
LiteGreen: Saving Energy in Networked Desktops Using Virtualization

Tathagata Das Pradeep Padala∗ Venkata N. Padmanabhan
tathadas@microsoft.com ppadala@docomolabs-usa.com padmanab@microsoft.com

Microsoft Research India DOCOMO USA Labs Microsoft Research India

Ramachandran Ramjee Kang G. Shin
ramjee@microsoft.com kgshin@eecs.umich.edu

Microsoft Research India The University of Michigan

Abstract

To reduce energy wastage by idle desktop comput-
ers in enterprise environments, the typical approach is
to put a computer to sleep during long idle periods (e.g.,
overnight), with a proxy employed to reduce user disrup-
tion by maintaining the computer’s network presence at
some minimal level. However, the Achilles’ heel of the
proxy-based approach is the inherent trade-off between
the functionality of maintaining network presence and
the complexity of application-specific customization.

We presentLiteGreen, a system to save desktop en-
ergy by virtualizing the user’s desktop computing envi-
ronment as a virtual machine (VM) and then migrating it
between the user’s physical desktop machine and a VM
server, depending on whether the desktop computing en-
vironment is being actively used or is idle. Thus, the
user’s desktop environment is “always on”, maintaining
its network presence fully even when the user’s phys-
ical desktop machine is switched off and thereby sav-
ing energy. This seamless operation allows LiteGreen
to save energy during short idle periods as well (e.g.,
coffee breaks), which is shown to be significant accord-
ing to our analysis of over 65,000 hours of data gath-
ered from 120 desktop machines. We have prototyped
LiteGreen on the Microsoft Hyper-V hypervisor. Our
findings from a small-scale deployment comprising over
3200 user-hours of the system as well as from laboratory
experiments and simulation analysis are very promising,
with energy savings of 72-74% with LiteGreen compared
to 32% with existing Windows and manual power man-
agement.

1 Introduction
The energy consumed by the burgeoning computing in-
frastructure worldwide has recently drawn significant at-
tention. While the focus of energy management has been
on the data-center setting [20, 29, 32], attention has also
been directed recently to the significant amounts of en-
ergy consumed by desktop computers in homes and en-
terprises [17, 31].A recent U.S. study [33]estimates that
PCs and their monitors consume about 100 TWh/year,
constituting 3% of the annual electricity consumed in the

∗The author was an intern at MSR India during the course of this
work.

U.S. Of this, 65 TWh/year is consumed by PCs in en-
terprises, which constitutes 5% of the commercial build-
ing electricity consumptionin the U.S.Moreover, market
projections suggest that PCs will continue to be the dom-
inant desktop computing platform, with over 125 million
units shipping each year from 2009 through 2013 [15].

The usual approach to reducing PC energy wastage
is to put computers to sleep when they are idle. How-
ever, the presence of the user makes this particularly
challenging in a desktop computing environment. Users
care about preserving long-running network connections
(e.g., login sessions, IM presence, file sharing), back-
ground computation (e.g., syncing and automatic filing
of new emails), and keeping their machine reachable
even while it is idle. Putting a desktop PC to sleep
is likely to cause disruption (e.g., broken connections),
thereby having a negative impact on the user, who might
then choose to disable the energy savings mechanism al-
together.

To reduce user disruption while still allowing ma-
chines to sleep, one approach has been to have aproxy
on the network for a machine that is asleep [33]. How-
ever, this approach suffers from an inherent tradeoff be-
tween functionality and complexity because of the need
for application-specific customization.

In this paper, we presentLiteGreen, a system to save
desktop energy by employing a novel approach to min-
imizing user disruption and avoiding the complexity of
application-specific customization. The basic idea is to
virtualize the user’s desktop computing environment, by
encapsulating it in a virtual machine (VM), and then mi-
grating it between the user’s physical desktop machine
and a VM server, depending on whether the desktop
computing environment is actively used or idle. When
the desktop becomes idle, say when the user steps away
for several minutes (e.g., for a coffee break), the desktop
VM is migrated to the VM server and the physical desk-
top machine is put to sleep. When the desktop becomes
active again (e.g., when the user returns), the desktop
VM is migrated back to the physical desktop machine.
Thus, even when it has been migrated to the VM server,
the user’s desktop environment remains alive (i.e., it is
“always on”), so ongoing network connections and other
activity (e.g., background downloads) arenot disturbed,
regardless of the application involved.

The “always on” feature of LiteGreen allows energy
savings whenever the opportunity arises, without hav-
ing to worry about disrupting the user. Besides long idle
periods (e.g., nights and weekends), energy can also be
saved by putting the physical desktop computer to sleep
even during short idle periods, such as when a user goes
to a meeting or steps out for coffee. Indeed, our mea-
surements indicate that the potential energy savings from
exploiting short idle periods are significant (Section 3).

While thevirtualization-based approach allows keep-
ing the desktop environment “always on”, two key chal-
lenges need to be addressed for it to be useful for sav-
ing energy on desktop computers. First, how do we pro-
vide a normal (undisrupted) desktop experience to users,
masking the effect of VMs and their migration? Sec-
ond, how do we decide when and which VMs to migrate
to/from the server in order to maximize energy savings
while minimizing disruption to users?

To address the first challenge, LiteGreen uses thelive
migrationfeature supported by modern hypervisors [21]
coupled with the idea of always presenting the desktop
environment through a level of indirection (Section 4).
Thus, whether the VM is at the server or desktop, users
always access their desktop VM through a remote desk-
top (RD) session. So, in a typical scenario, when a user
returns to their machine that has been put to sleep, the
machine is woken up from sleep and the user is able
to immediately access their desktop environment (whose
state is fully up-to-date, because it has been “always on”)
through an RD connection to the desktop VM running
on the VM server. Subsequently, the desktop VM is mi-
grated back to the user’s physical desktop machine with-
out the user even noticing.

To address the second challenge, LiteGreen uses an
energy-saving algorithm that runs on the server and care-
fully balances migrations based on two continuously-
updated lists: 1) VMs in themandatory to pushlist must
be migrated to the desktop machine to minimize user dis-
ruption, and 2) VMs in theeligible to pull list may be
migrated to server for energy savings, subject to server
capacity constraints (Section 5).

We have prototyped LiteGreen on the Microsoft
Hyper-V hypervisor (Section 6). We have a small-scale
deployment running on the desktop machines of ten
users, comprising three administrative staff and seven
researchers, including three authors of this paper. A
demonstration video of LiteGreen is available at [4].
Separately, we have conducted laboratory experiments
using both the Hyper-V and Xen hypervisors to evaluate
various aspects of LiteGreen. We have also developed a
simulator to analyze the data we gathered and to under-
stand the finer aspects of our algorithms.

We have analyzed (a) over 65,000 user-hours of data
gathered by us from 120 desktop computers at Microsoft

Research India (MSRI), and (b) 3200 user-hours of data
from a deployment of our prototype on ten user desktops
over a span of 28 days. Based on this analysis, LiteGreen
is able to put desktop machines to sleep for 86-88% of
the time, resulting in an estimated energy savings of 72-
74%. In comparison, through a combination of manual
user action and the automatic Windows power manage-
ment, desktop machines are put to sleep for 35% of time,
delivering estimated energy savings of only 32%.

The main contributions of this paper are as follows:

1. A novel system that leverages virtualization to con-
solidate idle desktops on a VM server, thereby sav-
ing energy, while avoiding user disruption.

2. Automated mechanisms to drive the migration of
the desktop computing environment between the
physical desktop machines and the VM server.

3. A prototype implementation and the evaluation of
LiteGreen through a small-scale deployment on the
desktops of ten users, spaning 3200 user-hours over
28 days, yielding energy savings of 74%.

4. Trace-driven analysis of over 65,000 user-hours of
resource usage data gathered from 120 desktops,
yielding energy savings of 72%, with short idle pe-
riods (< 3 hours) contributing 20% or more.

2 Problem Background and Related Work
In this section, we provide some background on the prob-
lem setting and discuss related work.

2.1 PC Energy Consumption
Researchers have measured and characterized the energy
consumed by desktop computers [17]. The typical desk-
top PC consumes 80-110 W when active and 60-80 W
when idle, excluding the monitor, which adds another
35-80 W. The relatively small difference between active
and idle modes is significant and arises because the pro-
cessor itself only accounts for a small portion of the total
energy. In view of this, multiple S (“sleep”) states have
been defined as part of the ACPI standard [13]. In par-
ticular, the S3 state (“standby”) suspends the machine’s
state to RAM, thereby cutting energy consumption to 2-3
W. S3 has the advantage of being much quicker to transi-
tion in and out of than S4 (“hibernate”), which involves
suspending the machine’s state to disk.

2.2 Proxy-based Approach
As discussed above, the only way of cutting down the
energy consumed by a PC is to put it to sleep. How-
ever, when a PC it put to sleep, it loses its network
presence, resulting in disruption of ongoing connections
(e.g., remote-login or file-download sessions) and the
machine even becoming inaccessible over the network.

2

The resulting disruption has been recognized as a key
reason why users are often reluctant to put their machines
to sleep [17].Researchers have found that roughly 60%
of office desktop PCs are left on continuously [33].

The general approach to allowing a PC to sleep while
maintaining some network presence is to have a network
proxy operate on its behalf while it is asleep [33]. The
functionality of the proxy could span a wide range:

• WoL Proxy: The simplest proxy allows the ma-
chine to be woken up using theWake-on-LAN
(WoL) mechanism [12] supported by most Ethernet
NICs. To be able to send the “magic” WoL packet,
the proxy must be on the same subnet as the tar-
get machine and needs to know the MAC address of
the machine. Typically, machine wakeup is initiated
manually.

• Protocol Proxy: A more sophisticated proxy per-
forms automatic wakeup, triggered by a filtered sub-
set of the incoming traffic [31, 34]. The filters could
be configured based on user input and also the list
of network ports that the target machine was listen-
ing on before it went to sleep. Other traffic is ei-
ther responded to by the proxy itself without wak-
ing up the target machine (e.g., ARP for the target
machine) or ignored (e.g., ARP for other hosts).

• Application Proxy: An even more sophisticated
proxy incorporates application-specific stubs that
allow it to engage in network communication on be-
half of applications running on the machine that is
now asleep [31]. Such a proxy could even be inte-
grated into an augmented NIC [17].

Enhanced functionality of a proxy comes at the cost of
greater complexity, for instance, the need to create stubs
for each application that the user wishes to keep alive.
LiteGreen sidesteps this complexity by keeping the entire
desktop computing environment alive, by consolidating
it on the server along with other idle desktops. On the
flip side, however, LiteGreen is more heavyweight than
the proxy approach, as we discuss in Section 9.2.

2.3 Saving Energy through Consolidation
Consolidation to save energy has been employed in other
computing settings—data centers and thin clients.

In the data-center setting, server consolidation is used
to approximate energy proportionality by migrating com-
putation, typically using virtualization, from several
lightly-loaded servers onto fewer servers, and then turn-
ing off the servers that are freed up [20, 37, 38]. Doing
so saves not only the energy consumed directly by the
servers but also the significant amount of energy con-
sumed indirectly for cooling [29, 30].

Thin client based computing, an idea that is making a
reappearance [23, 11] despite failures in the past, repre-
sents an extreme form of consolidation, with all of the
computing resources being centralized. While the cost,
management, and energy savings might make the model
attractive in some environments,there remain questions
regarding the up-front hardware investment needed to
migrate to thin clients. Also, thin clients represent a
trade-offand may not be suitable in settings where power
users want the flexibility of a PC or insulation from even
transient dips in performance due to consolidation. In-
deed, market projections suggest that PCs will continue
to be the dominant desktop computing platform, with
over 125 million units shipping each year from 2009
through 2013 [15], and with thin clients replacing only
15% of PCs by 2014 [14]. Thus, there will continue to be
a sizeable and growing installed base of PCs for the fore-
seeable future,possibly as part of mixed environments
comprising both PCs and thin clients, so addressing the
problem of energy consumed by desktop PCs remains
important.

While LiteGreen’s use of consolidation is inspired by
the above work, a key difference arises from the presence
of users in a desktop computing environment. Unlike in
a data center setting, where machines tend to run server
workloads and hence are substitutable to a large extent,
a desktop machine is a user’spersonalcomputer. Users
expect to have access totheir computing environment.
Furthermore, unlike in a thin client setting, users expect
to have good interactive performance and the flexibility
of attaching specialized hardware and peripherals (e.g., a
high-end graphics card).Progress on virtualizing high-
end hardware, such as GPUs [24, 28], facilitates Lite-
Green’s approach of running the desktop in a VM.

Central to the design of LiteGreen is preserving this
PC model and minimizing both user disruptionand new
hardware cost, by only consolidating idle desktops.

2.4 Virtualization and Live Migration

A key enabler of consolidation is virtualization. Several
hypervisors are available commercially [2, 5, 8]. These
leverage the hardware support that modern processors in-
clude for virtualization [3, 1].

Virtualization has simplified the task of moving com-
putation from one physical machine to another [40] com-
pared to process migration [36]. Efficient live migration
over a high-speed LAN is performed by iteratively copy-
ing memory pages while the VM continues execution,
before finally pausing the VM briefly (for as short as 60
ms [21]) to copy the remaining pages and resume execu-
tion on the destination machine. Live migration has been
extended to wide-area networks as well [27].

3

2.5 Page Sharing and Memory Ballooning
Consolidation of multiple VMs on the same physical
server can put pressure on the server’s memory re-
sources. Page sharingis a technique to decrease the
memory footprint of VMs by sharing pages that are in
common across multiple VMs [39]. Recent work [26]
has advanced the state of the art to also include sub-page
level sharing, yielding memory savings of up to 90%
with homogeneous VMs and up to 65% otherwise.

Even with page sharing, memory can become a bottle-
neck depending on the number of VMs that are consol-
idated on the server.Memory ballooningis a technique
to dynamically shrink or grow the memory available to
a VM with minimal overhead relative to statically provi-
sioning the VM with the desired amount of memory [39].

2.6 Virtualization in LiteGreen Prototype
For our LiteGreen prototype, we use the Microsoft
Hyper-V hypervisor. While this is a server hypervisor,
the ten users in our deployment were able to use it with-
out difficulty for desktop computing. Since Hyper-V cur-
rently does not support page sharing or memory balloon-
ing, we conducted a separate set of experiments with the
Xen hypervisor to evaluate memory ballooning. Finally,
since Hyper-V only supports live migration with shared
storage, we set up a shared storage server connected to
the same GigE switch as the desktop machines and the
server (see Section 9 for a discussion of shared storage).

3 Motivation Based on Measurement
To provide concrete motivation for our work beyond the
prior work discussed above, we conducted a measure-
ment study on the usage of PCs. Our study was set in
the MSR India lab during the summer of 2009, at which
time the lab’s population peaked at around 130 users. Of
these, 120 users at the peak volunteered to run our mea-
surement tool, which gathered information on the PC re-
source usage (in terms of the CPU, network, disk, and
memory) and also monitored user interaction (UI). In
view of the sensitivity involved in monitoring keyboard
activity on the volunteers’ machines, we only monitored
mouse activity to detect UI.

We have collected over 65,000 hours worth of data
from these users. We placed the data gathered from each
machine into 1-minute buckets, each of which was then
annotated with the level of resource usage and whether
there was UI activity. We classify a machine as beingidle
(as opposed to beingactive) during a 1-minute bucket us-
ing one of the two policies discussed later in Section 5.2:
the defaultpolicy, which only looks for the absence of
UI activity in the last 10 minutes, and a moreconserva-
tive policy, which additionally checks whether the CPU
usage was below 10%.

Based on this data, we seek to answer the following
questions:

Q1. How (under)utilized are desktop PCs?
To help answer this question, Figure 1a plots the dis-

tribution of CPU usage and UI activity, binned into 1-
minute buckets and aggregated across all of the PCs in
our study. To allow plotting both CPU usage and UI
activity in the same graph, we adopt the convention of
treating the presence of UI activity in a bucket as 100%
CPU usage. The “CPU only” curve in the figure shows
that CPU usage is low, remaining under 10% for 90% of
the time. The “CPU + UI” curve shows that UI activity is
present, on average, only in 10% of the 1-minute buck-
ets, or about 2.4 hours in a day. However, since even an
active user might have 1-minute buckets with no UI ac-
tivity (e.g., they might just be reading from the screen),
the total UI activity is very likely larger than 10%.1

While both CPU usage and UI activity are low, it still
does not mean that the PC can be simply put to sleep, as
we discuss below.

Q2. How are the idle periods distributed?
Given that there is much idleness in PCs, the next

question is how the idle periods are distributed. We de-
fine an idle period as a contiguous sequence of 1-minute
buckets, each of which is classified as being idle. The
conventional wisdom is that idle periods are long, e.g.,
overnight periods and weekends. Figure 1c shows the
distribution of idle periods based on the default (UI only)
and conservative (UI and CPU usage) definitions of idle-
ness noted above. Each data point shows the aggregate
idle time (shown on the y axis on a log scale) spent in
idle periods of the corresponding length (shown on the x
axis). The x axis extends to 72 hours, or 3 days, which
encompasses idle periods stretching over an entire week-
end.

The default curve shows distinctive peaks at around
15 hours (overnight periods) and 63 hours (weekends).
It also shows a peak for short idle periods, under about 3
hours in length. In the conservative curve, the peak at the
short idle periods dominates by far. The overnight and
weekend peaks are no longer distinctive since, based on
the conservative definition of idleness, these long periods
tend to be interrupted, and hence broken up, by interven-
ing bursts of background CPU activity.

Figure 1d shows that with the default definition of
idleness, idle periods shorter than 3 hours add up to
about 20% of the total duration of idle periods longer
than 3 hours. With the conservative policy, the short idle

1It is possible that we may have missed periods when there was
keyboard activity but no mouse activity. However, we ran a test with
a small set of 3 volunteers, for whom we monitored keyboard activity
as well as mouse activity, and found it rare to have instances, where
there was keyboard activity but no mouse activity in the following 10
minutes.

4

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

CPU utilization

CPU with UI
CPU only

(a) Distribution of CPU utilization

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

07/13
23:00

07/14
01:00

07/14
03:00

07/14
05:00

07/14
07:00

07/14
09:00

07/14
11:00

N
et

w
or

k
T

hr
ou

gh
pu

t (
K

B
/s

ec
)

Time

(b) Network activity during the night on one idle desk-
top machine

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

T
ot

al
 ti

m
e

(in
 h

ou
rs

, l
og

sc
al

e)

Idle bins (hours)

Default
Conservative

(c) Distribution of idle periods

����

��
��
��
��

Conservative
Default

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

0

15,000

 20,000

 25,000

 30,000

 35,000

 40,000

 45,000

<= 3 hrs > 3 hrs
T

ot
al

 T
im

e
(in

 h
ou

rs
)

 5,000

 10,000

(d) Comparison of aggregate duration of short and
long idle periods

Figure 1: Analysis of PC usage data at MSR India

Category Example Applications Sleep Proxy-based On-demand Wakeup LiteGreen

Incoming requests incoming RDP fails works but with initial delay/timeout works
file share works but requires disk

Idle connections outgoing RDP broken connection works
IM user shown as offline user shown as away

Background tasks large file download download stalled⇒ delay works
software patching patch download delay⇒ patches downloaded but

(e.g., Windows update) larger window of vulnerability need disk for application

Table 1: Impact of various energy saving strategies on applications

periods add up to over 80% of the total duration of the
long idle periods. Thus, the short idle periods, which
correspond to lunch breaks, meetings, etc., during a
work day, represent a significant opportunity for energy
savings over and above the savings from the long idle
periods considered in prior work.

Q3. Why not just sleep during idle periods?
Even when the machine is mostly idle (i.e., has low

CPU utilization), it could be engaged in network activity,
as depicted in Figure 1b. A closer look at this machine
(with the owner’s permission) revealed that the processes
that showed sporadic activity were (a)InoRT.exe,
a virus scanner, (b)DfrgNtfs.exe, a disk defrag-
menter, (c)TrustedInstaller.exe, which checks
for Windows software updates, and (d)Svchost.exe,
which encapsulates miscellaneous services. Putting the

machine to sleep would delay or disrupt these tasks, pos-
sibly incoveniencing the user.

Privacy considerations prevented us, in general, from
gathering detailed information such as process names,
which would have revealed the identities of the applica-
tions running on a user’s machine. Hence, we use indi-
rect means to understand how sleep might be disruptive.

Through informal conversations at MSR India, we
compiled a list of typical applications that users run. Ta-
ble 1 categorizes these and reports on the impact of sleep
on these applications. We find that the applications suf-
fer disruption to varying degrees. In some cases, sleep
causes a hard failure, e.g., a broken connection. In other
cases, it causes a soft failure. For example, if a user steps
out for a meeting and their (idle) machine goes to sleep,
IM might show them, somewhat misleadingly, as being
“offline” when “away” would be more appropriate.

5

���������	
�� �
	��������	
��

�	
�������������	�������������
���������
�	���	

��

��
��
�

���

�� ��

������	����	
�

Figure 2: LiteGreen architecture: Desktops are in ac-
tive (switched on) or idle (sleep) state. Server hosts idle
desktops running in VMs

The ability to do on-demand wakeup, as provided by
a proxy, helps when there is new inbound communi-
cation, e.g., an incoming remote desktop (RDP) con-
nection. Such communication would work, although it
might suffer from an initial delay or timeout owing to
the time it takes to wake up from sleep. However, with
applications where there is an ongoing connection, the
proxy approach is unable to prevent disruption. In fact,
the only way of avoiding disruption is to not go to sleep,
which means giving up on energy savings.

Avoiding disruption requires that the applications con-
tinue to run and maintain their network presence even
while the machine is (mostly) idle. Doing so while still
saving energy motivates a solution such as LiteGreen. In
some cases, however, LiteGreen would require access to
the local disk, either immediately (e.g., file sharing) or
eventually (e.g., software patching). While our current
implementation does not migrate the disk, we believe
that such migration is feasible, as discussed in Section 9.

In summary, we make two key observations from our
analysis. First, desktop PCs are often idle, and there is
significant opportunity to exploit short idle periods. Sec-
ond, it is important to maintain network presence even
during the idle periods to avoid user disruption.

4 System Architecture
Figure 2 shows the high-level architecture of LiteGreen.
The desktop computing infrastructure is augmented with
a VM server and a shared storage node. In general, there
could be more than one VM server and/or shared storage
node. All of these elements are connected via a high-
speed LANsuch as Gigabit Ethernet.

Each desktop machine as well as the server run a hy-
pervisor. The hypervisor on the desktop machine hosts a
VM in which the client OS runs. This VM is migrated to

the server when the user is not active and the desktop is
put to sleep. When the user returns, the desktop is woken
up and the VM is “live migrated” back to the desktop.
To insulate the user from such migrations, the desktop
hypervisor also runs a remote desktop (RD) client [7],
which is used by the user to connect to, and remain con-
nected to, their VM, regardless of where it is running.
Although our current prototype does not leverage it, the
advent of GPU virtualization [24, 28] allows improving
the user experience by bypassing remote desktop when
the VM is running locally on the desktop machine.

The user’s desktop VM uses, in lieu of a local disk, the
shared storage node, which is also shared with the server.
This aspect of the architecture arises from the limitations
of live migration in hypervisors currently in production
and can be done away with once live migration with local
VHDs is supported (Section 9).

The hypervisor on the server hosts the guest VMs that
have been migrated to it from (idle) desktop machines.
The server also includes acontroller, which is the brain
of LiteGreen. The controller receives periodic updates
fromstubson the desktop hypervisors on the level of user
and computing activity on the desktops. The controller
also tracks resource usage on the server. Using all of
this information, the controller orchestrates the migration
of VMs to the server and back to the desktop machines,
and manages the allocation of resources on the server.
We have chosen a centralized design for the controller
because it is simple, efficient, and also enables optimal
migration decisions to be made based on full knowledge
(e.g., the bin-packing optimization noted in Section 5.3).

5 Design
Having provided an overview of the architecture, we now
detail the design of LiteGreen. The design of LiteGreen
has to deal with two somewhat conflicting goals: max-
imizing energy savings from putting machines to sleep
while minimizing disruption to users. When faced with a
choice, LiteGreen errs on the side of being conservative,
i.e., avoiding user disruption even if it means reduced en-
ergy savings.

The operation of LiteGreen can be described in terms
of a control loop effected by the controller based on local
information at the server as well as information reported
by the desktop stubs. We discuss the individual elements
before putting together the whole control loop.

5.1 Which VMs to Migrate?
The controller maintains two lists of VMs:

• Eligible for Pull: list of (idle) VMs that currently re-
side on the desktop machines but could be migrated
(i.e., “pulled”) to the server, thereby saving energy
without user disruption.

6

• Mandatory to Push:list of (now active) VMs that
had previously been migrated to the server but must
now be migrated (i.e., “pushed”) back to the desk-
top machines at the earliest to minimize user disrup-
tion.

In general, the classification of a VM as active or idle
is made based on both UI activity initiated by the user
and computing activity, as discussed next.

5.2 Determining If Idle or Active
The presence of any UI activity initiated by the user,
through the mouse or the keyboard (e.g., mouse move-
ment, mouse clicks, key presses), in the recent past
(actvityWindow, set to 10 minutes by default) is taken as
an indicator that the machine is active. Even though the
load imposed on the machine might be rather minimal,
we make this conservative choice to reflect our emphasis
on minimizing the impact on the interactive performance
perceived by the user.

In the default policy, the presence of UI activity is
taken as theonly indicator of whether the machine is ac-
tive. So, the absence of recent UI activity is taken as an
indication that the machine is idle.

A more conservative policy, however, also considers
the actual computational load on the machine. Specif-
ically, if the CPU usage is above a threshold, the ma-
chine is deemed to be active. So, for the machine to be
deemed idle, both the absence of recent UI activity and
CPU usage being below the threshold are necessary con-
ditions. To avoid too much bouncing between the active
and idle states, we introduce hysteresis in the process by
(a) measuring the CPU usage as the average over an in-
terval (e.g., 1 minute) rather than instantaneously, and (b)
having a higher threshold,cpush, for the push list (i.e.,
idle→active transition of a VM currently on the server)
than the threshold,cpull, for the pull list (i.e., for a VM
currently on a desktop machine).

5.3 Server Capacity Constraint
A second factor that the controller considers while mak-
ing migration decisions is the availability of resources on
the server. If the server’s resources are saturated or close
to saturation, the controller migrates some VMs back
to the desktop machines to relieve the pressure. Thus,
an idle VM is merelyeligible for being consolidated on
the server and, in fact, might not be if the server does
not have the capacity. On the other hand, an active VM
must be migrated back to the desktop machine even if the
server has the capacity. This design reflects the choice to
err on the side of being conservative, as noted above.

There are two server resource constraints that we focus
on. The first ismemory availability. Given a total server
memory,M , and the allocation,m, made to each VM,
the number of VMs that can be hosted on the server is

bounded bynRAM = M
m

. Note thatm is the memory
allocated to a VM after ballooning and would typically
be some minimal value such as 384 MB that allows an
idle VM to still function (Section 7.4).

The second resource constraint arises fromCPU us-
age. Basically, the aggregate CPU usage of all the VMs
on the server should be below a threshold. As with the
conservative client-side policy discussed in Section 5.2,
we introduce hysteresis by (a) measuring the CPU us-
age as the average over a time interval (e.g., 1 minute),
and (b) having a higher threshold,spush, for pushing
out VMs, than the threshold,spull, for pulling in VMs.
The server tries to pull in VMs (assuming the pull list is
non-empty) so long as the aggregate CPU usage is un-
derspull. Then, if the CPU usage rises abovespush, the
server pushes back VMs. Thus, there is a bound,nCPU ,
on the number of VMs that can be accommodated such
that

∑i=nCP U

i=1
xi ≤ spush, wherexi is the CPU usage of

theith VM.
The total number of VMs that can be consolidated on

the server is bounded bymin(nRAM , nCPU). While one
could extend this mechanism to other resources such as
network and disk, our evaluation in Section 8 indicates
that enforcing CPU constraints also ends up limiting the
usage of other resources.

Instead of simply pulling in VMs until the capacity
limit is reached, more sophisticated optimizations are
possible. In general, the problem of consolidating VMs
within the constraints of the server’s resources can be
viewed as a bin-packing problem [25] since consolidat-
ing the multiple new VMs in place of the one that is
evicted would likely help save energy. Details of our
greedy bin packing algorithm for managing consolida-
tion are described in [22].

5.4 Measuring & Normalizing CPU Usage
Given the heterogeneity of desktop and server physical
machines, one question is how CPU usage is measured
and how it is normalized across the machines. All mea-
surement of CPU usage in LiteGreen, both on the server
and on the desktop machines, is made at the hypervi-
sor level, where the controller and stubs run, rather than
within the guest VMs. Besides leaving the VMs un-
touched and also accounting for CPU usage by the hy-
pervisor itself, measurement at the hypervisor level has
the advantage of being unaffected by the configuration
of the virtual processors. The hypervisor also provides
uniform interface to interact with multiple operating sys-
tems.

Another issue is normalizing measurements made on
the desktop machines with respect to those made on the
server. For instance, when a decision to pull a VM is
made based on its CPU usage while running on the desk-
top machine, the question is what its CPU usage would

7

be once it has been migrated to the server. In our current
design, we only normalize at the level of cores, treating
cores as equivalent regardless of the physical machine.
So, for example, a CPU usage ofx% on a 2-core desktop
machine would translate to a CPU usage ofx

4
% on an

8-core server machine. One could consider refining this
design by using the CPU benchmark numbers for each
processor to perform normalization.

5.5 Putting It All Together: LiteGreen
Control Loop

To summarize, LiteGreen’s control loop operates as fol-
lows. Based on information gathered from the stubs,
the controller determines which VMs, if any, have be-
come idle, and adds them to the pull list. Furthermore,
based both on information gathered from the stubs and
from local monitoring on the server, the controller deter-
mines which VMs, if any, have become active again and
adds these to the push list. If the push list is non-empty,
the newly active VMs are migrated back to the desktop
right away. If the pull list is non-empty and the server
has the capacity, additional idle VMs are migrated to the
server. If at any point, the server runs out of capacity, the
controller looks for opportunities to push out the most
expensive VMs in terms of CPU usage and pull in the
least expensive VMs from the pull list. Pseudocode for
the control loop employed by the LiteGreen controller is
available at [22].

6 Implementation and Deployment
We have built a prototype of LiteGreen based on the
Hyper-V hypervisor, which is available as part of the
Microsoft Hyper-V Server 2008 R2 [5]. The Hyper-V
server can host Windows, Linux, and other guest OSes
and also supports live migration based on shared storage.

Our implementation comprises the controller, which
runs on the server, and the stubs, which run on the in-
dividual desktop machines. The controller and stubs are
written in C# and add up to 1600 and 600 lines of code,
respectively. The stubs use WMI (Windows Manage-
ment Instrumentation) [10] and Powershell to perform
the monitoring and migration. The controller also in-
cludes a GUI, which shows the state of all of the VMs
in the system.

In our implementation, we ran into a few issues from
bugs in the BIOS to limitations of Hyper-V and had to
work around them. Here we discuss a couple of these.

Lack of support for sleep in hypervisor: Since
Hyper-V is intended for use on servers, it does not sup-
port sleep once the hypervisor service has been started.
Also, once started, the hypervisor service cannot be
turned off without a reboot. Other hypervisors such as
Xen also lack support for sleep.

We worked around this as follows: when the desktop
VM has been migrated to the server and the desktop ma-
chine is to be put to sleep, we set a registry key to disable
the hypervisor and then reboot the machine. When the
machine boots up again, the hypervisor is no longer run-
ning, so the desktop machine can be put to sleep. Later,
when the user returns and the machine is woken up, the
hypervisor service is restarted, without requiring a re-
boot. Since a reboot is needed only when the machine
is put to sleep butnotwhen it is woken up, the user does
not perceive any delay or disruption due to the reboot.

BIOS bug: On one model of desktop (Dell Optiplex
755), we found that the latest version of BIOS avail-
able does not restore prior-enabled Intel VT-x support
(needed by the hypervisor) after resuming from sleep.
We are currently pursuing a fix to this issue with the man-
ufacturer; until then, we are unable to use this model of
desktop as a LiteGreen client.

6.1 Deployment
We have deployed LiteGreen to ten users at MSR In-
dia, comprising three administrative staff and seven re-
searchers, three of whom are authors of this paper. As of
this writing, the system has been in use for 28 days that
includes 10 weekend days and holidays. Accounting for
the ramp-up and ramp-down of users in the LiteGreen
system, total usage was approximately 3200 user-hours.

Each user is given a separate LiteGreen desktop ma-
chine that is running a hypervisor (Hyper-V Server 2008)
along with the LiteGreen client stub. The desktop envi-
ronment runs in a Windows 7 VM that is allocated 2GB
of memory. The users’ existing desktop is left untouched
in order to preserve the users’ existing desktop configu-
ration and local data. Different users use their LiteGreen
desktop in different ways. Most users use the LiteGreen
desktop as their primary access to computing, relying on
remote desktop to connect to their existing desktop. A
couple of users used it only for specific tasks, such as
browsing or checking email, so that the LiteGreen desk-
top only sees a subset of their activity.

Our findings are reported in Section 7.3. While our
deployment is very small in size and moreover, has not
entirely replaced the users’ existing desktop machines,
we believe it is a valuable first step that we plan to build
on in the coming months. A video clip of LiteGreen in
action on one of the desktop machines is available at [4].

7 Experimental Evaluation
We begin by presenting experimental results based on
our prototype. These results are drawn both from con-
trolled experiments in the lab and from our deployment.
The results are, however, limited by the small scale of
our testbed and deployment, so in Section 8 we present a

8

Component Make/Model Hardware Software

Desktops (10) HP WS xw4600 Intel E8200 Core 2 Duo @2.66GHz Hyper-V + Win7 guest
Server HP Proliant ML350 Intel Xeon E5440 DualProc 4Core 2.83GHz, 32GB RAM Hyper-V
Storage Dell Optiplex 755 Intel E6850 Core 2 Duo 3.00 GHz Win 2008 + iSCSI
Switch DLink DGS-1016D NA NA

Table 2: Testbed details

larger scale trace-driven evaluation using the traces gath-
ered from the 120 machines at our lab.

7.1 Testbed
Our testbed mirrors the architecture depicted in Figure 2.
It comprises ten desktop machines, a server, and a stor-
age node, all connected to a GigE switch. The hardware
and software details are listed in Table 2.

We first used the testbed for controlled experiments in
the lab (Section 7.2). We then used the same setup but
with the desktop machines installed in the offices of the
participating users, for our deployment (Section 7.3).

7.2 Results from Laboratory Experiments
We start by walking through a migration scenario simi-
lar to that shown in the LiteGreen video clip [4], before
presenting detailed measurements.

7.2.1 Migration Timeline
The scenario, shown in Figure 3a, starts with the user
stepping away from his/her machine (Event A), caus-
ing the machine to become idle. AfteractvityWindow
amount of time elapses, the user’s VM is marked as idle
and the server initiates the VM pull (Event B). After the
VM migration is complete (Event C), the physical desk-
top machine goes to sleep (Event D).Note that, if the
user returns to their desktop between events B and C, the
migration is simply canceled without any perceivable la-
tency to the user. This is because, during live migration,
the (desktop) VM continues to remain fully operational,
except during the final switchover phase that typically
lasts only tens of milliseconds.

Figure 3b shows the timeline for waking up. When
the user returns to his/her desktop, the physical machine
wakes up (Event A) and immediately establishes a re-
mote desktop (RD) session to the user’s VM (Event B).
At this point, the user can start working even though
his/her VM is still on the server. A VM push is initiated
(Event C) and the VM is migrated back to the physical
desktop machine (Event D), in the background using live
migration feature.

Figures 3a and 3b also show the power consumed by
the desktop machine and the server over time, measured
using Wattsup power meters [9]. While the timeline
shows the measurements from one run, we also made
more detailed measurements of the individual compo-
nents and operations, which we present next.

7.2.2 Timing of Individual Operations
We made measurements of the time taken for the indi-
vidual steps involved in migration. In Table 3, we report
the results derived from ten repetitions of each step.

Step Sub-step Time (sec)
[mean (sd)]

Going to 840.5 (27)
Sleep

Pull Initiation 638.8 (20)
Migration 68.5 (5)

Sleep 133.2 (5)

Resuming 164.6 (16)
from sleep

Wakeup 5.5
RD connection 14
Push Initiation 85.1 (17)

Migration 60 (6)

Table 3: Timing of individual steps in migration

7.2.3 Power Measurements
Table 4 shows the power consumption of a desktop ma-
chine, the server, and the switch in different modes, mea-
sured using a Wattsup power meter.

Component Mode Power (W)

Desktop idle 60-65W
Desktop 100% CPU 95W
Desktop sleep 2.3-2.5W

Server idle 230-240W
Server 100% CPU 270W

Switch idle 8.7 - 8.8W
Switch during migration 8.7-8.8W

Table 4: Power measurements

The main observation is that power consumption of
the desktop and the servers is largely unaffected by the
amount of CPU load. It is only when the machine is put
to sleep that the power drops significantly. We also see
that the power consumption of the network switch is low
and is unaffected by any active data transfers.Thus, the
energy cost of the migration itself is negligible (the small
bump between events B and C in Figure 3a), and can be
ignored, as long as one accounts for the time/energy of
the powered on desktop until the migration is completed.

Finally, the power consumption curves in Figures 3a
and 3b show the marked difference in the impact of mi-
gration on the power consumed by the desktop machine

9

� � � �

�

��

���

���

���

���

���

����� ����� ����� ����� �	��� ����� ����� �����

��
��

����
	

����������	�
���
��
��
�

��
�	
���
��� ��������
��� ����	

(a) Sleep timeline

� � � �

�

��

���

���

���

���

���

����� ����� ����� ����� ����� �����

��
��

����
�
	

����������	�
���
��
��
�

��
�	
���
��� ��������
��� ����	

(b) Wakeup timeline

Figure 3: Migration timelines

and the server. When a pull happens, the power con-
sumed by the desktop machine goes down from about
60W in idle mode to 2.5W in sleep mode (with a tran-
sient surge to 75W during the migration process). On the
other hand, the power consumption of the server barely
changes. This difference underlies the significant net en-
ergy gain to be had from moving idle desktops to the
server.

7.2.4 Compression to Reduce Migration Time
The time to migrate the VM — either push or pull —
is determined by the memory size (2GB) of the VM and
the network throughput. The transfer size can be greater
than memory size when application activity during the
time of migration results in dirty memory pages that are
copied multiple times.We configured a desktop VM with
typical enterprise applications, such as Microsoft Office,
an email client and a browser with multiple open web
pages. We then migrated this VM back and forth, be-
tween the desktop and the server. When the VM was
on the desktop, we interacted with the applications as a
regular desktop user.In this setup, we observed that dif-
ferent migrations resulted in transfer sizes between 2.2-
2.7GB. Using a network transfer rate of 0.5Gbps (the ef-
fective TCP throughput of active migration on the GigE
network), transfer takes about 35-43 seconds. Includ-
ing the migration initiation overhead, the total migration
time is about 60 seconds, which matches the numbers
shown in the timeline and in Table 3.

We experimented with a simple compression opti-
mization to reduce the migration time.We used En-
dRE [16], an end-system redundancy elimination ser-
vice,with a 250MB packet cache to analyze the savings
from performing redundancy elimination in the VM mi-
gration traffic between two nodes.EndRE works in a
similar fashion to WAN optimizers [18], but on end hosts
instead of middleboxes. After identifying and eliminat-
ing redundant bytes, as small as 32 bytes, with respect to
the packet cache, GZIP is applied to further compress the
data. For various transfers, we found that the compres-
sor, operating at 0.4Gbps, was able to reduce the size
of transfer by 64-69%.Note that EndRE is designed to
be asymmetric. Thus, decompression is inexpensive and

does not result in additional latency.This implies that
migration transfer time can be reduced from 35-43 sec-
onds to about 15 seconds using redundancy elimination,
thereby significantly speeding up the migration process.
This approach can also help support migration of VMs
with larger memory sizes (e.g., 4GB) while limiting the
transfer time to under a minute.

7.2.5 Further Optimizations
First, the time to put the machine to sleep is 133 seconds,
much of it due to the reboot necessitated by the lack of
support for sleep in Hyper-V (Section 6). With aclient
hypervisor that includes support for sleep, we expect the
time to go to sleep to shrink to just about 10 seconds.

Second, the time from when the user returns till when
they are able to start working is longer than we would
like — about 19.5 seconds. Of this, resuming the desktop
machine from sleep only constitutes 5.5 seconds. About
4 more seconds are taken by the user to key in their lo-
gin credentials. The remaining 10 seconds are taken to
launch the remote desktop application and make a con-
nection to the user’s VM, which resides on the server.
This longer than expected duration is because Hyper-V
freezes for several seconds after resuming from sleep.
We believe that this happens because our unconventional
use of Hyper-V, specifically putting it to sleep when it
is not designed to support sleep, triggers some untested
code paths. We expect that this issue would be resolved
with a client hypervisor. However, resuming the desk-
top and connecting to the users’ VM may still take on
the order of a few seconds that may be disruptive.One
approach to mask this disruption is to anticipate user re-
turns, for example, through user mobile phone tracking,
and resume the desktop before the user arrives at his disk.
This aspect is discussed in [22]. Such tracking of the
user’ location could also be used to improve user expe-
rience in other days, for instance, by preventing a seem-
ingly idle machine from being migrated to the server, say,
if the user is still in their office.

7.3 Results from Deployment
As noted in Section 6.1, we have had a deployment of
LiteGreen for a period of 28 days including 10 holidays

10

�

��

��

��

��

���

� �� ��� ���� �������
���

���
��
	
��

��
	
�

���
��
�	�
	�	
��

��

����������	
����
���������
���

���
��

����
������

Figure 4: Distribution of desktop sleep durations

and weekends, comprising about 3200 user-hours (max-
imum simultaneous usage by 10 users). While it is hard
to draw general conclusions given the small scale and
duration of the deployment thus far, it is nevertheless in-
teresting to consider some of the initial results.

7.3.1 Desktop Sleep Time Distribution
Figure 4 shows the cumulative distribution function of
the sleep durations for the seven researchers and the three
administrative staff. The sleep times tend to be quite
short, with a median of 40 minutes across the ten users,
demonstrating the exploitation of short idle periods by
the LiteGreen system. From the figure, one can see one
distinct difference in behavior between the administra-
tors and the researchers in our study. We notice that
there is a sharper spike in the curve for the administrators
around 900 minutes as compared to the smoother curve
for researchers. This is explained by the fact that admin-
istrators are more likely than researchers to maintain reg-
ular workhours (e.g., 9AM to 6PM) which corresponds
to 15 hours (900 minutes) of idle time.

7.3.2 Desktop Average Sleep Time
For our deployment, we used the default policy from
Section 5.2 to determine whether a VM was idle or ac-
tive. During the deployment period, the desktop ma-
chines were able to sleep for an average of 87.9% of the
time. Even the machine of the most active user in our
deployment, who used their LiteGreen desktop for all of
their computing activity, slept for 76% of the time.

Note that, while 88% of desktop sleep time may ap-
pear unusually large, out of the 3200 user-hours, only
about 960 user-hours corresponded to daytime weekdays
(8AM – 8PM) in our deployment. Thus, 12% or 384
user-hours of desktop awake time corresponds to 40% of
daytime weekday hours, representing a significant frac-
tion of the workday.

7.3.3 Energy Savings
The conversion of desktop average sleep time to energy
savings requires accounting of the energy costs of the
server. While a LiteGreen server was necessary for this

�
�
��
��
��
��
��
��
��
��
��

� � � �� �� �� �	 �� �� �

��
���
���

��	

��

��

����������	
�����

��
���������
 ��
��������
������������
 �����������

Figure 5: Number of migrations

deployment, it was significantly under-utilized since it
was dedicated to host only 10 idle VMs. If we amor-
tize the cost of the server over a larger number of desk-
tops (e.g., 60), the power cost of the server per desktop is
4.2W (see Section 8.4 for details). We use this amortized
value of the server power cost below.

We use the power measurement numbers from Table 4
to estimate energy savings from LiteGreen. Let us as-
sume power consumption of 62.5W for an idle desktop,
95W for a fully active desktop and 2.5W for a sleep-
ing desktop. From Figure 1a, where CPU usage is less
than 10% for 90% of the time, let us assume a desktop
that never sleeps consumes 62.5W of power 90% of the
time and 95W of power 10% of the time. Then, desk-
top power consumption, without any energy savings, is
simply (0.9*62.5+0.1*95) = 65.75W per desktop.

In LiteGreen, since the average desktop sleep time is
88%, the power savings is (0.88*(62.5 - 2.5) - 4.2) = 48.6
W per desktop or 74% of total desktop energy consump-
tion.

Finally, the above energy savings calculations are ap-
plicable for enterprises that already have a centralized
storage deployment. Otherwise, we need to take into
account the energy consumed by the centralized storage
system as well. Consider a network attached storage box
such as the QNAP SS-839 Pro Turbo [6] that can host
up to 8 disks and consumes 34W in operation. Assum-
ing two desktop users are multiplexed onto each disk,
each of these storage devices can support up to 16 desk-
tops. Thus, the amortized energy cost of centralized stor-
age is 34/16 = 2.1W/desktop. Accounting for the storage
overhead, the power savings in LiteGreen is 48.6 - 2.1 =
46.5W per desktop or 71%.

7.3.4 Number of Migrations
Finally, Figure 5 shows the number of migrations for the
different days of deployment, segregated by daytime (8
am–8 pm) and nightime (8 pm–8 am), and further clas-
sified by weekdays and holidays (including weekends).
There were a total of 571 migrations during the deploy-
ment period. The number of migrations are higher during

11

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140 160

 0 512 1024 1536 2048 2560 3072 3584 4096

P
ag

e
fa

ul
ts

 /
se

c

Time (minutes)

VM memory (MB)

Figure 6: Memory ballooning experiment:every 5 min-
utes memory of a desktop VM is reduced by 128M. Ini-
tial memory size is 4096M

the day compared to night (470 versus 101) and higher in
the weekdays compared to the holidays (493 versus 78).
These numbers are again consistent with the LiteGreen
approach of exploiting short idle intervals.

7.4 Experiments with Xen
We would like to evaluate the effectiveness of memory
ballooning in relieving pressure on the server’s memory
resources due to consolidation. However, Hyper-V does
not currently support memory ballooning, so we con-
ducted experiments using the Xen hypervisor, which sup-
ports memory ballooning for the Linux guest OS using a
balloon driver (we are not aware of any balloon driver
for Windows).We used the Xen hypervisor (v3.4.2 built
with 2.6.18 SMP kernel) with the Linux guest OS (Cen-
tOS 5.4) on a separate testbed comprising two HP C-
class blades, each equipped with two quad-core 2.2 GHz
64-bit processors with 48GB memory, two Gigabit Eth-
ernet cards, and two 146 GB disks.One blade was used
as the desktop machine and the other as the server.

The desktop Linux VM was initially configured with
4096 MB of RAM. It ran an idle workload comprising
the Gnome desktop environment, two separate Firefox
browser windows, with a Gmail account and the CNN
main page open (each of these windows auto-refreshed
periodically without any user’s involvement), and the
user’s home directly mounted through SMB (which also
generated background network traffic). The desktop VM
was migrated to the server. Then, memory ballooning
was used to shrink the VM’s memory all the way down
to 128 MB, in steps of 128 MB every 5 minutes.

Figure 6 shows the impact of memory ballooning on
the page fault rate. The page fault rate remains low even
when the VM’s memory is shrunk down to 384 MB.
However, shrinking it down to 256 MB causes the page
fault rate to spike, presumably because the working set
no longer fits within memory.

We conclude that in our setup with the idle workload

that we used, memory ballooning could be used to shrink
the memory of an idle VM by over a factor of10 (4096
MB down to 384 MB), without causing thrashing. Fur-
ther savings in memory could be achieved through mem-
ory sharing. While we were not able to evaluate this in
our testbed since neither Hyper-V nor Xen supports it,
the findings from prior work [26] are encouraging, as dis-
cussed in Section 9.

8 Trace-driven Analysis
To evaluate our algorithms further, we have built a
discrete event simulator written in Python using the
SimPy package. The simulator runs through the desktop
traces, and simulates the default and conservative poli-
cies based on various parameters includingcpull (client
resource threshold below which client VMs are eligible
to be pulled to server), cpush (client resource thresh-
old above which client VMs are pushed to client),
spull (server resource thrshold above below client VMs
are pulled to server), spush (server resource threshold
above which client VMs are pushed to clientdis)and
ServerCapacity. In the rest of the section, we will re-
port on energy savings achieved by LiteGreen and uti-
lization of various resources (CPU, network, disk) at the
server as a result of consolidation of the idle desktop
VMs.

8.1 Desktop Sleep Time
Figure 7a shows the desktop sleep time for all the users
with existing mechanisms and LiteGreen, default and
conservative. For both the policies, we usecpull = 10
(less than 10% desktop usage classified as idle),cpush =
20, spull = 600, spush = 700 andServerCapacity =
800 intended to represent a Server with 8 CPU cores.

As mentioned earlier, our desktop trace gathering tool
records a number of parameters, including CPU, mem-
ory, UI activity, disk, network, etc., every minute after
its installation. In order to estimate energy savings using
existing mechanisms (either automatic windows power
management or manual desktop sleep by the user), we
attribute any unrecorded interval or “gaps” in our desk-
top trace to energy savings via existing mechanisms. Us-
ing this technique, we estimate that existing mechanisms
would have put desktops to sleep 35.2% of the time.

We then simulate the migrations of desktop VMs
to/from the server depending on the desktop trace events
and the above mentioned thresholds for the conservative
and default policy. Using the conservative policy, we find
that LiteGreen puts desktop to sleep for 37.3% of the
time. This is in addition to the existing savings, for total
desktop sleep time of 72%. If we use the more aggres-
sive default policy, where the desktop VM is migrated to
the server unless there is UI activity, we find that Lite-
Green puts desktop to sleep for 51.3% on time for a total

12

����

����� �����

�����

�����
	����

���

�
�

���	

��	�

���	

����

�

��

��

��

��

��

��

��

	�

�

���

�������� ���	
�		��

���	������	

���	
�		������
�	�����

���
��

���
��

�	

�

����������	
�
���������
�
������	
�
�����
�

(a) Desktop sleep time

����

���� ��	

����

����
��

����

���

�
�

	��

�

����

�

��

��

��

��

��

��

��

	�

�

���

�������� ���	
�		��

���	������	

���	
�		������
�	�����

���
��

���
��

�	

�

����������	
�
���������
�
������	
�
�����
�

(b) Desktop sleep time for user1

���

����� �����

����

����
�	�	�

����

����
�	�	�

����

�����
���
�

�

��

��

��

��

��

��

��

	�

�

���

�������� ���	
�		��

���	������	

���	
�		������
�	�����

���
��

���
��

�	

�

����������	
�
���������
�
������	
�
�����
�

(c) Desktop sleep time for user2

Figure 7: Desktop sleep time from existing power managementand LiteGreen’s default and conservative policies

desktop sleep time of 86%.
The savings of the different approaches are also clas-

sified by day (8AM-8PM) and night (8PM-8AM) and
also whether it was a weekday or a weekend. We note
that substantial portion of LiteGreen desktop sleep time
comes from weekdays, thereby highlighting the impor-
tance of exploting short idle intervals for energy savings.

8.2 Desktop Sleep Time for Selected Users
Based on the CPU utilization trace data, we found a user,
say user1, who had bursts of significant activity separated
by periods of no activity, likely because he/she manu-
ally switches off his/her machine when not in use. For
this particular case, LiteGreen is unable to significantly
improve on the energy savings of existing mechanisms
(i.e., manual power management). This is reflected in
the desktop sleep time for user1 in Figure 7b.

In contrast, for many of the users, say user2, the desk-
top exhibits low-levels of CPU activity with occasional
spikes almost continuously, with only short gaps of inac-
tivity. The few CPU utilization spikes can prevent Win-
dows power management from putting the desktop to
sleep, thereby wasting a lot of energy. However, Lite-
Green is able to exploit this situation effectively, and
puts the desktop to sleep for significantly longer time as
shown in Figure 7c.

8.3 Server Resource Utilization during
Consolidation

While the default policy provides higher savings than
the conservative policy, it is clear that the default pol-
icy would stress the resources on the server more, due to
hosting of more number of desktop VMs, than the con-
servative policy. We examine this issue next.

Figures 8a and 8b show the resource utilization due to
idle desktop consolidation at the server for the default
and conservative policies, respectively. The resources
shown are CPU usage, bytes read/second from the disk,
and network usage in Mbps.

First, consider CPU. Notice that the CPU usage at
the server in the default policy spikes up to between

spull = 600 an spush = 700 but, as intended, never
goes abovespush. In contrast, since the conservative
policy pushes the VM back to the desktop as soon as
cpush = 20 is exceeded, the CPU usage at the server
hardly exceeds an utilization value of 100. Next con-
sider disk reads. It varies between 10B-10KB/s for the
default policy (average of 205 B/s) while it varies be-
twen 10B-1KB/s for the conservative policy (average of
41 B/s). While these numbers can be quite easily man-
aged by the server, note that these are disk reads of idle,
and not active, desktop VMs. Finally, let us consider net-
work activity of the consolidated idle desktop VMs. For
the default policy, the network traffic mostly varies be-
tween 0.01 to 10Mbps, but with occassional spikes all
the way up to 10Gbps. In the case of conservative policy,
the network traffic does not exceed 10Mbps and rarely
goes above 1Mbps. While these network traffic numbers
are manageable for asingle server,these represent the
workload of idle desktop machines. Scaling the server
infrastructure to enable consolidation ofactivedesktop
VMs, as in the thin client model, will likely be expen-
sive.

8.4 Energy Savings
We use calculations similar to the one performed in
Section 7.3.3 for computing energy savings. Recall
that power consumption of a desktop, without any en-
ergy savings mechanism, is simply (0.9*62.5+0.1*95) =
65.75 W per desktop.

Using existing energy saving mechanisms, where the
desktop is put to sleep 35.2% of the time (Section 8.1),
0.352*(62.5-2.5) = 21.1 W per desktop or 32% of energy
savings can be achieved. In the case of LiteGreen, our
consolidation analysis (Section 8.3) suggests that one 8-
core server is capable of hosting the idle desktops in the
trace. Memory balooning results from Section 7.4 sug-
gest that an idle VM could be packed in 384MB, imply-
ing that a 32GB server has enough memory capacity for
up to to 96 idle VMs.Assuming some over-provisioning
for capacity and redundancy, let us dedicate two servers

13

 0
 100
 200
 300
 400
 500
 600
 700

06/27 07/04 07/11 07/18 07/25 08/01 08/08 08/15 08/22

C
P

U
 (

%
)

Time

 1

 10

 100

 1000

 10000

06/27 07/04 07/11 07/18 07/25 08/01 08/08 08/15 08/22

D
is

k
 (

B
p
s
)

 0.001
 0.01
 0.1

 1
 10

 100
 1000

 10000

06/27 07/04 07/11 07/18 07/25 08/01 08/08 08/15 08/22N
e
tw

o
rk

 (
M

b
p
s
)

(a) Default policy

 0
 100
 200
 300
 400
 500
 600
 700

06/27 07/04 07/11 07/18 07/25 08/01 08/08 08/15 08/22

C
P

U
 (

%
)

Time

 1

 10

 100

 1000

 10000

06/27 07/04 07/11 07/18 07/25 08/01 08/08 08/15 08/22

D
is

k
 (

B
p
s
)

 0.01
 0.1

 1
 10

 100
 1000

 10000

06/27 07/04 07/11 07/18 07/25 08/01 08/08 08/15 08/22N
e
tw

o
rk

 (
M

b
p
s
)

(b) Conservative policy

Figure 8: Resource utilization during idle desktop consolidation

of 250W each for the 120 desktops. The amortized cost
of a server/desktop is then 500W/120 = 4.2W. Thus,
power savings in LiteGreen (using the default policy with
average desktop sleep time of 86%) is (0.86*(62.5 - 2.5)
- 4.2) = 47.4 W per desktop or 72%, more than doubling
the energy savings under existing mechanisms.

Finally, as in Section 7.3.3, if we were to in-
clude the amortized energy cost of centralized storage
(2.1W/desktop), the energy savings in LiteGreen using
the default policy is simply 47.4 - 2.1 = 45.3W per desk-
top or 69%.

9 Limitations and Future Work
We consider some limitations of LiteGreen, which also
point to directions for future work.

9.1 Dependence on Shared Storage
Live migration assumes that the disk is shared between
the source and destination machines, say in the form of
network attached storage (NAS). This avoids the consid-
erable cost of migrating disk content. However, this is a
limitation of our current system since, in general, client
machines would have a local disk, which applications
(e.g., sharing of local files) need access to.

Recent work has demonstrated the migration of VMs
with local virtual hard disks (VHDs) by using techniques
such as pre-copying and mirroring of disk content [19] to
keep the downtime to under 3 seconds in a LAN setting.
Note that since the base OS image is likely to be already
available at the destination node, the main cost is that of
migrating the user data.

To quantify the costs involved in migrating the local
disk, we performed detailed tracing of all file system op-
erations on 3 actively used desktop machines using the
ProcessMonitor tool [35]. Table 5 summarizes the

1-hour window 4-hour window
(MB per hour) (MB per hour)

80-240 40-100

Table 5: Volume of dirty disk blocks

volume of dirty disk blocks that is generated, which rep-
resents the amount of disk state that would need to be
migrated. We consider two cases: dirty blocks being
pre-copied every hour versus every 4 hours. The latter
provides a greater opportunity for temporal consolida-
tion (i.e., merging of multiple writes to a block).

Migrating 100 MB of disk content over a GigE net-
work would take 1.6 seconds, assuming an effective
throughput of 500 Mbps. This means that over 2000 disk
migrations can be supported per hour, which suggests
that these migrations will not be the bottleneck. Further
optimizations are possible, for instance, by transferring
dirty data at a sub-block level and filtering out writes to
scratch space.

Note that enterprise enviroments often employ net-
work storage to hold persistent user data, since this en-
ables the data to be backed up. In such a setting, the
amount of data to be migrated would be further reduced
to only temporary files generated by applications.

9.2 Heavyweightness
LiteGreen is a more heavyweight solution than the alter-
native proxy-based approach. To deploy LiteGreen, we
would need to have desktop machines run a client hy-
pervisor and also provision the necessary network band-
width and server resources.

We believe that technology trends make it likely that
the enterprise IT infrastructure would move in this direc-
tion. Virtualized desktops simplify management for the
IT administrators. Also, the growth in thin clients would

14

argue for server and network provisioning. Finally, the
desire to support mobility and a “work from anywhere”
capability would likely spur the development of a hybrid
computing model wherein the desktop VM resides on the
server when accessed from a thin client and migrates to
the local machine at other times. Thus, we believe that
that the LiteGreen approach fits in with these trends.

10 Conclusion
Recent work has recognized that desktop computers in
enterprise environments consume a lot of energy in ag-
gregate while still remaining idle much of the time. The
question is how to save energy by letting these machines
sleep while avoiding user disruption. LiteGreen uses
virtualization to resolve this problem, by migrating idle
desktops to a server where they can remain “always on”
without incurring the energy cost of a desktop machine.
The seamlessness offered by LiteGreen allows us to ag-
gressively exploit short idle periods as well as long pe-
riods. Data-driven analysis of more than 65000 hours of
desktop usage traces from 120 users as well as a small-
scale deployment of LiteGreen on ten desktops, compris-
ing 3200 user-hours over 28 days, shows that LiteGreen
can help desktops sleep for 86-88% of the time. This
translates to estimated desktop energy savings of 72-74%
for LiteGreen as compared to 32% savings under existing
power management mechanisms.

Acknowledgements
Rashmi KY helped with the desktop usage tracing effort
at Microsoft Research India. Our shepherd, Katerina Ar-
gyraki, and the anonymous reviewers provided valuable
feedback on the paper. We thank them all.

References
[1] AMD Vitualization Technology (AMD-V). http:

//www.amd.com/us/products/technologies/
virtualization/Pages/amd-v.aspx.

[2] Citrix XenServer. http://www.citrix.com/
xenserver/.

[3] Intel Vitualization Technology (VT-x).http://www.intel.
com/technology/itj/2006/v10i3/1-hardware/
5-architecture.htm.

[4] LiteGreen demo video.http://research.microsoft.
com/en-us/projects/litegreen/default.aspx.

[5] Microsoft Hyper-V. http://www.microsoft.com/
windowsserver2008/en/us/hyperv-main.aspx.

[6] QNAP SS-839 Pro Turbo Network Attached Storage.
http://www.qnap.com/pro detail hardware.
asp?p id=124.

[7] Remote Desktop Protocol. http://msdn.microsoft.
com/en-us/library/aa383015(VS.85).aspx.

[8] VMWare ESX Server. http://www.vmware.com/
products/esx/.

[9] Wattsup Meter.http://www.wattsupmeters.com.
[10] Windows Management Instrumentation. http://msdn.

microsoft.com/en-us/library/aa394582(VS.85)
.aspx.

[11] White Paper: Benefits and Savings of Using Thin Clients,
2X Software Ltd., 2005. http://www.2x.com/
whitepapers/WPthinclient.pdf.

[12] White Paper: Wake on LAN Technology, June 2006.http:
//www.liebsoft.com/pdfs/Wake On LAN.pdf.

[13] Advanced Configuration and Power Interface (ACPI) Specifica-
tion, June 2009.http://www.acpi.info/DOWNLOADS/
ACPIspec40.pdf.

[14] Emerging Technology Analysis: Hosted Virtual Desktops,
Gartner, Feb. 2009. http://www.gartner.com/
DisplayDocument?id=887912.

[15] Worldwide PC 20092013 Forecast, IDC, Mar. 2009.http://
idc.com/getdoc.jsp?containerId=217360.

[16] AGARWAL , B., AKELLA , A., ANAND , A., BALACHANDRAN ,
A., CHITNIS, P., MUTHUKRISHNAN, C., RAMJEE, R., AND
VARGHESE, G. EndRE: An End-System Redundancy Elimina-
tion Service for Enterprises. InUSENIX NSDI(Apr. 2010).

[17] AGARWAL , Y., HODGES, S., CHANDRA , R., SCOTT, J., BAHL ,
P., AND GUPTA, R. Somniloquy: Augmenting Network Inter-
faces to Reduce PC Energy Usage. InNSDI (Apr. 2009).

[18] ANAND , A., MUTHUKRISHNAN, C., AKELLA , A., AND RAM -
JEE, R. Redundant in Network Traffic: Findings and Implica-
tions. InACM SIGMETRICS(Seattle, WA, June 2009).

[19] BRADFORD, R., KOTSOVINOS, E., FELDMANN , A., AND
SCHIOEBERG, H. Live Wide-Area Migration of Virtual Ma-
chines Including Local Persistent State. InACM VEE(2007).

[20] CHASE, J., ANDERSON, D., THAKAR , P., VAHDAT, A., AND
DOYLE, R. Managing energy and server resources in hosting
centers. InSOSP(October 2001).

[21] CLARK , C., FRASER, K., HAND , S., HANSEN, J. G., JUL , E.,
L IMPACH, C., PRATT, I., AND WARFIELD, A. Live Migration
of Virtual Machines. InNSDI (May 2005).

[22] DAS ET AL., T. LiteGreen: Saving Energy in Net-
worked Desktops using Virtualization, Extended Ver-
sion,. http://research.microsoft.com/en-us/
projects/litegreen/litegreen.pdf.

[23] DAVID , B. White Paper: Thin Client Benefits, Newburn
Consulting, Mar. 2002.http://www.thinclient.net/
technology/Thin Client Benefits Paper.pdf.

[24] DOWTY, M., AND SUGERMAN, J. GPU Virtualization on
VMware’s Hosted I/O Architecture. InUSENIX WIOV(2008).

[25] GAREY, M. R., AND JOHNSON, D. S. Computers and in-
tractability; a guide to the theory of NP-completeness. W.H.
Freeman, 1979.

[26] GUPTA, D., LEE, S., VRABLE, M., SAVAGE , S., SNOEREN,
A. C., VARGHESE, G., VOELKER, G. M., AND VAHDAT, A.
Difference Engine: Harnessing Memory Redundancy in Virtual
Machines. InOSDI (Dec. 2008).

[27] KOZUCH, M., AND SATYANARAYANAN , M. Internet Sus-
pend/Resume. InIEEE WMCSA(June 2002).

[28] MADDEN, B. Understanding the role of client and host CPUs,
GPUs, and custom chips in RemoteFX.http://tinyurl.
com/38wqson.

[29] MOORE, J., CHASE, J., RANGANATHAN , P.,AND SHARMA , R.
Making Scheduling Cool: Temperature-aware Workload Place-
ment in Data Centers. InUsenix ATC(June 2005).

[30] NATHUJI, R., AND SCHWAN, K. VirtualPower: Coordinated
Power Management in Virtualized Enterprise Systems. InSOSP
(Oct. 2007).

[31] NEDEVSCHI, S., CHANDRASHEKAR, J., LIU , J., NORDMAN,
B., RATNASAMY, S.,AND TAFT, N. Skilled in the Art of Being
Idle: Reducing Energy Waste in Networked Systems. InNSDI
(Apr. 2009).

[32] NORDMAN, B. Networks, Energy, and Energy Efficiency. In
Cisco Green Research Symposium(2008).

[33] NORDMAN, B., AND CHRISTENSEN, K. Greener PCs for the
Enterprise. InIEEE IT Professional(2009), vol. 11, pp. 28–37.

[34] REICH, J., KANSAL , A., GORACKZO, M., AND PADHYE , J.
Sleepless in Seattle No Longer. InUSENIX ATC(2010).

[35] RUSSINOVICH, M., AND COGSWELL, B. Process Monitor
v2.8, 2009.http://technet.microsoft.com/en-us/
sysinternals/bb896645.aspx.

[36] SMITH , J. M. A Survey of Process Migration Mechanisms. In
ACM SIGOPS Operating Systems Review(July 1988), vol. 22,
pp. 28–40.

[37] SRIKANTAIAH , S., KANSAL , A., AND ZHAO, F. Energy Aware
Consolidation for Cloud Computing. InHotPower(Dec. 2008).

[38] TOLIA , N., WANG, Z., MARWAH , M., BASH, C., RAN-
GANATHAN , P., AND ZHU, X. Delivering Energy Proportion-
ality with Non Energy Proportional Systems Optimizations at
the Ensemble Layer. InHotPower(Dec. 2008).

[39] WALDSPURGER, C. Memory Resource Management in VMware
ESX Server. InOSDI (Dec. 2002).

[40] WOOD, T., SHENOY, P. J., VENKATARAMANI , A., AND
YOUSIF, M. S. Black-box and Gray-box Strategies for Virtual
Machine Migration. InNSDI (Apr. 2007).

15

