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Abstract U.S. Of this, 65 TWh/year is consumed by PCs in en-

terprises, which constitutes 5% of the commercial build-

To reduce energy wastage by idle desktop computing electricity consumptioim the U.S Moreover, market
ers in enterprise environments, the typical approach iprojections suggest that PCs will continue to be the dom-
to put a computer to sleep during long idle periods (e.g.jinant desktop computing platform, with over 125 million
overnight), with a proxy employed to reduce user disrup-units shipping each year from 2009 through 2013 [15].
tion by maintaining the computer’s network presence at The usual approach to reducing PC energy wastage
some minimal level. However, the Achilles’ heel of the is to put computers to sleep when they are idle. How-
proxy-based approach is the inherent trade-off betweeaver, the presence of the user makes this particularly
the functionality of maintaining network presence andchallenging in a desktop computing environment. Users
the complexity of application-specific customization.  care about preserving long-running network connections

We presentLiteGreen a system to save desktop en- (e.g., login sessions, IM presence, file sharing), back-
ergy by virtualizing the user's desktop computing envi- ground computation (e.g., syncing and automatic filing
ronment as a virtual machine (VM) and then migrating it of new emails), and keeping their machine reachable
between the user's physical desktop machine and a VMeven while it is idle. Putting a desktop PC to sleep
server, depending on whether the desktop computing ernls likely to cause disruption (e.g., broken connections),
vironment is being actively used or is idle. Thus, thethereby having a negative impact on the user, who might
user’s desktop environment is “always on”, maintainingthen choose to disable the energy savings mechanism al-
its network presence fully even when the user's phys+together.
ical desktop machine is switched off and thereby sav- 1o reduce user disruption while still allowing ma-

ing energy. This seamless operation allows LiteGreerhines to sleep, one approach has been to hawexy

to save energy during short idle periods as well (€.9.on the network for a machine that is asleep [33]. How-
coffee breaks), which is shown to be significant accord-eyer, this approach suffers from an inherent tradeoff be-
ing to our analysis of over 65,000 hours of data gathyeen functionality and complexity because of the need
ered from 120 desktop machines. We have prototypegpr application-specific customization.

LiteGreen on the Microsoft Hyper-V hypervisor. Our |- nis paper, we presehiteGreen a system to save
findings from a small-scale deployment comprising OVelyesktop energy by employing a novel approach to min-
3200 user-hours of the system as well as from laboratoryy,izing yser disruption and avoiding the complexity of
experiments and simulation analysis are very prom'S'ngapplication-speciﬁc customization. The basic idea is to

with eonergy savings of 72-74% with LiteGreen compared, ;v ,ajize the user's desktop computing environment, by
to 32% with existing Windows and manual power man- e cansylating it in a virtual machine (VM), and then mi-

agement. grating it between the user’s physical desktop machine
1 Introduction and a VM server, depending on whether the desktop
_ ~_ computing environment is actively used or idle. When
The energy consumed by the burgeoning computing inyhe desktop becomes idle, say when the user steps away
frastructure worldwide has recently drawn significant at-f5 several minutes (e.g., for a coffee break), the desktop
tention. While the focug of energy managemgnt has beegy\ is migrated to the VM server and the physical desk-
on the data-center setting [20, 29, 32], attention has alsgbp machine is put to sleep. When the desktop becomes
been directed recently to the significant amounts of enxtive again (e.g., when the user returns), the desktop
ergy consumed by desktop computers in homes and efy)\ js migrated back to the physical desktop machine.
terprises [17, 31]JA recent U.S. study [33§stimates that 11,5 even when it has been migrated to the VM server,
PCs and their monitors consume about 100 TWhiyeathe yser's desktop environment remains alive (i.e., it is
constituting 3% of the annual electricity consumed in the“always on”), so ongoing network connections and other

*The author was an intern at MSR India during the course of thisaCtIVIty (e.g., backgrognd_downloads) aret disturbed,
work. regardless of the application involved.




The “always on” feature of LiteGreen allows energy Research India (MSRI), and (b) 3200 user-hours of data
savings whenever the opportunity arises, without havfrom a deployment of our prototype on ten user desktops
ing to worry about disrupting the user. Besides long idleover a span of 28 days. Based on this analysis, LiteGreen
periods (e.g., nights and weekends), energy can also kg able to put desktop machines to sleep for 86-88% of
saved by putting the physical desktop computer to sleeghe time, resulting in an estimated energy savings of 72-
even during short idle periods, such as when a user goe&t%. In comparison, through a combination of manual
to a meeting or steps out for coffee. Indeed, our meauser action and the automatic Windows power manage-
surements indicate that the potential energy savings frorment, desktop machines are put to sleep for 35% of time,
exploiting short idle periods are significant (Section 3). delivering estimated energy savings of only 32%.

While thevirtualization-based approach allows keep- The main contributions of this paper are as follows:
ing the desktop environment “always qmivo key chal- } o
lenges need to be addressed for it to be useful for sav- 1+ A novel system that leverages virtualization to con-
ing energy on desktop computers. First, how do we pro-  Solidate idle desktops on a VM server, thereby sav-
vide a normal (undisrupted) desktop experience to users, N9 €nergy, while avoiding user disruption.
masking the effect of VMs and their migration? Sec-
ond, how do we decide when and which VMs to migrate
to/from the server in order to maximize energy savings
while minimizing disruption to users?

To address the first challenge, LiteGreen usedivee 3. A prototype implementation and the evaluation of
migrationfeature supported by modern hypervisors [21] LiteGreen through a small-scale deployment on the
coupled with the idea of always presenting the desktop  desktops of ten users, spaning 3200 user-hours over
environment through a level of indirection (Section 4). 28 days, yielding energy savings of 74%.

Thus, whether the_VM Is at the server or desktop, users 4. Trace-driven analysis of over 65,000 user-hours of
always access their desktop VM through a remote desk-
resource usage data gathered from 120 desktops,

top (RD) session. So, in a typical scenario, when a user o . o .
returns to their machine that has been put to sleep, the yleldlng energy savings Of. 72%, with shortidle pe-
riods (< 3 hours) contributing 20% or more.

machine is woken up from sleep and the user is able

to immediately access their desktop environment (whos Problem Background and Related Work
state is fully up-to-date, because it has been “always on”? . . .
n this section, we provide some background on the prob-

through an RD connection to the desktop VM runningI i ddi lated K
on the VM server. Subsequently, the desktop VM is mi- em Setling and discuss related work.

grated back to the user’s physical desktop machine withg 1 PC Ener gy Consumption

out the user even noticing. Researchers have measured and characterized the energy

To address the second challenge, LiteGreen uses giynsmed by desktop computers [17]. The typical desk-
energy-saving algorithm that runs on the server and Cargpp PC consumes 80-110 W when active and 60-80 W
fully balances migrations based on two continuously-when idle, excluding the monitor, which adds another

updated lists: 1) VMs in theandatory to puslist must 3580\, The relatively small difference between active
be migrated to the desktop machine to minimize user disz g jdle modes is significant and arises because the pro-

ruption, and 2) VMs in theeligible to pulllist may be  egsor jtself only accounts for a small portion of the total
migrated to server for energy savings, subject t0 servegnergy. In view of this, multiple S (“sleep”) states have
capacity constraints (SeCt'qn 5)- . been defined as part of the ACPI standard [13]. In par-
We have prototyped LiteGreen on the Microsoft ticylar, the S3 state (“standby”) suspends the machine’s
Hyper-V hypervisor (Section 6). We have a small-scalestate to RAM, thereby cutting energy consumption to 2-3
deployment running on the desktop machines of teny s3 has the advantage of being much quicker to transi-
users, comprising three administrative staff and sevewigon in and out of than S4 (“hibernate”), which involves

researchers, including three authors of this paper. Asyspending the machine’s state to disk.
demonstration video of LiteGreen is available at [4].

Separately, we have conducted laboratory experimentd.2 Proxy-based Approach

using both the Hyper-V and Xen hypervisors to evaluateAs discussed above, the only way of cutting down the

various aspects of LiteGreen. We have also developed energy consumed by a PC is to put it to sleep. How-

simulator to analyze the data we gathered and to undeever, when a PC it put to sleep, it loses its network

stand the finer aspects of our algorithms. presence, resulting in disruption of ongoing connections
We have analyzed (a) over 65,000 user-hours of datée.g., remote-login or file-download sessions) and the

gathered by us from 120 desktop computers at Microsoftnachine even becoming inaccessible over the network.

2. Automated mechanisms to drive the migration of
the desktop computing environment between the
physical desktop machines and the VM server.



The resulting disruption has been recognized as a key Thin client based computing, an idea that is making a
reason why users are often reluctant to put their machineseappearance [23, 11] despite failures in the past, repre-
to sleep [17].Researchers have found that roughly 60%sents an extreme form of consolidation, with all of the
of office desktop PCs are left on continuously [33]. computing resources being centralized. While the cost,
The general approach to allowing a PC to sleep whilemanagement, and energy savings might make the model
maintaining some network presence is to have a networhttractive in some environmentiere remain questions
proxy operate on its behalf while it is asleep [33]. Theregarding the up-front hardware investment needed to
functionality of the proxy could span a wide range: migrate to thin clients. Also, thin clients represent a
trade-offand may not be suitable in settings where power
e WoL Proxy: The simplest proxy allows the ma- users want the flexibility of a PC or insulation from even
chine to be woken up using th&/ake-on-LAN transient dips in performance due to consolidation. In-
(WoL) mechanism [12] supported by most Ethernetdeed, market projections suggest that PCs will continue
NICs. To be able to send the “magic” WoL packet, to be the dominant desktop computing platform, with
the proxy must be on the same subnet as the tarever 125 million units shipping each year from 2009
get machine and needs to know the MAC address othrough 2013 [15], and with thin clients replacing only
the machine. Typically, machine wakeup is initiated 15% of PCs by 2014 [14]. Thus, there will continue to be
manually. a sizeable and growing installed base of PCs for the fore-
o seeable futurepossibly as part of mixed environments
e Protocol Proxy: A more sophisticated proxy per- comprising both PCs and thin clienso addressing the

forms automatic wakeup, triggered by a filtered SUb‘probIem of energy consumed by desktop PCs remains
set of the incoming traffic [31, 34]. The filters could important.

be configured based on user input and also the list - , e
of network ports that the target machine was listen- While LiteGreen's use of consol!dat|0n Is inspired by
ing on before it went to sleep. Other traffic is ei- the abovg work, akeydn‘feren-ce arises from the presence
ther responded to by the proxy itself without wak- of usersin a desk_top computing er_mronment. Unlike in
ing up the target machine (e.g., ARP for the targeta data center setting, where ma_chmes tend to run server
machine) or ignored (.g., ARP for other hosts). workloads and henge are substitutable to a large extent,
' a desktop machine is a usepsrsonalcomputer. Users
e Application Proxy: An even more sophisticated €XPect to have access tioeir computing environment.
proxy incorporates app“cation-specific stubs thatFUrthermore, unlike in a thin client Setting, users expect
allow it to engage in network communication on be- to have good interactive performance and the flexibility
half of applications running on the machine that is of attaching specialized hardware and peripherals (e.g., a
now asleep [31]. Such a proxy could even be inte-high-end graphics card)Progress on virtualizing high-
grated into an augmented NIC [17]. end hardware, such as GPUs [24, 28], facilitates Lite-
Green's approach of running the desktop in a VM.

Enhanced functionality of a proxy comes at the costof - Central to the design of LiteGreen is preserving this
greater complexity, for instance, the need to create stubeC model and minimizing both user disruptiand new

for each application that the user wishes to keep alivehardware cosby only consolidating idle desktops.
LiteGreen sidesteps this complexity by keeping the entire

desktop computing environment alive, by consolidating
it on the server along with other idle desktops. On the2 4 Virtualization and Live Migration

flip side, however, LiteGreen is more heavyweight than S o
the proxy approach, as we discuss in Section 9.2. A key enabler of consolidation is virtualization. Several

hypervisors are available commercially [2, 5, 8]. These

2.3 Saving Energy through Consolidation leverage the hardware support that modern processors in-
Consolidation to save energy has been employed in othéfude for virtualization [3, 1]
computing settings—data centers and thin clients. Virtualization has simplified the task of moving com-

In the data-center setting, server consolidation is usegutation from one physical machine to another [40] com-
to approximate energy proportionality by migrating com- pared to process migration [36]. Efficient live migration
putation, typically using virtualization, from several over a high-speed LAN is performed by iteratively copy-
lightly-loaded servers onto fewer servers, and then turning memory pages while the VM continues execution,
ing off the servers that are freed up [20, 37, 38]. Doingbefore finally pausing the VM briefly (for as short as 60
so saves not only the energy consumed directly by thens [21]) to copy the remaining pages and resume execu-
servers but also the significant amount of energy contion on the destination machine. Live migration has been
sumed indirectly for cooling [29, 30]. extended to wide-area networks as well [27].



2.5 Page Sharing and Memory Ballooning Based on this data, we seek to answer the following

Consolidation of multiple VMs on the same physical quéstions:
server can put pressure on the server's memory re- Q1. How (under)utilized are desktop PCs?
sources. Page sharingis a technique to decrease the To help answer this question, Figure 1a plots the dis-
memory footprint of VMs by sharing pages that are in tribution of CPU usage and Ul activity, binned into 1-
common across multiple VMs [39]. Recent work [26] minute buckets and aggregated across all of the PCs in
has advanced the state of the art to also include sub-pad@!r study. To allow plotting both CPU usage and Ul
level sharing, yielding memory savings of up to 90% activity in the same graph, we adopt the convention of
with homogeneous VMs and up to 65% otherwise. treating the presence of Ul activity in a bucket as 100%
Even with page sharing, memory can become a bottleCPU usage. The “CPU only” curve in the figure shows
neck depending on the number of VMs that are consolthat CPU usage is low, remaining under 10% for 90% of
idated on the serveMemory balloonings a technique ~thetime. The “CPU + UI" curve shows that Ul activity is
to dynamically shrink or grow the memory available to Présent, on average, only in 10% of the 1-minute buck-
a VM with minimal overhead relative to statically provi- €tS, or about 2.4 hours in a day. However, since even an

sioning the VM with the desired amount of memory [39]. &ctive user might have 1-minute buckets with no Ul ac-
tivity (e.g., they might just be reading from the screen),

2.6 Virtualization in LiteGreen Prototype  the total Ul activity is very likely larger than 10%.
yp While both CPU usage and Ul activity are low, it still

For our LiteGreen prototype, we use the Microsoft joeq not mean that the PC can be simply put to sleep, as
Hyper-V hypervisor. While this is a server hypervisor, \ya giscuss below.

the ten users in our deployment were able to use it with-

out difficulty for desktop computing. Since Hyper-V cur- Q2. How arethe idle periods distributed?

rently does not support page sharing or memory ba!loon- Given that there is much idleness in PCs, the next
g, we conducted a separate set of expenments W'th th‘ﬁuestion is how the idle periods are distributed. We de-

X_en hypervisor to evaluate memory ball_oomn_g. Finally, fine an idle period as a contiguous sequence of 1-minute
since Hyper-V only supports live migration with shared buckets, each of which is classified as being idle. The
storage, we set up a shared storage server Connected&8nventional wisdom is that idle periods are long, e.g.,

the same GigE ‘?‘WitCh as th? desk_top machines and th§Vernight periods and weekends. Figure 1c shows the
server (see Section 9 for a discussion of shared storage istribution of idle periods based on the default (Ul only)

. and conservative (Ul and CPU usage) definitions of idle-

3 Motivation Based on Measurement ness noted above. Each data point shows the aggregate
To provide concrete motivation for our work beyond the idle time (shown on the y axis on a log scale) spent in
prior work discussed above, we conducted a measuredle periods of the corresponding length (shown on the x
ment study on the usage of PCs. Our study was set iaxis). The x axis extends to 72 hours, or 3 days, which
the MSR India lab during the summer of 2009, at whichencompasses idle periods stretching over an entire week-
time the lab’s population peaked at around 130 users. Oénd.
these, 120 users at the peak volunteered to run our mea- The default curve shows distinctive peaks at around
surement tool, which gathered information on the PC re-15 hours (overnight periods) and 63 hours (weekends).
source usage (in terms of the CPU, network, disk, andt also shows a peak for short idle periods, under about 3
memory) and also monitored user interaction (Ul). Inhoursinlength. In the conservative curve, the peak at the
view of the sensitivity involved in monitoring keyboard short idle periods dominates by far. The overnight and
activity on the volunteers’ machines, we only monitoredweekend peaks are no longer distinctive since, based on
mouse activity to detect Ul. the conservative definition of idleness, these long periods

We have collected over 65,000 hours worth of datatend to be interrupted, and hence broken up, by interven-
from these users. We placed the data gathered from eadhg bursts of background CPU activity.
machine into 1-minute buckets, each of which was then Figure 1d shows that with the default definition of
annotated with the level of resource usage and whethédleness, idle periods shorter than 3 hours add up to
there was Ul activity. We classify a machine as beitg  about 20% of the total duration of idle periods longer
(as opposed to beirartive) during a 1-minute bucket us- than 3 hours. With the conservative policy, the short idle
ing one of the two policies discussed later in Section 5.2:—— _ _ _
the defaultpolicy, which only looks for the absence of g, 1% PoSSbie it e may e issed perod uber there was
Ul activity in the last 10 minutes, and a mazenserva-  a small set of 3 volunteers, for whom we monitored keyboativigc
tive policy, which additionally checks whether the CPU as well as mouse activity, and found it rare to have instanabgre

there was keyboard activity but no mouse activity in thecfelhg 10
usage was below 10%. minutes.
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Figure 1: Analysis of PC usage data at MSR India

| Category | Example Applications | Sleep | Proxy-based On-demand Wakeup LiteGreen |
: incoming RDP : I . works
Incoming requests - fails | works but with initial delay/timeout - -
greq file share y works but requires disk
Idle connections outgoing RDP broken connection works
IM user shown as offline user shown as away
large file download download stalled= delay works
Background tasks -
g software patching patch download delay:- patches downloaded but
(e.g., Windows update larger window of vulnerability need disk for application|

Table 1: Impact of various energy saving strategies on eafins

periods add up to over 80% of the total duration of themachine to sleep would delay or disrupt these tasks, pos-
long idle periods. Thus, the short idle periods, whichsibly incoveniencing the user.

correspond to lunch breaks, meetings, etc., during a Privacy considerations prevented us, in general, from
work day, represent a significant opportunity for energygathering detailed information such as process names,
savings over and above the savings from the long idlevhich would have revealed the identities of the applica-

periods considered in prior work. tions running on a user’s machine. Hence, we use indi-
rect means to understand how sleep might be disruptive.
Q3. Why not just sleep during idle periods? Through informal conversations at MSR India, we

Even when the machine is mostly idle (i.e., has lowcompiled a list of typical applications that users run. Ta-
CPU utilization), it could be engaged in network activity, ble 1 categorizes these and reports on the impact of sleep
as depicted in Figure 1b. A closer look at this machineon these applications. We find that the applications suf-
(with the owner’s permission) revealed that the processefer disruption to varying degrees. In some cases, sleep
that showed sporadic activity were (BnoRT. exe,  causes a hard failure, e.g., a broken connection. In other
a virus scanner, (bpfrgNt fs. exe, a disk defrag- cases, it causes a soft failure. For example, if a user steps
menter, (c)Tr ust edl nst al | er. exe, which checks out for a meeting and their (idle) machine goes to sleep,
for Windows software updates, and @jchost . exe, IM might show them, somewhat misleadingly, as being
which encapsulates miscellaneous services. Putting th®ffline” when “away” would be more appropriate.
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the server when the user is not active and the desktop is
put to sleep. When the user returns, the desktop is woken
up and the VM is “live migrated” back to the desktop.

To insulate the user from such migrations, the desktop

hypervisor also runs a remote desktop (RD) client [7],
which is used by the user to connect to, and remain con-
nected to, their VM, regardless of where it is running.
Although our current prototype does not leverage it, the
advent of GPU virtualization [24, 28] allows improving
the user experience by bypassing remote desktop when
the VM is running locally on the desktop machine.

The user’s desktop VM uses, in lieu of a local disk, the
shared storage node, which is also shared with the server.
This aspect of the architecture arises from the limitations
of live migration in hypervisors currently in production

nd can be done away with once live migration with local
HDs is supported (Section 9).

The hypervisor on the server hosts the guest VMs that
have been migrated to it from (idle) desktop machines.

The ability to do on-demand wakeup, as provided byThe server also includesantroller, which is the brain
a proxy, helps when there is new inbound communi-of LiteGreen. The controller receives periodic updates
cation, e.g., an incoming remote desktop (RDP) confromstubson the desktop hypervisors on the level of user
nection. Such communication would work, although it and computing activity on the desktops. The controller
might suffer from an initial delay or timeout owing to also tracks resource usage on the server. Using all of
the time it takes to wake up from sleep. However, with this information, the controller orchestrates the migrati
applications where there is an ongoing connection, th&®f VMs to the server and back to the desktop machines,
proxy approach is unable to prevent disruption. In fact,and manages the allocation of resources on the server.
the only way of avoiding disruption is to not go to sleep, We have chosen a centralized design for the controller
which means giving up on energy savings. because it is simple, efficient, and also enables optimal

Avoiding disruption requires that the applications con-migration decisions to be made based on full knowledge
tinue to run and maintain their network presence ever{€.9., the bin-packing optimization noted in Section 5.3).
while the machine is (mostly) idle. Doing so while still .
saving energy motivates a solution such as LiteGreen. I® D€sign
some cases, however, LiteGreen would require access taaving provided an overview of the architecture, we now
the local disk, either immediately (e.g., file sharing) or detail the design of LiteGreen. The design of LiteGreen
eventually (e.g., software patching). While our currenthas to deal with two somewhat conflicting goals: max-
implementation does not migrate the disk, we believeimizing energy savings from putting machines to sleep
that such migration is feasible, as discussed in Section Qvhile minimizing disruption to users. When faced with a

In summary, we make two key observations from ourchoice, LiteGreen errs on the side of being conservative,
analysis. First, desktop PCs are often idle, and there ige., avoiding user disruption even if it means reduced en-
significant opportunity to exploit short idle periods. Sec- ergy savings.
ond, it is important to maintain network presence even The operation of LiteGreen can be described in terms
during the idle periods to avoid user disruption. of a control loop effected by the controller based on local

information at the server as well as information reported
4 System Architecture by the desktop stubs. We discuss the individual elements
Figure 2 shows the high-level architecture of LiteGreen before putting together the whole control loop.
The desktop computing infrastructure is augmented with ) )
a VM server and a shared storage node. In general, the1 Which VMsto Migrate?
could be more than one VM server and/or shared storag@&he controller maintains two lists of VMs:
node. All of these elements are connected via a high-
speed LANsuch as Gigabit Ethernet e Eligible for Pull: list of (idle) VMs that currently re-

Each desktop machine as well as the server run a hy-  side on the desktop machines but could be migrated
pervisor. The hypervisor on the desktop machine hostsa  (i.e., “pulled”) to the server, thereby saving energy
VM in which the client OS runs. This VM is migrated to without user disruption.

Qigabit Switch

Idle Desktops Active Desktops

Figure 2: LiteGreen architecture: Desktops are in ac-
tive (switched on) or idle (sleep) state. Server hosts idl
desktops running in VMs



e Mandatory to Pushlist of (now active) VMs that bounded byngan = % Note thatm is the memory

had previously been migrated to the server but mustllocated to a VM after ballooning and would typically
now be migrated (i.e., “pushed”) back to the desk-be some minimal value such as 384 MB that allows an
top machines at the earliest to minimize user disrup-dle VM to still function (Section 7.4).
tion. The second resource constraint arises floRU us-
o ) . age Basically, the aggregate CPU usage of all the VMs
In general, the classification of a VM as active oridle o, the server should be below a threshold. As with the
is made based on both Ul activity initiated by the usercqnservative client-side policy discussed in Section 5.2,
and computing activity, as discussed next. we introduce hysteresis by (a) measuring the CPU us-

5.2 Determining If Idleor Active age as the average over a time interval (e.g., 1 minute),

The presence of any Ul activity initiated by the user, and (b) having a higher threshole,.,, for pushing

out VMs, than the threshold,;, for pulling in VMs.
through the mouse or the keyboard (e.g., mouse move- . . . L
. . he server tries to pull in VMs (assuming the pull list is
ment, mouse clicks, key presses), in the recent pas

(actvityWindowset to 10 minutes by default) is taken as non-empty) so I_ong as the aggregate CPU usage is un
S . . ders,.u. Then, if the CPU usage rises aboyg., the

an indicator that the machine is active. Even though the :

. . . e Server pushes back VMs. Thus, there is a boundsy,

load imposed on the machine might be rather minimal,

‘on the number of VMs that can be accommodated such

we m_all<e .tr."S congervatwe ch0|c_e to reflgct our emphas'ﬁwatz?f?”” 21 < $yuon, Wherez, is the CPU usage of
on minimizing the impact on the interactive performancethez,th Z\7M

perceived by the user. .
In the default policy the presence of Ul activity is th The totql nbumb(;r gf VMS that can be co\r};ﬁlllldated on
taken as thenlyindicator of whether the machine is ac- - ¢ >o' veriSbounde byin(npas, nepu). While one
could extend this mechanism to other resources such as

tive. So, the absence of recent Ul activity is taken as an work and disk luation in Section 8 indicat
indication that the machine is idle. network and disk, our evaluation in Section 8 indicates

A more conservative policyhowever, also considers that enforcing CPU constraints also ends up limiting the

the actual computational load on the machine. Specif-us‘age of other_resourceg. . . .
Instead of simply pulling in VMs until the capacity

ically, if the CPU usage is above a threshold, the ma-, "~ - NN
chine is deemed to be active. So, for the machine to bgm't is reached, more sophisticated optimizations are

deemed idle, both the absence of recent Ul activity ancPOSSible' In general, the problem of consolidating VMs

CPU usage being below the threshold are necessary co iithin the constraints of the server's resources can be

ditions. To avoid too much bouncing between the activevieWeOI as a bin-packing problem [25] since consolidat-
ing the multiple new VMs in place of the one that is

and idle states, we introduce hysteresis in the process B{9 , ,
victed would likely help save energy. Details of our

(a) measuring the CPU usage as the average over an i . . . : .
terval (e.g., 1 minute) rather than instantaneously, apd (bgreedy bin pgcklng algorithm for managing consolida-
having a higher threshold,,,, for the push list (i.e., tion are described in [22].

idle—active transition of a VM currently on the server)

than the threshold;,,;, for the pull list (i.e., for a VM 54 Measuring & Nor mahzmg CPU Usage

currently on a desktop machine). Given the heterogeneity of desktop and server physical
) _ machines, one question is how CPU usage is measured
5.3 Server Capacity Constraint and how it is normalized across the machines. All mea-

A second factor that the controller considers while mak-surement of CPU usage in LiteGreen, both on the server
ing migration decisions is the availability of resources onand on the desktop machines, is made at the hypervi-
the server. If the server’s resources are saturated or clos®r level, where the controller and stubs run, rather than
to saturation, the controller migrates some VMs backwithin the guest VMs. Besides leaving the VMs un-
to the desktop machines to relieve the pressure. Thugpuched and also accounting for CPU usage by the hy-
an idle VM is merelyeligible for being consolidated on pervisor itself, measurement at the hypervisor level has
the server and, in fact, might not be if the server doeghe advantage of being unaffected by the configuration
not have the capacity. On the other hand, an active VMof the virtual processors. The hypervisor also provides
must be migrated back to the desktop machine even if theniform interface to interact with multiple operating sys-
server has the capacity. This design reflects the choice tems.
err on the side of being conservative, as noted above. Another issue is normalizing measurements made on
There are two server resource constraints that we focuthe desktop machines with respect to those made on the
on. The first ismemory availability Given a total server server. For instance, when a decision to pull a VM is
memory, M, and the allocationyn, made to each VM, made based on its CPU usage while running on the desk-
the number of VMs that can be hosted on the server isop machine, the question is what its CPU usage would



be once it has been migrated to the server. In our current We worked around this as follows: when the desktop
design, we only normalize at the level of cores, treatingVM has been migrated to the server and the desktop ma-
cores as equivalent regardless of the physical machinehine is to be put to sleep, we set a registry key to disable
So, for example, a CPU usagex$f on a 2-core desktop the hypervisor and then reboot the machine. When the
machine would translate to a CPU usagejdt on an  machine boots up again, the hypervisor is no longer run-
8-core server machine. One could consider refining thisiing, so the desktop machine can be put to sleep. Later,
design by using the CPU benchmark numbers for eaclwwhen the user returns and the machine is woken up, the
processor to perform normalization. hypervisor service is restarted, without requiring a re-
boot. Since a reboot is needed only when the machine

5.5 Putting It All Together: LiteGreen Isputto sleep butotwhen itis woken up, the user does
Control Loop not perceive any delay or disruption due to the reboot.

- ve LiteG , trol | t fol BIOS bug: On one model of desktop (Dell Optiplex
0 summarize, Litet>reen s controtloop operates as fo 755), we found that the latest version of BIOS avail-
lows. Based on information gathered from the stubs

. . : ‘able does not restore prior-enabled Intel VT-x support
the controller determines which VMs, if any, have be- : :
come idle, and adds them to the pull list. Furthermore (needed by the hypervisor) after resuming from sleep.

: ; e are currently pursuing a fix to this issue with the man-
based both on information gathered from the stubs an&l yp 9

- acturer; until then, we are unable to use this model of
frqm Iocal_ monltornjg on the server, the cor_ltroller qeter;jdesktop as a LiteGreen client.
mines which VMs, if any, have become active again an
adds these to the push list. If the push list is non-empty.
the newly active VMs are migrated back to the desktop -1 Deployment
right away. If the pull list is non-empty and the server We have deployed LiteGreen to ten users at MSR In-
has the capacity, additional idle VMs are migrated to thedia, comprising three administrative staff and seven re-
server. If at any point, the server runs out of capacity, thesearchers, three of whom are authors of this paper. As of
controller looks for opportunities to push out the mostthis writing, the system has been in use for 28 days that
expensive VMs in terms of CPU usage and pull in theincludes 10 weekend days and holidays. Accounting for
least expensive VMs from the pull list. Pseudocode forthe ramp-up and ramp-down of users in the LiteGreen
the control loop employed by the LiteGreen controller is system, total usage was approximately 3200 user-hours.

available at [22]. Each user is given a separate LiteGreen desktop ma-
chine thatis running a hypervisor (Hyper-V Server 2008)
6 Implementation and Deployment along with the LiteGreen client stub. The desktop envi-

We have built a prototype of LiteGreen based on theronment runs in a Windows 7 VM that is allocated 2GB

Hyper-V hypervisor, which is available as part of the of memory. The users’ existing desktop is left untouched

Microsoft Hyper-V Server 2008 R2 [5]. The Hyper-V in order to preserve the users’ existing desktop configu-
server can host Windows. Linux. and (.)ther guest OSega’[ion and local data. Different users use their LiteGreen

and also supports live migration based on shared storagg.esttc’p n ?LﬁgrenF ways. Most lthers uset_the L|t|eQreen
Our implementation comprises the controller, which eskiop as teir primary access o compuling, relying on

runs on the server, and the stubs, which run on the in[emote desktop to connect to their existing desktop. A

divi . couple of users used it only for specific tasks, such as
ividual desktop machines. The controller and stubs ar%rowsin or checking email. so that the LiteGreen desk-
written in C# and add up to 1600 and 600 lines of codelto onl gsees as bs%t of thé'r activit

respectively. The stubs use WMI (Windows Manage- b only u ! VI

ment Instrumentation) [10] and Powershell to pen‘ormd Olur findings are repolrlt_ed n Sect(;on 7.3. Wht;Ie our
the monitoring and migration. The controller also in- d€Ploymentis very small in size and moreover, has not

cludes a GUI. which shows the state of all of the VMs entirely replaced the users’ existing desktop machines,

in the system we believe it is a valuable first step that we plan to build
In our implementation, we ran into a few issues from on .in the coming months. A video. cIip_of LitgGreen in

bugs in the BIOS to limitations of Hyper-V and had to action on one of the desktop machines is available at [4].

work around them. Here we discuss a couple of these. ) )

Lack of support for deep in hypervisor: Since 7 Experimental Evaluation
Hyper-V is intended for use on servers, it does not supWe begin by presenting experimental results based on
port sleep once the hypervisor service has been startedur prototype. These results are drawn both from con-
Also, once started, the hypervisor service cannot berolled experiments in the lab and from our deployment.
turned off without a reboot. Other hypervisors such asThe results are, however, limited by the small scale of
Xen also lack support for sleep. our testbed and deployment, so in Section 8 we present a



[ Component |  Make/Model | Hardware | Software |

Desktops (10)| HP WS xw4600 Intel E8200 Core 2 Duo @2.66GHz Hyper-V + Win7 guest
Server HP Proliant ML350 | Intel Xeon E5440 DualProc 4Core 2.83GHz, 32GB RAM Hyper-V
Storage Dell Optiplex 755 Intel E6850 Core 2 Duo 3.00 GHz Win 2008 + iSCSI
Switch DLink DGS-1016D NA NA

Table 2: Testbed details

larger scale trace-driven evaluation using the traces gattv.2.2 Timing of Individual Operations

ered from the 120 machines at our lab. We made measurements of the time taken for the indi-
vidual steps involved in migration. In Table 3, we report

7.1 Testbed the results derived from ten repetitions of each step.
Our testbed mirrors the architecture depicted in Figure 2.
It comprises ten desktop machines, a server, and a stor- Step Sub-step Time (sec)
age node, all connected to a GigE switch. The hardware : [mean (sd)]
and software details are listed in Table 2. Gg:gg o 840.5(27)

We first usgd the testbed for controlled experiments in b Pull Intiation | 638.8 (20)
the lab (Section 7.2). We then used the same setup but Migration 68.5 (5)
with the desktop machines installed in the offices of the Sleep 133.2 (5)
participating users, for our deployment (Section 7.3). Resuming 164.6 (16)

from sleep
7.2 Resultsfrom Laboratory Experiments Wakeup 55
. . . . A RD connection 14

We start by Walkmg thrOl_Jgh a mlgrgtlon scenario simi- Push Initiation | 85.1 (17)
lar to that shown in the LiteGreen video clip [4], before Migration 60 (6)

presenting detailed measurements.

721 Migration Timeine Table 3: Timing of individual steps in migration

The scenario, shown in Figure 3a, starts with the user > 3 power Measurements

stepping away from his/her machine (Event A), CalS-table 4 shows the power consumption of a desktop ma-

ing the maghlne to become |dle; Afta_ctwtyV\ﬁndow_ chine, the server, and the switch in different modes, mea-
amount of time elapses, the user’s VM is marked as idle

L sured using a Wattsup power meter.
and the server initiates the VM pull (Event B). After the 9 PP

VM migration is complete (Event C), the physical desk- [ Component] Mode [ Power (W) ]
top machine goes to sleep (Event Mote that, if the Desktop idle 60-65W
user returns to their desktop between events B and C, the Desktop 100% CPU 95W
migration is simply canceled without any perceivable la- Desktop sleep 2.3-2.5W
tency to the user. This is because, during live migration, Server idle 230-240W
the (desktop) VM continues to remain fully operational, Server 100% CPY 270W
except during the final switchover phase that typically Switch _idle | 87-88W
Switch during migration | 8.7-8.8W

lasts only tens of milliseconds.

Figure 3b shows the timeline for waking up. When
the user returns to his/her desktop, the physical machine
wakes up (Event A) and immediately establishes a re- The main observation is that power consumption of
mote desktop (RD) session to the user’'s VM (Event B).the desktop and the servers is largely unaffected by the
At this point, the user can start working even thoughamount of CPU load. It is only when the machine is put
his/her VM is still on the server. A VM push is initiated to sleep that the power drops significantly. We also see
(Event C) and the VM is migrated back to the physicalthat the power consumption of the network switch is low
desktop machine (Event D), in the background using liveand is unaffected by any active data transfaisus, the
migration feature. energy cost of the migration itself is negligible (the small

Figures 3a and 3b also show the power consumed bipump between events B and C in Figure 3a), and can be
the desktop machine and the server over time, measurdgnored, as long as one accounts for the time/energy of
using Wattsup power meters [9]. While the timeline the powered on desktop until the migration is completed.
shows the measurements from one run, we also made Finally, the power consumption curves in Figures 3a
more detailed measurements of the individual compoand 3b show the marked difference in the impact of mi-
nents and operations, which we present next. gration on the power consumed by the desktop machine

Table 4: Power measurements
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Figure 3: Migration timelines

and the server. When a pull happens, the power condoes not result in additional latencythis implies that
sumed by the desktop machine goes down from aboumigration transfer time can be reduced from 35-43 sec-
60W in idle mode to 2.5W in sleep mode (with a tran- onds to about 15 seconds using redundancy elimination,
sient surge to 75W during the migration process). On thaéhereby significantly speeding up the migration process
other hand, the power consumption of the server barelyrhis approach can also help support migration of VMs
changes. This difference underlies the significant net enwith larger memory sizes (e.g., 4GB) while limiting the
ergy gain to be had from moving idle desktops to thetransfer time to under a minute.

server. o
7.25 Further Optimizations

7.24 Compression to Reduce Migration Time First, the time to put the machine to sleep is 133 seconds,
The time to migrate the VM — either push or pull — much of it due to the reboot necessitated by the lack of

is determined by the memory size (2GB) of the VM and support for sleep in Hyper-V (Section 6). Withchent
the network throughput. The transfer size can be greatenypervisor that includes support for sleep, we expect the
than memory size when application activity during thetime to go to sleep to shrink to just about 10 seconds.
time of migration results in dirty memory pages that are Second, the time from when the user returns till when
copied multiple timesWe configured a desktop VM with  they are able to start working is longer than we would
typical enterprise applications, such as Microsoft Office like — about 19.5 seconds. Of this, resuming the desktop
an email client and a browser with multiple open webmachine from sleep only constitutes 5.5 seconds. About
pages. We then migrated this VM back and forth, be-4 more seconds are taken by the user to key in their lo-
tween the desktop and the server. When the VM wagin credentials. The remaining 10 seconds are taken to
on the desktop, we interacted with the applications as &aunch the remote desktop application and make a con-
regular desktop usem this setup, we observed that dif- nection to the user's VM, which resides on the server.
ferent migrations resulted in transfer sizes between 2.2This longer than expected duration is because Hyper-V
2.7GB. Using a network transfer rate of 0.5Gbps (the effreezes for several seconds after resuming from sleep.
fective TCP throughput of active migration on the GigE We believe that this happens because our unconventional
network), transfer takes about 35-43 seconds. Includuse of Hyper-V, specifically putting it to sleep when it
ing the migration initiation overhead, the total migration is not designed to support sleep, triggers some untested
time is about 60 seconds, which matches the numbersode paths. We expect that this issue would be resolved
shown in the timeline and in Table 3. with a client hypervisor. However, resuming the desk-
We experimented with a simple compression opti-top and connecting to the users’ VM may still take on
mization to reduce the migration timeWe used En- the order of a few seconds that may be disrupti@ae
dRE [16], an end-system redundancy elimination serapproach to mask this disruption is to anticipate user re-
vice, with a 250MB packet cache to analyze the savinggurns, for example, through user mobile phone tracking,
from performing redundancy elimination in the VM mi- and resume the desktop before the user arrives at his disk.
gration traffic between two node€EndRE works in a  This aspect is discussed in [22]. Such tracking of the
similar fashion to WAN optimizers [18], but on end hosts user’ location could also be used to improve user expe-
instead of middleboxes. After identifying and eliminat- rience in other days, for instance, by preventing a seem-
ing redundant bytes, as small as 32 bytes, with respect tmgly idle machine from being migrated to the server, say,
the packet cache, GZIP is applied to further compress thd the user is still in their office.
data. For various transfers, we found that the compres-
sor, operating at 0.4Gbps, was able to reduce the siz€-3 Resultsfrom Deployment
of transfer by 64-69%Note that EndRE is designed to As noted in Section 6.1, we have had a deployment of
be asymmetric. Thus, decompression is inexpensive anditeGreen for a period of 28 days including 10 holidays
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Figure 4: Distribution of desktop sleep durations Figure 5: Number of migrations

and weekends, comprising about 3200 user-hours (maxteployment, it was significantly under-utilized since it
imum simultaneous usage by 10 users). While it is hardvas dedicated to host only 10 idle VMs. If we amor-
to draw general conclusions given the small scale andize the cost of the server over a larger number of desk-
duration of the deployment thus far, it is nevertheless in-tops (e.g., 60), the power cost of the server per desktop is
teresting to consider some of the initial results. 4.2W (see Section 8.4 for details). We use this amortized
731 Desktop Sleep Time Distribution value of the server power cost below.
Figure 4 shows the cumulative distribution function of we use the power mgasurement pumbers from Table 4
9 to estimate energy savings from LiteGreen. Let us as-

the sleep durations for the seven researchers and the thrgﬁzme power consumption of 62.5W for an idle desktop

administrative staff. The sleep times tend to be quite9

short, with a median of 40 minutes across the ten user%ﬁg desktop. From Figure 1a, where CPU usage is less

demonstrating the exploitation of short idle periods bythan 10% for 90% of the time, let us assume a desktop

the LiteGreen system. From the figure, one can see ON& ot never sleeps consumes 62.5W of power 90% of the

distinct difference in behavior between the adm!mstra-ttime and 95W of power 10% of the time. Then, desk-
tors and the researchers in our study. We notice th

there is a sharper spike in the curve for the administratorg?rﬁ)];;vzg rgcjggsSu +rgpltgrg)vllt£1§ l;gs\% eern((ja ég{tzzvmgs, 1S

around 900 minutes as compared to the smoother curve . . o
In LiteGreen, since the average desktop sleep time is

for researchers. Th|s is explained by the fact th_at a_dmlngg%’ the power savings is (0.88*(62.5- 2.5) - 4.2) = 48.6
istrators are more likely than researchers to maintain re

ular workhours (e.g., 9AM to 6PM) which correspondsg,z\(l)rr:er desktop or 74% of total desktop energy consump-
to 15 hours (900 minutes) of idle time. ; . .
Finally, the above energy savings calculations are ap-

7.3.2 Desktop Average Sleep Time plicable for enterprises that already have a centralized
For our deployment, we used the default policy fromstorage deployment. Otherwise, we need to take into
Section 5.2 to determine whether a VM was idle or ac-account the energy consumed by the centralized storage
tive. During the deployment period, the desktop ma-System as well. Consider a network attached storage box
chines were able to sleep for an average of 87.9% of theuch as the QNAP SS-839 Pro Turbo [6] that can host
time. Even the machine of the most active user in outlP to 8 disks and consumes 34W in operation. Assum-
deployment, who used their LiteGreen desktop for all ofing two desktop users are multiplexed onto each disk,
their computing activity, slept for 76% of the time. each of these storage devices can support up to 16 desk-

Note that, while 88% of desktop sleep time may ap-{OPS. Thus, the amortized energy cost of centralized stor-
pear unusually large, out of the 3200 user-hours, onh2ge is 34/16 = 2.1W/desktop. Accounting for the storage
about 960 user-hours corresponded to daytime weekdayverhead, the power savings in LiteGreen is 48.6 - 2.1 =
(8AM — 8PM) in our deployment. Thus, 12% or 384 46.5W per desktop or 71%.

- I 0,

user-hours of desktop awake time corresponds to 40 A]:';.SA Number of Migrations

daytime weekday hours, representing a significant frac- ] S
tion of the workday. Finally, Figure 5 shows the number of migrations for the

different days of deployment, segregated by daytime (8
7.3.3 Energy Savings am—-8 pm) and nightime (8 pm-8 am), and further clas-
The conversion of desktop average sleep time to energsified by weekdays and holidays (including weekends).
savings requires accounting of the energy costs of th&here were a total of 571 migrations during the deploy-
server. While a LiteGreen server was necessary for thisnent period. The number of migrations are higher during

5W for a fully active desktop and 2.5W for a sleep-
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056 3554 3072 2580 20a8 1536 1024 512 0 that we used, memory ballooning could be used to shrink

the memory of an idle VM by over a factor &b (4096
10 MB down to 384 MB) without causing thrashing. Fur-

§ ﬁz I ther savings in memory could be achieved through mem-
2 10| | ory sharing. While we were not able to evaluate this in
8 sl ] our testbed since neither Hyper-V nor Xen supports it,
% 60 | ] the findings from prior work [26] are encouraging, as dis-
o 40 ] cussed in Section 9.
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Time (minutes) To evaluate our algorithms further, we have built a

discrete event simulator written in Python using the
SimPy package. The simulator runs through the desktop
traces, and simulates the default and conservative poli-
cies based on various parameters includipg; (client
resource threshold below which client VMs are eligible
the day compared to night (470 versus 101) and higher ifp be pulled to servey)c,..; (client resource thresh-
the weekdays compared to the holidays (493 versus 78h|d above which client VMs are pushed to client)
These numbers are again consistent with the LiteGreegpu” (server resource thrshold above below client VMs

Figure 6: Memory ballooning experimergvery 5 min-
utes memory of a desktop VM is reduced by 128M. Ini-
tial memory size is 4096M

approach of exploiting short idle intervals. are pulled to servey)s,.., (server resource threshold
) ) above which client VMs are pushed to clientde)d
7.4  Experimentswith Xen ServerCapacity. In the rest of the section, we will re-

We would like to evaluate the effectiveness of memoryport on energy savings achieved by LiteGreen and uti-
ballooning in relieving pressure on the server’s memorylization of various resources (CPU, network, disk) at the
resources due to consolidation. However, Hyper-V doeserver as a result of consolidation of the idle desktop
not currently support memory ballooning, so we con-VMs.
ducted experiments using the Xen hypervisor, which sup-
ports memory ballooning for the Linux guest OS using a8.1 Desktop Sleep Time
balloon driver (we are not aware of any balloon driver Figure 7a shows the desktop sleep time for all the users
for Windows).We used the Xen hypervisor (v3.4.2 built with existing mechanisms and LiteGreen, default and
with 2.6.18 SMP kernel) with the Linux guest OS (Cen- conservative. For both the policies, we usen = 10
tOS 5.4) on a separate testbed comprising two HP C¢less than 10% desktop usage classified as idlg);, =
class blades, each equipped with two quad-core 2.2 GHZ0, s,,,;; = 600, spusn, = 700 andServerCapacity =
64-bit processors with 48GB memory, two Gigabit Eth- 800 intended to represent a Server with 8 CPU cores.
ernet cards, and two 146 GB disksne blade was used  As mentioned earlier, our desktop trace gathering tool
as the desktop machine and the other as the server.  records a number of parameters, including CPU, mem-
The desktop Linux VM was initially configured with ory, Ul activity, disk, network, etc., every minute after
4096 MB of RAM. It ran an idle workload comprising its installation. In order to estimate energy savings using
the Gnome desktop environment, two separate Firefoxexisting mechanisms (either automatic windows power
browser windows, with a Gmail account and the CNN management or manual desktop sleep by the user), we
main page open (each of these windows auto-refresheattribute any unrecorded interval or “gaps” in our desk-
periodically without any user’s involvement), and the top trace to energy savings via existing mechanisms. Us-
user's home directly mounted through SMB (which alsoing this technique, we estimate that existing mechanisms
generated background network traffic). The desktop VMwould have put desktops to sleep 35.2% of the time.
was migrated to the server. Then, memory ballooning We then simulate the migrations of desktop VMs
was used to shrink the VM’s memory all the way down to/from the server depending on the desktop trace events
to 128 MB, in steps of 128 MB every 5 minutes. and the above mentioned thresholds for the conservative
Figure 6 shows the impact of memory ballooning onand default policy. Using the conservative policy, we find
the page fault rate. The page fault rate remains low everthat LiteGreen puts desktop to sleep for 37.3% of the
when the VM’s memory is shrunk down to 384 MB. time. This is in addition to the existing savings, for total
However, shrinking it down to 256 MB causes the pagedesktop sleep time of 72%. If we use the more aggres-
fault rate to spike, presumably because the working sesive default policy, where the desktop VM is migrated to
no longer fits within memory. the server unless there is Ul activity, we find that Lite-
We conclude that in our setup with the idle workload Green puts desktop to sleep for 51.3% on time for a total

12



B Weekend Night B Weekend Night B Weekend Night
B Weekend Day -_ I = Weekend Day B Weekend Day
80 80
WeekNight WeekNight WeekNight
B WeekDay 2137 = WeekDay

g & W WeekDay
15.65 g - R 1 e v g

Q.

o

@

10.07
2 40 933

2
Y 30
34.18 20
10

<
3 3
N
3 3
]
3 S

Sleep Time (%)

8

wggm
'J
1 |
{<]
N

N
S
~
S

17.38
— 10

S

o | GG , | e , - ,
Existing LiteGreen LiteGreen Existing LiteGreen LiteGreen Existing LiteGreen LiteGreen
Conservative Default Conservative Default Conservative Default
(a) Desktop sleep time (b) Desktop sleep time for userl (c) Desktop sleep time for user2

Figure 7: Desktop sleep time from existing power managemediiteGreen’s default and conservative policies

desktop sleep time of 86%. Sputl = 600 an spusn, = 700 but, as intended, never

The savings of the different approaches are also clasgoes aboves,,s,. In contrast, since the conservative
sified by day (8AM-8PM) and night (8PM-8AM) and policy pushes the VM back to the desktop as soon as
also whether it was a weekday or a weekend. We note,,, = 20 is exceeded, the CPU usage at the server
that substantial portion of LiteGreen desktop sleep timehardly exceeds an utilization value of 100. Next con-
comes from weekdays, thereby highlighting the impor-sider disk reads. It varies between 10B-10KB/s for the
tance of exploting short idle intervals for energy savings.default policy (average of 205 B/s ) while it varies be-

. twen 10B-1KB/s for the conservative policy (average of

8.2 Desktop Sleep Time for Selected Users 41 B/s). While these numbers can be quite easily man-
Based on the CPU utilization trace data, we found a Useraged by the server, note that these are disk reads of id'e,
say userl, who had bursts of significant activity separateénd not active, desktop VMs. Finally, let us consider net-
by periods of no activity, likely because he/she manu~york activity of the consolidated idle desktop VMs. For
ally switches off his/her machine when not in use. Forthe default policy, the network traffic mostly varies be-
this particular case, LiteGreen is unable to significantlyyyeen 0.01 to 10Mbps, but with occassional spikes all
improve on the energy savings of existing mechanismshe way up to 10Gbps. In the case of conservative policy,
(i.e., manual power management). This is reflected inhe network traffic does not exceed 10Mbps and rarely
the desktop sleep time for userl in Figure 7b. goes above 1Mbps. While these network traffic numbers

In contrast, for many of the users, say user2, the deskagre manageable for single server,these represent the
top exhibits low-levels of CPU activity with occasional workload ofidle desktop machines. Scaling the server
spikes almost continuously, with only short gaps of inac-infrastructure to enable consolidation adtive desktop

tivity. The few CPU utilization spikes can prevent Win- yMs, as in the thin client model, will likely be expen-
dows power management from putting the desktop tosjye.

sleep, thereby wasting a lot of energy. However, Lite-
Green is able to exploit this situation effectively, and .
puts the desktop to sleep for significantly longer time a38'4 Energy Savings
shown in Figure 7c. We use calculations similar to the one performed in
o ) Section 7.3.3 for computing energy savings. Recall
83 Server Resource Utilization during  that power consumption of a desktop, without any en-
Consolidation ergy savings mechanism, is simply (0.9*62.5+0.1*95) =
While the default policy provides higher savings than65.75 W per desktop.
the conservative policy, it is clear that the default pol- Using existing energy saving mechanisms, where the
icy would stress the resources on the server more, due tesktop is put to sleep 35.2% of the time (Section 8.1),
hosting of more number of desktop VMs, than the con-0.352*(62.5-2.5)=21.1 W per desktop or 32% of energy
servative policy. We examine this issue next. savings can be achieved. In the case of LiteGreen, our
Figures 8a and 8b show the resource utilization due t@onsolidation analysis (Section 8.3) suggests that one 8-
idle desktop consolidation at the server for the defaultcore server is capable of hosting the idle desktops in the
and conservative policies, respectively. The resourcegace. Memory balooning results from Section 7.4 sug-
shown are CPU usage, bytes read/second from the disgest that an idle VM could be packed in 384MB, imply-
and network usage in Mbps. ing that a 32GB server has enough memory capacity for
First, consider CPU. Notice that the CPU usage atp to to 96 idle VMs.Assuming some over-provisioning
the server in the default policy spikes up to betweenfor capacity and redundancy, let us dedicate two servers
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Figure 8: Resource utilization during idle desktop cordsation

of 250W each for the 120 desktops. The amortized cost %l'\;‘é"ge"r"'ﬁg&‘gv ?&;‘g”ge"rvwgfr‘?’
of a server/desktop is then 500W/120 = 4.2W. Thus, 80-240 40-100

power savings in LiteGreen (using the default policy with
average desktop sleep time of 86%) is (0.86*(62.5 - 2.5)

- 4.2) = 47.4 W per desktop or 72%, more than doublingyolume of dirty disk blocks that is generated, which rep-
the energy savings under existing mechanisms. resents the amount of disk state that would need to be
Finally, as in Section 7.3.3, if we were to in- migrated. We consider two cases: dirty blocks being
clude the amortized energy cost of centralized storag@re-copied every hour versus every 4 hours. The latter
(2.1W/desktop), the energy savings in LiteGreen usingyrovides a greater opportunity for temporal consolida-
the default policy is simply 47.4 - 2.1 = 45.3W per desk- tjon (j.e., merging of multiple writes to a block).
top or 69%. Migrating 100 MB of disk content over a GigE net-
work would take 1.6 seconds, assuming an effective
throughput of 500 Mbps. This means that over 2000 disk
migrations can be supported per hour, which suggests
that these migrations will not be the bottleneck. Further

9.1 Dependence on Shared Storage optimizations are possible, for instance, by transferring
Live migration assumes that the disk is shared betweeﬂirty data at a sub-block level and filtering out writes to
the source and destination machines, say in the form o§cratch space. i i

network attached storage (NAS). This avoids the consid- NOt€ that enterprise enviroments often employ net-

erable cost of migrating disk content. However, this is aVOrk storage to hold persistent user data, since this en-
limitation of our current system since, in general, client@bles the data to be b"f‘Cked up. In such a setting, the
machines would have a local disk, which applicationsamount of data to be migrated would be further reduced

(e.g., sharing of local files) need access to. to only temporary files generated by applications.

Recent work has demonstrated the migration of VMs .
with local virtual hard disks (VHDs) by using techniques 9-2 Heavyweightness
such as pre-copying and mirroring of disk content [19] toLiteGreen is a more heavyweight solution than the alter-
keep the downtime to under 3 seconds in a LAN settingnative proxy-based approach. To deploy LiteGreen, we
Note that since the base OS image is likely to be alreadyvould need to have desktop machines run a client hy-
available at the destination node, the main cost is that opervisor and also provision the necessary network band-
migrating the user data. width and server resources.

To quantify the costs involved in migrating the local We believe that technology trends make it likely that
disk, we performed detailed tracing of all file system op-the enterprise IT infrastructure would move in this direc-
erations on 3 actively used desktop machines using théon. Virtualized desktops simplify management for the
Pr ocessMbni t or tool [35]. Table 5 summarizes the IT administrators. Also, the growth in thin clients would

Table 5: Volume of dirty disk blocks

9 Limitationsand Future Work
We consider some limitations of LiteGreen, which also
point to directions for future work.
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argue for server and network provisioning. Finally, the[13]
desire to support mobility and a “work from anywhere”
capability would likely spur the development of a hybrid [14]
computing model wherein the desktop VM resides on the
server when accessed from a thin client and migrates t@5]
the local machine at other times. Thus, we believe thahG]
that the LiteGreen approach fits in with these trends.

10 Conclusion

Recent work has recognized that desktop computers in
enterprise environments consume a lot of energy in angB]
gregate while still remaining idle much of the time. The
guestion is how to save energy by letting these machine&?
sleep while avoiding user disruption. LiteGreen uses
virtualization to resolve this problem, by migrating idle [20]
desktops to a server where they can remain “always on”
without incurring the energy cost of a desktop machine [21]
The seamlessness offered by LiteGreen allows us to ag-
gressively exploit short idle periods as well as long pe—[22]
riods. Data-driven analysis of more than 65000 hours of
desktop usage traces from 120 users as well as a smalk,
scale deployment of LiteGreen on ten desktops, compris-
ing 3200 user-hours over 28 days, shows that LiteGreeFM]
can help desktops sleep for 86-88% of the time. This
translates to estimated desktop energy savings of 72-749%°!
for LiteGreen as compared to 32% savings under existin?
power management mechanisms. 26]

(17]
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