299.6 ∗
N(t) + 558mJ for i = Bluetooth3.
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Figure 9: Linear and quadratic curves fit to measured
Bluetooth energy.

4.2.3 GPS
The GPS chip on the AT&T Tilt is a Qualcomm gpsOne,

an assisted GPS solution, implying that satellite almanac and
ephemeris data is obtained through the cellular data connec-
tion rather than from satellites. This allows for faster fix
times, and consequently, lower energy usage. Once a fix is
acquired, GPS uses power at a steady rate, with intermittent
higher usage, presumably due to almanac and ephemeris ac-
quisition. Figure 10 shows the power profile for turning on
and obtaining location using GPS. For the Android, the GPS
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Figure 10: Measured GPS power profile.

power draw has been measured at 230mW [21]. These num-
bers are comparable to Nokia N95 [12], that drew 324mW.
GPS energy for the iPhone was measured in [23] but because
this device requires the application to run in the foreground,
it includes the energy use of the entire system with the LCD
screen powered on, making it hard to directly compare the
energy numbers. The current draw estimated from the mea-
sured battery life and known battery capacity is 455mW, in-
cluding the idle system energy.

Our experiments indicated that GPS energy does depend
on location, as was also noted in [12]. Figure 11 presents
GPS energy for a location fix at three different locations:
3Quadratic fit is Ei(t) = 684N2(t) − 752N(t) + 1242.6mJ .
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(1) a road intersection, (2) a large park with open sky view,
and (3) in front of an office building. The measurements
are based on getting a fix with a horizontal dilution of pre-
cision (HDOP) better than 6. Very long fix times as high
as 114s (not shown), were sometimes observed in locations
with poor sky view. The measurements in the figure are from
a cold start of the GPS, assuming no previous almanac or
ephemeris data. With a warm start, the satellite acquisition
time dropped to as low as 5s at some of the locations, with a
corresponding reduction in energy usage.
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Figure 11: GPS energy usage (cold start).

A closed form equation does not exist as usage depends
on location and time in a complex manner (due to satellite
coverage quality). Instead we use an average energy value
for quantifying GPS energy use, using two separate averaged
values for warm and cold starts: Ei(t) = 1425mJ for i =
Warm GPS, and Ei(t) = 5700mJ for i = Cold GPS. We
use the warm start energy model for each time step, when
GPS was also selected at the previous time step, implying a
lower cost for GPS when used at consecutive steps.

4.2.4 Cell-Tower Association
A cellphone maintains a list of cell-towers that are visible

to its radio receiver. Based on this, the phone may determine
its location [16]. The energy to use this location modality is
thus negligible as it only consists of reading data available
on the local device. This energy was measured to be under
20mJ, averaged over multiple readings.

Figure 12 collects the energy spent on various modalities
for a relative view; the maximum and minimum energy mea-
sured for each are plotted. While we use only the above four
location modalities, other options have also been proposed,
such as using phone’s camera [2]. The figure includes the
energy to capture an image and save it as a Jpeg file on in-
ternal flash. The processing energy for image based local-
ization, unlike other modalities, may not be negligible and
should be accounted in the energy model. The energy us-
age varies by orders of magnitude and hence selecting lower
energy modalities when feasible is likely to yield significant
savings.

4.3 Selection Algorithm
The goal of the selection algorithm is to determine the
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Figure 12: Relative energy costs of location modalities.

most energy efficient sensor to be used, such that the re-
quired location accuracy can be achieved. In addition to
the sensor accuracy and energy models, this algorithm also
maintains an estimate of the user’s location that is based on
a prediction of user movements. The prediction helps select
the appropriate location for the sensor energy and accuracy
models and may even help avoid sensing when predicted lo-
cation has a high confidence.

Location at discretized time t is denoted using a random
variable x(t), that takes values in a two dimensional space.
Suppose the location observation from sensing modality i at
time t is denoted zi(t) as before. Suppose z(t) represents
all observations made up to the time instant t, ie z(t) =
{z(t), z(t − 1), ..., z(0)} for any i. Then, the probability
distribution of location at current time t given all previously
made observations and prior models is given by p(x∣z(t− 1)).
As an illustration, consider the probability distribution shown
in Figure 13(a), where the example distribution is uniform
over a discretized two dimensional square region, such as
initialized at t = 0.

The prior distribution captures our knowledge about the
user location up to the time at which the last observation
was made. We use this to predict the location at the cur-
rent time step. Prediction of user location has been studied
extensively in literature and we use one of the commonly
used approaches, based on a Hidden Markov Model (HMM).
Specifically, we use a second order Hidden Markov Model
(HMM) that uses the past two observed locations to yield a
distribution of predicted location, p(x(t)∣x(t−1),x(t−2)),
providing a probability distribution of location before spend-
ing energy on sensing at the current time step. A second or-
der model takes the direction of motion into account, signif-
icantly improving prediction performance over a first order
HMM, but higher orders yield diminishing returns. The tran-
sition probabilities between locations are learned from past
user motion and are updated as new observations are made.
Such an approach allows learning an arbitrary probability
distribution of location transitions. Also, only a small por-
tion of the learned probabilities corresponding to the region
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Figure 13: Illustration of the (discretized) stochastic
models: (a)prior distribution of x(t), (b) sensor model
p(zi(t)∣x(t)) at x(t) = [0, 0] with standard deviation =
2, and (c) posterior distribution p(x(t)∣zi(t)) for an ob-
servation zi(t) = [9, 9]. Lighter shades represent higher
probabilities.

around the user’s location may be loaded into the memory
at a given time, making the approach highly scalable. If the
user is at a new location with no prior history data, methods
such as linear extrapolation on the past few locations may
be applied. Likely user locations learned from other mobile
user locations or even land use [14] can be employed.

Other location prediction models can of course be used.
For instance, a Kalman filter may be employed to predict the
next location based on past observed locations. However,
when past observations over several days are to be used, the
size of the filter and matrices involved becomes very large
and the scalability of the filter may become a concern. An-
other possibility is a method based on Conditional Random
Fields that learns the significant places visited and trans-
portation modes used [17]. This information is then used to
predict future user location. The method relies on detailed
parameter learning.

Since the sensor is to be selected before actually using
it, we need an estimate of sensor accuracy of each sens-
ing modality i at the predicted user location. Formally, the
location estimate after using modality i is characterized by
the posterior probability distribution p(x(t)∣zi(t)). For each
sensor modality i, we can use the spread of the distribution
of x(t), given a reading from that modality zi(t), as a mea-

sure of the error in the estimated location. The trace of the
covariance matrix is used to characterize this spread for the
two dimensional distribution, much like variance is used for
one dimensional random variables. The error for modality i
given an observation, denoted ei(t)∣zi(t), becomes:

ei(t)∣zi(t) = tr {Cov(x(t)∣zi(t))}

The computation of the covariance matrix requires the pos-
terior distribution, which can be computed using the sensor
accuracy model and the prior location distribution, via Bayes
rule:

p(x(t)∣zi(t)) ∝ p (zi(t)∣x(t)) p(x(t)∣z(t− 1)) (1)

As an illustration, with the prior distribution and sensor ac-
curacy model shown in Figures 13(a) and 13(b) respectively,
the posterior distribution for a potential observation zi(t) =
[9, 9], is as shown in Figure 13(c). The observation has
caused the prior distribution to get concentrated in a smaller
region, as expected.

However, since we must compute the error that would re-
sult from using modality i before spending the energy to
obtain zi(t), we compute multiple posteriors p(x(t)∣zi(t))
for different possible zi(t) that may be observed, resulting
in a different error estimate for each of the multiple possi-
ble observations, zi(t). We then take a weighted average of
these error estimates, where the weights are the probabilities
of getting different observations zi(t) for modality i. The
probability of getting an observation zi(t) depends on the
current location, and since we do not have the current loca-
tion, we use an estimate for the probability of getting obser-
vation zi(t). The probability distribution of the observations
is obtained using the distribution of predicted location as fol-
lows:

p̂(zi(t)) =

∫
X
p(zi(t)∣x(t))p(x(t))dx(t) (2)

where p(zi(t)∣x(t)) comes from the sensor accuracy model,
and p(x(t)) comes from the location prediction. The weighted
average of ei(t)∣zi(t) for all the possible observations zi(t)
becomes:

êi(t) =

∫
Z∣x(t)

p̂(zi(t))tr {Cov(x(t)∣zi(t))} dzi(t) (3)

where (Z∣x(t)) represents the support of p̂(zi(t)). This êi(t)
quantitatively characterizes the expected error for modality
i at the current time step.

Having computed the estimated accuracy êi(t) of sensor
i, the sensor selection problem can be expressed as:

î = arg min
i∈ℒ

Ei(t) Subject to : êi(t) < e2r(t)

where er represents the desired location accuracy, and Ei(t)
represents the energy used by modality i. Square of the de-
sired accuracy is used since variances and trace of the co-
variance matrix characterize error as a square of the variable
estimated.

8



This energy minimization problem may be solved using
Algorithm 1, shown below.

Algorithm 1. SelectSensor(ℒ,X )

1. Initialize p(x(0)∣z(0)), p(zi(0)∣x(0)), t = 0, and Λ =
�

2. Obtain er(t). For all i ∈ ℒ:

(a) Compute êi(t)

(b) If êi(t) ≤ e2r(t) then Λ = Λ ∪ i.

3. Among all i ∈ Λ, select i that has minimum Ei(t).

4. Obtain zi(t).

5. Compute p(x(t)∣zi(t)) and use it to compute x̂(t) =
E(x(t)∣zi(t)). Return x̂(t) as the current location.

6. Set t = t+ 1 for next time step.

7. Update p(x(t)) using location prediction method.

8. Go to Step 2 at next time step.

The initial prior distribution p(x(0)∣z(0)) in Step 1 could
be set to a uniform distribution, or initialized based on land
use data or observed mobile phone user locations from shared
databases. The p(zi(0)∣x(0)) is initialized based on exper-
imentally measured sensor accuracy models as described in
Section 4.1. Λ represents the set of modalities expected to
satisfy the accuracy constraint. The distributions are main-
tained only over a small region of k × k grid cells (k =
100 in our implementation) surrounding the user location as
the probability values are negligible outside this area. This
means that the memory overhead of this distribution is only
10kB, acceptable on mobile devices.

Briefly, the algorithm is performing the following opera-
tions. For each location modality, the êi(t) is computed us-
ing equation (3). Eligible modalities are added to Λ. Among
the modalities in Λ, the one with the lowest energy is se-
lected 4.

Energy is spent on the selected modality, obtaining zi(t).
This is used to compute p(x(t)∣zi(t)), using (1), and allows
computing the estimated location using the expectation:

x̂(t) =

∫
x(t)p(x(t)∣zi(t))dx(t)

This is the output provided to the application requesting lo-
cation.

Moving on to the next time step, the location model is now
used to obtain the prior distribution p(x(t)∣x(t− 1)), where
t represents the subsequent time step.
4If Λ = � cell tower based localization may be used as it is almost
free.

The above algorithm uses er(t) at Step 2b, where er(t)
is the application specified accuracy requirement, obtained
for mobile search based applications as described in Sec-
tion 5.2.The computation of er(t) requires the location esti-
mate x̂(t), but since it is performed before using any sensor
the prior estimate is used.

Computational Overhead: The computational overheads
for the location prediction step (a second order HMM), up-
date of the location and sensor models (incrementing a small
set of values), and comparison of energies are not significant.
The dominant overhead is the computation of the covariance
matrix trace, that involves computing the posterior distribu-
tion. The sensor accuracy model has non-negligible values
only in a small region (up to k×k grids) around the predicted
location and the region of predicted locations is only a small
number of grids, n, say. Then, the computation of one pos-
terior (such as shown in Fig. 13(c)) involves nk2 scalar mul-
tiplications, followed by a computation of the two variances
�2
x1

and �2
x2

required for the trace of the covariance matrix.
The number of posteriors computed depend on the size of
the support of p̂(zi(t)) in (2), and is a small multiple of n,
say �n. The dominant computation thus has an overhead
O(�n2k2) which for k = 100 as before, n = O(10), and
� = O(10), requires only a small fraction of a second on a
100MHz or better processor found on mobile phones. The
overhead of this computation performed once every location
update interval of one minute or more is negligible.

The total compiled code overhead on the mobile device
for our implementation was 32kB and the execution time
was extremely small.

5. EXPERIMENTS AND EVALUATION
We now evaluate the performance of the proposed method

in terms of both the energy savings and the application spec-
ified accuracy constraint satisfaction.

5.1 Prototype Implementation
We implemented a-Loc on an Android G1 phone and tested

its operation on a real world path while the phone was car-
ried by a mobile user in a region in San Diego (Figure 14(a)).
A location service provided by Google, that is accessible
through the Android’s LocationManager API [9] was used.
The responses from this service for various locations along
the path were stored locally, using Android’s Sqlite data struc-
ture, to realize the equivalent functionality of locally stored
WiFi war-driving data for this region. The energy use of
the network communication was not included since a-Loc
assumes the availability of the war-driving data locally as
discussed in Section 4.2.1.

In addition to the real world experiments, we also per-
formed an emulation. The emulation was based on a war-
driving dataset for the entire city of Portland, Oregon, ob-
tained through Microsoft. The region covered is shown in
Figure 14(b) where the darker shades represent regions for
which data was available. The entire dataset is only 20MB
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in size, justifying the assumption that it can be saved locally
on the mobile device. This data allows us to generate arbi-
trary user paths simulating various types of user movement
patterns for a more controlled investigation. In particular, we
emulate (i) a commuter traveling repeatedly between home
and work with some side trips and (ii) a tourist in the city,
not repeating any of the routes.

(a) San Diego (b) Portland

Figure 14: Mobile device path regions for evaluations.

In both the real world path and the emulated paths, GPS
is not available when the user is indoors. This causes both
the accuracy and energy to vary between different location
sensor selection methods. Hence, to perform a comparison
where even the naı̈ve method of using only the GPS can
achieve high accuracy, we also include a completely outdoor
path in our comparisons.

Both the Android and Tilt phones have built-in GPS, WiFi,
Bluetooth, and cellular radios, which were used for the ex-
periments.

5.2 Application Accuracy Requirement
As mentioned before, mobile search is used as the appli-

cation example for deriving the accuracy constraints. For
the experiments, we assume that the application wishes to
determine the nearest five pizza or coffee businesses. The
location coordinates for such businesses in the experimental
regions were obtained from available yellow pages datasets.

The dynamic location accuracy requirement for the exam-
ple scenario is determined as follows. Suppose the applica-
tion wants to search for a list of k entities. Intuitively, the
accuracy required depends on the spatial density of the enti-
ties being searched around the user’s location. If the density
is high, finer location granularity is required. We wish to de-
termine the constraint on location accuracy such that if the
location error is within that constraint, the set of nearest en-
tities can be correctly determined.

Suppose the true user location is represented by a two di-
mensional vector x(t). Suppose the nearest k entities are
located within a circle of radius r around x(t). We define
the accuracy requirement to be the maximum tolerable error
in the location estimate such that the list of k entities nearest
to x(t) is produced correctly, regardless of the order within
the list5.
5An extension to preserve the order is straightforward and omitted
for brevity.

If the true location is known, determining the tolerable er-
ror is straightforward. However, this accuracy requirement
must be determined using only the estimated location x̂(t),
without knowing the true x(t). The following theorem pro-
vides this accuracy constraint:

THEOREM 5.1. Given estimated location x̂(t), the maxi-
mum location error, er(t), that may be tolerated while pre-
serving the correctness of searched entity list, with respect
to true location x(t), is given by:

er(t) ≤ max

{
r′k+1 − r′k

2
,Δ(t)

}
(4)

where r′n represents the radius of the smallest circle cen-
tered at x̂(t) enclosing the nearest n entities, and Δ(t) is a
threshold on the smallest error that may ever be requested.
6

The proof is provided in Appendix A.
Thus, if after obtaining the location estimate, the estima-

tion error is known to be within er(t), then the list produced
is same as that produced by a mobile device which knows
the true location. Theorem 5.1 could be extended for the sce-
nario where the locations of the entities being searched are
not known accurately (eg., in a social networking scenario
displaying a list of nearest k buddies, where each phone in
the group of buddies wishes to save energy). Here Δ(t) acts
as a lower bound on the best error that may be requested. It
may be based on the highest accuracy available from any
location sensor, or based on the user preference, such as
not caring about differences in distance less than a certain
threshold.

Figure 1 shows the accuracy required across Portland, Ore-
gon for an application interested in displaying the nearest
five pizza stores during meal times on a phone. The locations
of pizza restaurants, obtained from a mobile yellow pages
database, included 155 pizza places in and around Portland.
Darker shades represent higher accuracy needed. Here, Δ(t)
was set to 10% of the distance to the nearest entity (for in-
stance, if the nearest entity is 10 miles away, the user may
treat two entities at distances 10 miles and 11 miles equally
suitable).

5.3 System Performance
We now evaluate the system to check if the added benefits

justify the increase in complexity, compared to simply using
the GPS.

The sensor accuracy models are assumed to be learned
before the performance of the system is measured. In our
implementation, the learning is performed simply using an
extra traversal of the user path. In a real system, the models
could be learned for different regions by different users who
happen to reach that region first and a shared database of the
models would be built up.
6Since the distances r′n are measured from the estimated location,
the true location is not required to be known.
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The HMM for the user motion prediction is unique to the
user and we do not expect the user to train their mobile de-
vice before using any location based application. Hence the
HMM parameters are learned on the fly as the user moves.
A uniform distribution is used to initialize the HMM and for
regions where the model has not been learned.

As reasonable points of comparison for the a-Loc system,
we use the following alternative strategies:

Static: This method assumes static values for error in lo-
cation measured by various modalities, as has been assumed
in prior work. The parameters used are the typical accu-
racies expected from different sensors: 10m for Bluetooth,
50m for WiFi, 150m for cell-tower, and 12m for GPS. These
do not vary with location of the mobile device. Unlike pre-
vious work, we do allow this method to also use a dynamic
accuracy requirement and provide it the same energy model
for the sensors as used in a-Loc, giving it a fair opportunity
for saving energy. This method selects the minimum energy
cost sensor that is expected to satisfy the location accuracy
constraint based on the static accuracy models.

Periodic: This method simply uses a single location sen-
sor periodically, similar to the periodic use of GPS as a base
case in [12, 23]. In addition to periodic GPS, we also com-
pare to periodic WiFi, that is a likely candidate for low en-
ergy localization.

Perfect Models: The accuracy models used in our ex-
periments have been learned by a single mobile device us-
ing one path traversal. As the system is used by more and
more users, more data may be collected to refine the accu-
racy models. Hence we also compare against a hypothetical
case where the system has perfect accuracy models at all lo-
cations for each sensor. This approach is same as a-Loc in
other respects.

The above cases are represented as Static, GPS, WiFi, and
Perfect respectively, in the results below.

Consider first the real mobile user experiments with an
Android G1 in San Diego. After acquiring the accuracy
models, the user moved on a similar path three times. The
HMM was learned on the fly. The location accuracy require-
ment for this 0.5km path, for a search application that wishes
to display coupons for the nearest five coffee shops, is shown
in Figure 15. Significant slack in accuracy exists allowing
sensors other than GPS to be used.
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Figure 15: Accuracy requirement on experimental path.

The fraction of the path for which the required location
accuracy constraint is satisfied, denoted accuracy, is plotted

in Figure 16 for this path, labeled Full Path in the figure. The
energy consumed is shown in Figure 17.
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Figure 16: Fraction of the path for which the accuracy
requirement is satisfied, in the San Diego experiment.
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Figure 17: Energy consumption in San Diego experi-
ments.

Clearly, if we compare the accuracy and energy use for
periodic GPS and a-Loc, we see that a-Loc achieves higher
accuracy with 45% lower energy use. The accuracy achieved
by a-Loc is very close to that achieved when using perfect
models. The energy use is also only slightly higher than
the system with perfect models. This shows that not only
can a-Loc reduce energy usage by exploiting the slack in
accuracy requirement but also improve the accuracy by ex-
ploiting other location sensors. To make a quantitative com-
parison with GPS in terms of energy saved alone, we also
consider the outdoor portion of the experimental path sepa-
rately. On this portion, both a-Loc and periodic GPS have
near 100% accuracy but a-Loc uses 35% lower energy.

The behavior of other alternatives is also shown in the
above figures. While the energy use of the static algorithm
is lower, its accuracy is also significantly worse than a-Loc.
The same hold for periodically using only the WiFi, indicat-
ing that the dynamic models and Bayesian prediction com-
ponents of a-Loc do indeed provide a benefit. The fraction of
the time steps at which various localization modalities were
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used are shown in Figure 18. The periodic WiFi and GPS
based method only used the single respective sensor. The
static approach clearly wastes energy on WiFi even when
that modality is not providing sufficient accuracy because it
lacks the dynamic models to determine when WiFi is a use-
ful alternative. This region did not have a significant num-
ber of known static Bluetooth devices and we disabled that
modality to avoid wastage of energy in the static method,
that would have caused it to perform even worse.
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Figure 18: Modalities used by a-Loc and other ap-
proaches.

Next, we consider multiple user motion patterns, using the
city-wide war-drive data for Portland, to simulate common
user behaviors such as a commuter and a couple of tourists.
We also include the outdoor-only portion of the Tourist-2
path separately, for a comparison with GPS where it has
high accuracy. The application accuracy requirement was as
shown in Figure 1 for the five nearest pizza stores. The satis-
faction percentage for accuracy and corresponding energies
used are shown in Figures 19 and 20 respectively. Again, a-
Loc demonstrates a significant energy advantage compared
to periodic GPS and even the system with perfect models,
though with a small reduction in accuracy. The other alter-
natives perform significantly worse on accuracy, and in some
cases even use more energy. Using WiFi periodically for in-
stance, is worse for both energy and accuracy for some of
the paths, compared to a-Loc.
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Figure 19: Accuracy achieved in the Portland.
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Figure 20: Energy consumption in Portland.

The experiments and simulations show that not only does
a-Loc help save energy but there is significant potential to
trade-off accuracy and energy based on application needs.

5.4 Discussion
The design of a-Loc and experiments presented above re-

veal several interesting challenges that are discussed below.
Communication Energy: Our design assumed that all lo-

cation modalities used locally stored data. Since flash stor-
age is readily available, both sensor availability model data
as well as databases of interesting entities, such as mobile
yellow pages, can be stored on the phone itself. Model up-
dates can be uploaded and new shared data downloaded when
the phone is plugged in, reducing the impact on battery life.

However, for certain applications, communication with
the network may be unavoidable. For instance, the social
networking scenario [15] requires the mobile devices to share
their location data over a communication network. For cer-
tain location modalities, such as image matching [20] com-
munication to a central server may be needed. In these cases,
the communication energy cost should be considered in the
energy model. For instance, if WiFi is anyway being used to
send location updates, then running a scan of visible access
points may be considered significantly cheaper than when
not using WiFi for any other task.

The amount of data required to be communicated by a lo-
cation modality may also be a concern since if only a few
bytes are to be sent, short message service (SMS) may be
used at a much lower energy cost than using a TCP con-
nection over a 3G cellular data network. The energy costs
for cellular data communication (TCP over 3G), experimen-
tally measured on the AT&T Tilt phone, are presented in Fig-
ure 21. As a comparison, SMS messages used only 1200mJ
on average.

These numbers were measured at 100% signal strength.
At locations with weaker signal (as low as 74% could be
found around our campus), the energy usage increased by
up to 50%. The energy usage also increased by up to 30%
when measured at different times of the day, reflecting the
effect of varying network congestion. Both TCP over 3G
and SMS energies showed similar trends in variation with
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Figure 21: Communication energy measured for the 3G
connection on AT&T Tilt.

signal strength and congestion.
Joint Optimization of Accuracy and Energy: In the

problem formulation considered in the current work, the ac-
curacy requirement was treated as a constraint and the prob-
lem was to minimize the energy usage. However, signifi-
cant energy savings may be feasible with controlled viola-
tions of the accuracy constraints for limited time durations.
A variation of the problem may then be to maximize accu-
racy and minimize energy simultaneously. One technique to
solve such joint optimization problems is to consider a com-
bined objective function, such as a linearly weighted sum
of energy and error, and optimizing the combined objective:
C(t) = E(t)+�e(t), whereC(t) is the objective function to
be minimized, E(t) represents energy used and e(t) repre-
sents the location error achieved. Here, � is a scalar weight
that reflects the relative importance of energy and accuracy
for a given scenario.

Multi-step Optimization: The sensor selection strategy
presented above selects a location sensor for a single time
step at a time. The problem may be extended to optimize
energy over multiple time steps, potentially yielding greater
energy savings. For instance, using a higher energy cost
sensing modality at one time step may help improve the loca-
tion prediction for multiple future time steps and avoid sens-
ing energy expenditure in the future. Such an optimization
could be modeled as a Markov Decision Problem (MDP)
where the energy cost over multiple time steps is represented
as an optimization objective.

6. CONCLUSIONS
We presented the a-Loc system that can automatically tune

the location energy and accuracy trade-off by continually
adapting to the dynamic location sensor characteristics and
application needs. The end result is a system service that can
free applications of the burden of location error and energy
management. The structured approach systematically mod-
els multiple factors that influence location estimation using
a probabilistic framework. The system also incorporates a
prediction mechanism for the user’s location and a method to
extract the dynamic accuracy constraints for mobile search
based applications. The proposed approach provides sig-
nificant energy savings that go beyond existing techniques.
We also showed that the a-Loc system is practically imple-
mentable on a real mobile phone with low memory and stor-

age overheads. The design and prototype effort also revealed
several additional research challenges that may lead to inter-
esting future work.
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APPENDIX
A. SEARCH ACCURACY REQUIREMENT

Theorem 5.1 Proof: The time index is dropped as a single
time instant is involved during this calculation. Locations
are denoted using boldface variables, that represent two di-
mensional vectors. Δ(t) is ignored in the proof as the other
term represents the correctness constraint with zero toler-
ance and combining with Δ(t) only allows tolerating a larger
error in location.

We prove the theorem by contradiction. Suppose there ex-
ists a true location x such that the error in estimated location
x̂ is less than er but there exists some entity closer to x than
the entities in the list produced at x̂.

Suppose the entities being searched over are located at
locations yj , where j = {1, ..., k, ...}, arranged in ascending
order of their distances from x̂. The list of nearest k entities
produced at x̂ is {y1, ...,yk}. Suppose some entity not in
this list, say the one at yk+m, should have been in this list,
and hence some entity within the list, say the one at yk−n
should not be in the list. Here n is an integer such that 0 <
n < k. Then the distances from the true location x satisfy:

rk+m < rk−n (5)

Expressing distance as magnitudes of appropriate vector dif-
ferences, and taking squares since distances are positive:

∣x− yk+m∣2 < ∣x− yk−n∣2 (6)

Considering the left hand side first:

∣x− yk+m∣2 = ∣x̂− yk+m − x̂ + x∣2 (7)
= ∣(x̂− yk+m)− (x̂− x)∣2

= ∣r′k+m − er∣2

where (7) follows by adding and subtracting x̂, r′k+m is used
to denote the vector difference x̂ − yk+m, and we define
er = (x̂ − x). Given that the square of the magnitude of a

vector is equal to its dot product with itself, we get:

∣x− yk+m∣2 = (r′k+m − er) ⋅ (r′k+m − er)

= ∣r′k+m∣2 + ∣er∣2 − 2∣r′k+m∣∣er∣cos�1
≥ ∣r′k+m∣2 + ∣er∣2 − 2∣r′k+m∣∣er∣ (8)

= (∣r′k+m∣ − ∣er∣)2 (9)

In the dot product expansion �1 represents the angle be-
tween vectors r′k+m and er. Also, (8) holds because magni-
tudes are positive and hence the smallest value is obtained at
cos�1 = 1.

Similarly, the right hand side of (6) may be expressed as:

∣x− yk−n∣2 = ∣x̂− yk−n − x̂ + x∣2

≤ (∣r′k−n∣+ ∣er∣)2 (10)

where r′k−n denotes the vector difference x̂− yk−n.
Combining (6), (9), and (10) we obtain:

(∣r′k+m∣ − ∣er∣)2 < (∣r′k−n∣+ ∣er∣)2 (11)

Now, take the square root. Since magnitudes are always pos-
itive, the quantity on the right has only one square root. The
quantity on the left has two square roots:

Case 1: ∣r′k+m∣ ≥ ∣er∣. Here, (11) yields:

∣r′k+m∣ − ∣er∣ < ∣r′k−n∣+ ∣er∣
⇒ er > (r′k+m − r′k−n)/2 (12)
⇒ er > (r′k+1 + �1 − (r′k − �2))/2

⇒ er > (r′k+1 − r′k)/2 + (�1 + �2)/2 (13)

⇒ er >
r′k+1 − r′k

2
(14)

where (12) holds because the magnitude of er is same as
error er, and using scalar variables to represent magnitudes.
Also, from the estimated location, since r′k+m is farther off
than r′k+1 for anym > 1, we can express r′k+m = r′k+1 +�1
using a positive quantity �1. Similarly, since r′k > r′k−n,
the quantity �2 is also positive, and hence (14) follows from
(13). But (14) is a contradiction, and hence in this case the
theorem holds.

Case 2: ∣r′k+m∣ < ∣er∣. Then, (11) yields:

∣er∣ > ∣r′k+m∣
⇒ er > (r′k+1 − r′k)/2 (15)

But (15) is a contradiction, and hence in this case also, the
theorem holds.

The accuracy specified in the theorem is thus sufficient
to ensure correctness. The accuracy shown is also neces-
sary as otherwise there may exist a true location x for which
rk+m < rk−n leading to an incorrect result, as is easy to
prove.□
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