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Abstract. Science is becoming data-intensive, requiring new software 
architectures that can exploit resources at all scales: local GPUs for interactive 
visualization, server-side multi-core machines with fast processors and large 
memories, and scalable, pay-as-you-go cloud resources. Architectures that 
seamlessly and flexibly exploit all three platforms are largely unexplored. 
Informed by a long-term collaboration with ocean scientists, we articulate a 
suite of representative visual data analytics workflows and use them to design 
and implement a multi-tier immersive visualization system. We then analyze a 
variety of candidate architectures spanning all three platforms, articulate their 
tradeoffs and requirements, and evaluate their performance. We conclude that 
although “pushing the computation to the data” is generally the optimal 
strategy, no one single architecture is optimal in all cases and client-side 
processing cannot be made obsolete by cloud computing. Rather, rich visual 
data analytics applications benefit from access to a variety of cross-scale, 
seamless “client + cloud” architectures. 

1 Introduction 

Science in every field is becoming data-intensive, motivating the use of a variety of 
data management, analysis, and visualization platforms and applications. This is 
particularly true for the Earth sciences that involve a host of observational and 
numeric modeling systems. A comprehensive infrastructure addressing this need 
requires cooperation between desktop Graphics Processing Units (GPUs) for 
immersive, interactive visualization, server-side data processing, and massive-scale 
cloud computing. The requirement that applications seamlessly span all three 
platforms, leveraging the benefits of each, is becoming the norm rather than the 
exception. Moreover, application components cannot be statically assigned to these 
resources — specific use cases motivate specific provisioning scenarios. For example, 
in “small data” conditions, local processing is ideal for simplicity, to reduce latency, 
to reduce load on shared resources, and — in the era of “pay-as-you-go” computing 
— to reduce cost in real currency. However, as data is increasingly deposited in large 
shared resources, and as data sizes grow, reliance on local processing incurs 



significant transfer delays and may not be feasible. We advocate seamlessness, where 
data analysis pipelines transparently span a variety of platforms — client, server, 
cloud — and can be reconfigured dynamically as the situation warrants — either 
manually as with our current system or automatically based on estimated cost. 

Remarkably, there is little research on architecture, principles, and systems for 
seamless visual data analytics. Existing workflow systems are dataflow-oriented [1-
5]; they do not subsume client-side interactive visualization applications such as 
Google Earth. Existing visualization systems [6-8] lack data integration capabilities to 
access and manipulate data from different sources.  

In this paper, we explore the design space for architectures spanning client, server, 
and cloud for visual data analytics in the ocean sciences. Our technology includes the 
Collaborative Ocean Visualization Environment (COVE) [9], the Trident Scientific 
Workflow Workbench [1] running on both client and server, and the Microsoft Azure 
cloud computing platform [10]. We compare various design choices, model their 
performance, and make recommendations for further research. 

To inform the analysis, we defined 9 visual data analytics scenarios gleaned from a 
multi-year collaboration with ocean scientists. From these scenarios we distilled a set 
of common sub-tasks and then implemented a selection of the scenarios as 
representative visualization workflows in Trident and COVE. 

We model these visual data analytics workflows as instances of a Data-Workflow-
Visualization-Client pipeline, and use this abstraction to derive a simple cost model 
based on data transfer costs and computation time. We then use this cost model to 
design a set of experiments testing each workflow in a variety of multi-tier 
architecture scenarios using typical resources, measuring both computation and data 
transfer costs at each step. 

We find that the role of the client remains critical in the era of cloud computing as 
a host for visualization, local caching, and local processing. The network bandwidth 
limitations found in practice frequently dominate the cost of data analytics, 
motivating the need for pre-fetching and aggressive caching to maintain interactive 
performance necessary for immersive visualization applications. We also confirm that 
a GPU is crucial for efficient visual data analytics, suggesting that the generic 
hardware configurations found in many cloud computing platforms are not a complete 
solution. Finally, we show that there is no “one size fits all” architecture that is 
satisfactory in all cases, motivating further research in dynamic provisioning and 
seamless computing. 

 
Summary of contributions. We evaluate potential architectures for seamless, multi-
platform visual analytics using a representative benchmark of workflows in the ocean 
sciences. We implemented these workflows in an integrated visualization and 
workflow system using COVE and Trident, and tested them on several candidate 
architectures involving client, server, and cloud resources. We make the following 
specific contributions: 
• We present a test suite of representative visual data analytics tasks derived from 

a multi-year collaboration with ocean scientists;  
• We describe a comprehensive visual data analytics system based on COVE, an 

immersive visualization environment, Trident, a scientific workflow workbench 



to support seamless multi-platform computing, and Microsoft Azure, a cloud 
computing platform that we use for serving data and limited computation; 

• We implement the test suite on the complete system across a variety of different 
architectures spanning client, server, and cloud; 

• We experimentally compare these architectures using the test suite, report and 
analyze their performance, and conclude that seamless “Client + Cloud” 
architectures — as opposed to cloud-alone or client-alone — are an important 
consideration for visual data analytics applications. 

2 Background and Related Work 

Visualization. McCormick et al provide an early and influential call to arms for the 
importance of visualization [11] in the face of large scientific datasets. Stemming 
from this need, computer visualization researchers articulated a standard data 
visualization pipeline architecture around which the majority of visualization systems 
today are designed [12]. This architecture consists of three logical steps: Filter 
(selection, extraction, and enrichment of data), Map (production of a spatial 
representation of the data using visualization algorithms), and Render (generation of a 
series of images from the spatial representation). Today, the Map and Render steps 
are typically performed together using high-performance GPUs; we refer to these two 
steps together as simply “visualization.” 

Visual Data Analytics pipelines, in contrast to pure visualization pipelines, must 
incorporate more than just “Filtering”; they must perform arbitrary data processing, 
restructuring, manipulation, and querying — the capabilities associated with data 
management and workflow systems as opposed to pure visualization systems [2]. 

The requirements of visualization systems, analytics engines, and data retrieval 
systems are converging. The scientific visualization community is recognizing that 
visualization systems must do more than just “throw datasets” through the rendering 
pipeline — that data restructuring, formatting, query, and analysis cannot be relegated 
to an offline “pre-processing” phase [13, 14]. Simultaneously, the data management 
community is recognizing the importance of incorporating visualization capabilities 
into data management systems, for two reasons. First, visualization is a critical 
method of interpreting large datasets, thanks to the acuity and bandwidth of the 
human visual cortex — humans cannot quickly “see” the patterns in a million data 
points without a visual representation. Second, since visualization pipelines typically 
reduce large datasets to relatively small images or sequences of images, requiring the 
client to be solely responsible for visualization creates a significant data transfer cost.  

Some proposed systems provide optimization and control of distributed 
visualization pipelines [15, 16], but are restricted to specialized visualization 
algorithms rather than a general purpose framework, as our collaboration with ocean 
scientists mandates. 

 
Workflow. Workflow systems [1-5] provide a significant step forward in this regard, 
striving for several goals simultaneously. First, workflow systems attempt to raise the 
level of abstraction for scientist-programmers, allowing them to reason about their 
computational tasks visually as data flow graphs instead of syntactically as scripts. 



Second, workflow systems aim to provide reproducible research. Perhaps 
paradoxically, computational tasks are often more difficult to reproduce than 
laboratory protocols, due to diversity of languages, platforms, user skills, and usage 
scenarios. Expressed as a workflow (assuming agreement on the workflow system!), 
these protocols are easier to share, reuse, and compose than are raw scripts. Third, and 
most relevant to our discussion, workflow systems help to abstract away the execution 
environment, allowing workflow tasks to be executed on a variety of different 
platforms. For example, Kepler and Trident systems allow workflows to be submitted 
to a cluster for execution or be evaluated directly in the desktop environment [1, 4]. 

However, these tools do not provide for interactive visualization on the client — 
workflows are typically executed as batch jobs. More recently, the VisTrails system 
[2], adopting the VTK visualization library [8] as a core plugin, has added richer 
support for visualization. VisTrails also provides a powerful caching mechanism to 
support repeated execution and exploratory analysis. However, VisTrails does not 
consider visual analysis pipelines that span multiple platforms in one execution. 

Workflow execution and optimization is a well-studied problem [3, 17-19], but 
these approaches typically ignore client-side processing and interactive visualization. 
We demonstrate that the local client remains an important resource. Further, since 
optimization of workflow execution over heterogeneous environments is NP-
complete [19], we adopt a simpler model and experimentally verify its accuracy. 

3 Ocean Science Requirements  

The goal of our requirements analysis was to obtain a representative suite of real 
ocean data visualization and analysis scenarios, then measure the effectiveness of 
different visualization architectures on their performance. This was part of a multi-
year study to determine requirements for more effective science visualization tools. 
We met with groups of scientists on multiple occasions to collect examples of 
datasets, visualizations, and workflows. We also interviewed eleven members of the 
teams in depth to glean detailed requirements. This close collaboration was 
instrumental to our success, as many of the workflows were not documented and were 
often problematic for the scientists to recall from memory. 

Our work took place at two different ocean science institutions: the Monterey Bay 
Aquarium Institute (MBARI) [20], and the University of Washington College of 
Ocean and Fisheries Sciences [21]. MBARI is the largest privately funded 
oceanographic organization in the world and acquires data through fixed and mobile 
instruments, ship based cruises, and occasional large-scale multi-institute projects. 
We worked with MBARI on two such projects: The Autonomous Ocean Sampling 
Network (AOSN), which is a program to design and build an adaptive, coupled 
observation/modeling system. This program involved a series of multi-month 
activities to measure the effectiveness of adaptive sampling in Monterey Bay. A 
second MBARI effort involves the preparation for a multi-organization program in 
2010 to study the interaction of typhoons with the ocean surface. At the University of 
Washington College of Ocean and Fisheries Sciences, we worked with one group 
building the Regional Scale Nodes (RSN) portion of the NSF-funded Ocean 
Observatories Initiative, and another group generating regional-scale simulations of 



the Puget Sound. Both of these institutions consist of primarily desktop system users 
who connect to a local network to share data when necessary. Both also expressed 
interest in how cloud computing could help them on current and future projects. 

3.1 Abstract Use Scenarios 

A key result of this interaction with ocean scientists was a set of 16 data analysis 
scenarios spanning a wide range of requirements in oceanographic data visualization 
and analysis. To make our investigation more tractable, we focused on 9 scenarios 
that had relatively similar workflow needs based on our analysis and discussions with 
the scientists. These scenarios are listed in Table 1 along with a short description. 

Table 1: Use case scenarios for visual data analytics in oceanography 

Scenario Description 
1)   Data Archive Analysis Analyze existing collections of observed and simulated data 
2)  Ocean Modeling Generate more accurate and denser ocean simulations 
3)  Observatory Simulation Simulate ocean observatory data collection from existing data 
4)  PCA Sensor Placement Determine optimal sensor placement using PCA modeling 
5)  Hydrographic Analysis Estimate larger ocean effects based on limited observed data  
6)  Data Comparison Compare observed and simulated data sets for integrity 
7)  Flow Field Analysis Measure changes over time based on ocean currents 
8)  Hydrographic Fluxes Measure changes over time in a specific ocean volume 
9)  Seafloor Mapping Generate detailed terrain maps from collected sensor points 

 
What we observe in our study is that even though the scenarios shared very similar 

underlying tasks, they are difficult to categorize as data-intensive, computation-
intensive, or visualization-intensive. This difficulty is due in some part to the 
heterogeneous nature of oceanographic data. Simulations of the ocean are very data-
intensive, producing multiple terabytes of simulated output. Most observed data, in 
contrast, is significantly smaller since it is expensive to obtain and usually sparse, 
requiring aggressive extrapolation and interpolation to determine ocean effects. 
Therefore data sizes in a scenario often show extreme variability from task to task. 
We also find that while large datasets increase computation time as expected, 
analytics are not usually inherently compute-bound in these scenarios. Visualization 
needs vary from simple 2D plots up to animations of geographically located datasets 
with multiple 3D iso-surfaces of ocean parameters. The choice of visualization 
primarily depends more on a current research need rather than the specific scenario 
category, making it difficult to build specialized applications. 

3.2 Concrete Workflows 

From this suite of scenarios, we derive 43 re-usable components (called activities) 
in order to recreate the scenario visualizations. These activities are linked together to 
carry out filtering of the raw datasets to create visualization ready data products. 
Some of the activities supported were subsampling, supersampling, cropping, 
filtering, masking, scaling, merging, and resampling data to match other data sample 



points. Some of these activities are not compute-intensive while others, such as 
resampling of simulations, can be quite compute-intensive due to the use of irregular 
grids in ocean simulation and the size of the simulated datasets. We also provide more 
ocean-science-specific activities such as particle advection to map currents or the 
projection of instrument collected data onto vertical sections by supersampling data 
points. For details on the complete activity set and usage, please see the standard 
oceanographic library included with Microsoft’s Trident Workflow system [1], which 
was created as a direct result of this collaboration. 

Based on these activities, we created a set of 12 visualization-based workflows that 
provide a representative cross-section of visualization workflows we observed or 
collected. These workflows each consisted of from 8 to 20 activities and comprised 
the test cases for our visualization architecture described in the next section. Each 
workflow loads the necessary inputs from a data store, transforms the input datasets 
into a new dataset, and then outputs the data to the COVE visualization engine to 
create a time series visualization of the data. These set of workflows are listed in 
Table 2 along with the primary scenarios they apply to and a broad measure of how 
data-intensive, computation-intensive, and visualization-intensive they were relative 
to the other workflows in the sample. 

Table 2: Representative workflows tested based on ocean science scenarios 

Workflow Scenarios Data Computation Visualization 
Advect Particles 1,2,3,6,7 Medium Medium High 
Combine Data 1,4,5,9 Low Low Low 

Combine Models 1,2,3,6 High Low Medium 
Compare Models 1,2,6 High High High 

Compare Data to Model 1,2,6,7 Medium Medium Low 
Filter Model 1,2,8 Medium Low Medium 

PCA Projection 2,4 Medium High Medium 
Regrid Model 1,2,7,8 Medium Medium Medium 

Subsample Terrain 3,9 Medium Low High 
Supersample Data 1,3,5 Medium Low Medium 

Verify Model 2,6 High Low Medium 
Vertical Section 1,5,6 Low Low High 

 
The overall result of this effort suggests that there are no obvious or simple 

patterns in the workload of oceanographic analytics, and therefore no obvious or 
simple system that can be built to satisfy the requirements. Informed by this effort, we 
have designed a general platform for visual data analytics that spans these 
requirements, incorporating workflow, visualization, and cloud-based data access. 

3.3 Cost Model 

Informed by the basic Data, Filter, Map, Render visualization pipeline, we model 
visual analysis tasks in terms of four logical software components: Data Store, 
Workflow, Visualization, and Client arranged linearly according to dataflow. The 
Data Store component may be a remote query service: a database, an OPeNDAP 



server [22], or an Open Geospatial Consortium web service [23]. These services are 
typically outside the scope of a workflow system, though calls may be issued from the 
context of a workflow. We model the Visualization component as distinct from the 
Workflow component for two reasons: First, there are a variety of stand-alone 
visualization systems found in practice [6-8]. Second, the visualization step occurs 
last and benefits from access to a GPU, and is therefore often evaluated independently 
from the rest of the workflow. The Client component is responsible for processing 
user interaction and issuing calls to the upstream pipeline. This model allows us to 
seamlessly move the Visualization component from platform to platform based on 
current graphic processing needs; it can be tightly bound with the client for 
interactivity, tightly bound with the workflow system to minimize data transfer, or run 
independently to leverage external graphics resources. 

 We map these components onto a physical architecture consisting of three 
resources: Cloud, Server, and Client. An architecture configuration, or simply 
configuration, is a mapping from components {Data Store, Workflow, Visualization, 
Client} to {Local, Server, Cloud} that respects data flow order. For example, Fig. 1 
illustrates a configuration that maps the Data Store to the Cloud, and the Trident 
Workflow Service, Visualization Engine, and COVE Client to the local computer. 

 
Fig. 1. An example of an architectural configuration mapping software components to 
resources. In this case the data is provisioned in the cloud and all other tasks are local. 

We express the cost of each scenario as the sum of the workflow execution time, 
the visualization execution time, and the total data transfer cost between each pair of 
adjacent steps. That is: 

 
COST = RAW_TX + WF_COMP + WF_TX + VIS_COMP + VIS_TX (1) 

where 
RAW_TX = RAW_SIZE / BANDWIDTH_DATA_WF 
WF_COMP = WF_WORK (RAWSIZE) / PROCESSOR_WF 
WF_TX = WF_SIZE (RAWSIZE) / BANDWIDTH_WF_VIZ 
VIS_COMP = VIZ_WORK (WF_SIZE) / PROCESSOR_VIZ 
VIS_TX = VIZ_SIZE (WF_SIZE) / BANDWIDTH_VIZ_CLIENT 

 
RAW_SIZE is the size in bytes of the input dataset. BANDWIDTH_DATA_WF, 

BANDWIDTH_WF_VIZ, and BANDWIDTH_VIZ_CLIENT are the bandwidth 
between the data source/workflow system, the workflow system/visualization system, 
and the visualization system/client respectively. WF_SIZE and VIZ_SIZE are 
functions of the final output size based on the input data size for the pipeline step. 
PROCESSOR_WF and PROCESSOR_VIZ are the processor speeds for the 
respective machines, accounting for the potentially significant difference between 
server and client machines. WF_WORK and VIZ_WORK are functions of data size 
and return the (approximate) number of instructions required to process their input. 
These functions can be estimated precisely through curve fitting, sampling, or 



provided by the user directly [24]. These functions are typically polynomial in the 
size of the input data, but we find that even rough linear estimates of the workflows 
often provide a reasonable estimate. 

Although this model captures the cost of the pipeline, it is not directly useful for 
prediction or optimization because the parameters are too difficult to estimate a 
priori. Therefore, we retain this model as a reasoning tool in Section 5, but 
experiment with a simpler proxy model based only on data transfer overhead. This 
proxy model, although simple, frequently captures the relative cost between different 
architecture configurations, as we will see. In this case, the model is 

 
COST = RAW_TX + WF_TX + VIS_TX (2) 

 
In Section 5, we will show experiments that justify this simplification for certain 

configurations. 

4 System Design  

To implement a system to measure the cost components over our workflow set, we 
leverage three existing systems: the COVE visualization system, the Microsoft 
Trident workflow system, and Microsoft Windows Azure cloud computing service. 
Communication between the components is provided through system I/O services if 
the components are co-located or by RESTful HTTP interfaces when distributed. 
Each component is described in more detail below. 

4.1 Visualization with COVE 

The Collaborative Ocean Visualization Environment (COVE), shown in Fig. 2, is a 
system designed in close collaboration with scientists to provide support for 
oceanographic data visualization and planning. For ease of use, the interface is based 
on the Geo-browser interface applied successfully for data visualization in 
applications such as Google Earth and Microsoft’s Virtual Earth. COVE provides all 
the essential features of these commercial geo-browser systems, as well as 
enhancements designed in cooperation with ocean scientists. 

In particular, COVE incorporates better support for the time and depth dimensions 
of ocean data sets. Visualizations can be animated and synchronized in time. COVE 
also provides extensive terrain visualization support, as each scientist may require a 
different set of terrain information. To provide more visual cues for the underwater 
terrain there are depth-based color gradients and contour lines as well as user 
adjustable shading and terrain detail to enhance visualization of seafloor features. 

To enable experiment planning, asset deployment and tracking, and observatory 
design, enhanced interactive layout facilities are provided. To support vessel track 
routing and cable layout, COVE provides a large selection of smart cable and track 
types. These conform to the terrain, and positioning handles are available for 
maneuvering the cable around obstacles such as trenches. To provide instant feedback 
(e.g., budget and current cost), heads-up displays are provided during editing sessions. 



To help share visualizations throughout the team, anything created in COVE can 
be uploaded to a server to be viewed by other members of the team. Other users can 
then download the visualization script and datasets to jumpstart derivation of new 
visualizations for their own needs.  

COVE has been successfully deployed for a variety of tasks. It was a key tool in 
the design of a planned deep-water ocean observatory off the northwest coast of the 
United States, and has also been a part of two ocean expeditions. The first expedition 
mapped sites for the deep-water observatory and the second explored ways to support 
deep ocean navigation while exploring volcanic sites on the Juan de Fuca plate. While 
quite successful in these deployments, limitations became apparent. The geo-browser 
interface was empowering to novices, but expert users required extensibility for data 
manipulation. Also, as datasets grew in size, scalability problems associated with a 
desktop-only deployment of COVE emerged. To meet these needs, we integrated the 
Trident workflow system for data analysis and pre-processing. 

4.2 Workflow with Trident  

The Trident Workflow system, developed at Microsoft Research, is a domain-
independent workbench for scientific workflow based on Microsoft’s Windows 
Workflow Foundation. The system supports a high level component based view of 
scientific tasks that offers a number of advantages over traditional script-based 
approaches including visual programming, improved reusability, provenance, and 
execution in heterogeneous environments. In addition to these features common to 
many workflow systems, it also provides automated provenance capture, “smart” re-
execution of different versions of workflow instances, on-the-fly updateable 
parameters, task monitoring, and support for fault-tolerance and failure recovery.  

 
Figure 2: COVE displays a geo-positioned scientific data, seafloor terrain, images, and 
instrument layout with selectable layers on the left and rich visualization controls on the right. 



 

 
Fig. 3. This image displays an example of the interactive workflow editing interface of Trident. 

Trident can be executed on the local desktop, on a server, or on a High 
Performance Computing (HPC) cluster. It currently runs on the Windows OS using 
the .NET API, with SQL Server for data storage and provenance capture. Interactive 
editing and management of workflows is available through a set of programs that are 
part of the Trident suite (Fig. 3). Trident provides cross-platform support using 
Silverlight, a downloadable cross-browser, cross-platform, and cross-device plug-in 
for delivering .NET-based applications over the Web. 

Cross platform support is also available through a web service interface developed 
as part of this effort. This interface allows execution and job control through a 
RESTful API. For example, a user can login, select a desired workflow, monitor its 
progress, poll for created data products, and retrieve data products for local use using 
HTTP GET and POST calls. This is the communication interface used by COVE to 
provide cross-platform access to Trident. 

4.3 Cloud Services with Azure  

Azure is a cloud computing platform offering by Microsoft. In contrast to Amazon's 
suite of “Infrastructure as a Service” offerings (c.f., EC2, S3), Azure is a “Platform as 
a Service” that provides developers with on-demand compute and storage for web 
applications through Microsoft datacenters. A primary goal of Windows Azure is to 
be a platform on which ISVs can implement Software as a Service (SaaS) 
applications. Amazon's EC2, in contrast, provides a host for virtual machines, but the 
user is entirely responsible for outfitting the virtual machine with the needed software. 

Windows Azure has three components: a Compute service that runs applications, a 
Storage service, and a Fabric that supports the Compute and Storage services. To use 
the Compute service, a developer creates a Windows application consisting of Web 
Roles and Worker Roles using the .NET API or the Win32 API. A Web Role package 
responds to user requests and may include an ASP.NET web application. A Worker 
Role, often initiated by a Web Role, runs in the Azure Application Fabric to 
implement parallel computations. Unlike other parallel programming frameworks 
such as MapReduce or Dryad, Worker Roles are not constrained in how they 
communicate with other Worker Roles. 

For persistent storage, Windows Azure provides three storage options: Tables, 
Blobs, and Queues, all accessed via a RESTful HTTP interface. A table is a scalable 
key-value store, a Blob is a file-like object that can be retrieved, in its entirety, by 
name, and a Queue simplifies asynchronous inter-communication between workers. 
The Windows Azure platform also includes SQL Azure Database offering standard 



relational storage based on SQL Server. In our system, we model data sources as 
Blobs and simply retrieve them for processing by our workflow engine. 

4.4 Architecture Configurations 

With these systems there are a variety of configurations that can be created to run 
the visualization workflows enumerated in Table 2. Fig. 4 illustrates the six 
architectures we evaluate. 

 
Fig. 4. The 6 evaluated configurations of the COVE + Trident + Azure system.  

In the Local configuration, all the data and visualization is handled locally. This is 
the most common visualization mode we noted with the scientists. It avoids network 
latency or cross platform communication issues. The disadvantage is that computation 
and data size are limited by available cores and local storage capacity. 

In Cloud Data, the data has been moved to the cloud. This configuration allows 
larger data sizes and also allows sharing of the data with other researchers, but with 
the overhead of downloading all necessary data to the local system. 

In Cloud Workflow, the computation has been moved to the cloud and co-located 
with the data. This leverages the computational and storage capabilities of the remote 
platform and removes the overhead of moving raw data. However, this configuration 
still incurs the cost of downloading the filtered data. 



In 3-Tier, the computation has been moved remotely to a server and the data stored 
on in cloud storage. This allows the most flexibility to optimize the choice of platform 
based on cost and needs. It also is the most sensitive to network speeds, since raw and 
filtered data are both transferred to a remote location. 

3-Tier Thin provides the ability to move the data and visualization handling to a 
server, possibly with fast graphics capability, and place the data on cloud storage. 
This configuration is useful for a thin client environment such as a browser or phone 
interface, but requires a fast connection between the cloud and the server. 

Finally, the All Cloud configuration allows all the data to be handled in the cloud, 
with a minimum of network overhead since only the visual product is transferred over 
the network. The drawback is that the environment is usually unspecialized. In 
particular, the cloud typically does not provide graphics support for fast visualization. 

4.5 Data Model 

Our data model is essentially file-oriented. On Azure, each file is stored as a Blob. On 
the Server and Local platforms, each file is stored on local disk and referenced with 
standard filename conventions. In either case, we access non-local files using HTTP. 

Files are downloaded by the workflow system from the data store and cached on 
the workflow system. The workflow system then accesses them from the local cache. 
This transfer mechanism could be optimized to reduce the overhead of local disk IO, 
but the local storage also allows for re-use of cached files in future workflows. 
Further, we observe in Section 5 that the local IO overhead is small relative to the 
overall cost of the workflow. 

Similarly, the resulting data products are cached locally by the workflow service 
and made available through HTTP using a RESTful API. Although Trident provides 
access to SQL server for data storage, we found the current implementation for 
serializing and de-serializing large files to the database to be prohibitively slow. 
Instead, we implemented a multi-threaded file-based data storage solution that 
significantly improved IO performance. All experiments were conducted using the 
file-based storage solution. 

Trident by default loads all data into memory to allow pointer-based access. This 
means large files can exceed physical memory and lead to thrashing. For our Trident 
workflow activities, we instead use a lazy loading strategy. We load only a descriptive 
header when opening a file, and read in sections of the file on demand. This technique 
reduces the memory footprint and prevents thrashing. 

The data files we access are taken directly from our collaborators. Each dataset is 
represented as a NetCDF [25] file or in simple binary and textual table data formats. 
NetCDF files are a very common format in the ocean sciences and allow us to use 
publicly available libraries for data access. We also use the NetCDF CF-Metadata 
naming conventions to standardize identification of position and time variables.  

4.6 Programming Model 

The Trident activities are written in C and deployed to a dynamic library for increased 
performance. The object interface for the library is then wrapped by a set of .NET 



managed C# Trident activities. Each activity typically accesses a single method in the 
library. This design also made it easy to expose the same functionality available to the 
workflow system to other systems. For example, since Trident was not yet available 
natively on the Windows Azure service, we created a substitute workflow shell on 
Azure that executed our workflow activities. 

Each activity has a set of inputs and outputs that can be declared explicitly by the 
user or implicitly through composition with another activity (e.g., the output of the 
file load activity may connect to the input of the resample activity.) The activities may 
be linked together interactively using the Trident Workflow Composer or by editing 
the XML based workflow description. While the activities may execute either serially 
or in parallel according to the instructions in the workflow specification, all our 
workflows operate serially to simplify performance monitoring. 

5 Experimental Analysis 

We tested the 12 benchmark workflows in Table 2 on each of our 6 architectural 
configurations in Fig. 4 to record the 5 cost components of Eq. 1. Since the final 
dataset is too large to visualize effectively in this paper, we show a summary of the 
overall performance results in Fig. 7. This figure displays the average time of each of 
the cost components across the entire workflow set for each configuration. 
 
Setup. We instrumented COVE and all of the Trident activities to record wall clock 
time for each of the components of the cost model: network transmission (RAW_TX, 
WF_TX, VIZ_TX), workflow computation (WF_COMP), and visualization creation 
(VIZ_COMP). We used the three systems described in Table 3 as the Local Machine, 
Web Server, and Azure Web Role in our architecture configurations. 

Table 3: Physical Specification of Experimental Systems 

Machine Description 
Local Machines Apple Macbook Pro Laptop running Windows 7 (32 bit) 

Intel Core Duo T2600 CPU 2.16 GHz, 2GB RAM,  
Radeon X1600, 256 Mb memory 
Internet Connection: 11.43 Mb/Sec in, 5.78 Mb/Sec out 

Web Server HP PC running Windows Server 2008 R2 Enterprise 
Intel Core Duo E6850 CPU @ 3.00 GHz, 4 GB RAM 
Internet Connection: 94.58 Mb/Sec in, 3.89 Mb/Sec out 

Azure Web Role  Intel PC running Windows Server 2008 R2 Enterprise 
Intel 1.5-1.7 GHz, 1.7 GB RAM, No Video System 
Internet Connection: .85 Mb/Sec in, 1-2 Mb/Sec out 

 
Data sizes. The data sizes used for each workflow appear in Fig. 5, averaging around 
150MB per task. Typical datasets include time steps of an ocean simulation, a set of 
“glider tracks” from an Autonomous Underwater Vehicle (AUV), or a terrain model 
for a region. All datasets pertain to the Pacific Northwest or Monterey Bay region and 
are “live” in the sense that they are actively used by scientists. 
 



 
Fig. 5. Data sizes used in the experiments. Each bar is broken into three sections: the Raw data 
size (RAW_SIZE), the filtered data size generated by the workflow (WF_SIZE), and the size of 
the final result generated by the visualization (VIZ_SIZE). 

 
Summary of Findings. We answer the following questions: (1) Is one architecture 
preferable for all of our visual analytics benchmarks? (2) What role does client-side 
processing have in cloud and server oriented analytics? (3) Does access to a GPU 
strongly affect performance for visual analytics workflows? (4) Does the simple cost 
model derived in Section 3 accurately capture performance? 

Our results show that: (1) There is no “one size fits all” architecture — the 
appropriate configuration depends on workflow characteristics (Fig. 7); (2) client-side 
processing is a crucial resource for performance, assuming data can be pre-staged 
locally to minimize transfer costs (Fig. 8); (3) access to a GPU strongly affects the 
performance of visual data analytics workflows, meaning that generic, virtualized 
cloud-based resources are not ideal (Fig. 9); (4) the simple cost model is sufficient to 
capture the behavior of these workflows, and that the cost is generally dominated by 
data transfer times. 

5.1 There is No “One Size Fits All” Architecture 

The diversity of workflows in the benchmark illustrates that multiple architecture 
configurations must be supported in practice. Although local processing outperforms 
other configurations due to data transfer overhead, this configuration is not always 
viable. Among the alternatives, no one configuration is best in all cases. In the 
Vertical Section workflow, for example, the output of the filter step is larger than its 
input, motivating an architecture that pulls data down from remote locations before 
processing; contradicting the conventional wisdom that one should “push the 
computation to the data”. In terms of the cost model, this distinction is captured by the 
ratio of data output to data input in the workflow or WF_RATIO = WF_SIZE / 
RAW_SIZE. In Fig. 6, the time profile for two workflows is displayed: one with 
WF_RATIO < 1, and the other with WF_RATIO > 1. For WF_RATIO < 1, the 
preferred (non-local) configuration to minimize transfer overhead is Cloud WF, where 



the data is processed on the same machine where it resides, however, when 
WF_RATIO > 1, the preferred configuration is Cloud Data, where data is sent to the 
local computer for processing.  

The 3-tier configuration in these examples appears to be universally bad, but 
asymmetric processing capabilities between server and client can make up the 
difference. For example, the PCA workflow is highly compute bound, and therefore 
benefits from server-side processing at the middle tier. 
 

 
Fig. 6. Time profile comparison of a workflow with WF_RATIO < 1 on the left and 
WF_RATIO > 1 on the right. When WF_RATIO < 1, the preferred (non-local) strategy is to 
push the computation to the data using the Cloud WF configuration. When WF_RATIO > 1, the 
better strategy is to bring the data to the computation using the Cloud Data configuration. 

5.2 Client-side Processing Improves Efficiency 

At these modest data sizes, the local data configuration performed well in all cases. 
Fig. 7 shows the average performance across all benchmark workflows. The 
performance benefits are perhaps not surprising — desktop computers are 
increasingly powerful in terms of CPU speed and memory size, and are typically 
equipped with GPU to accelerate visualization. However, local processing is only 
appropriate for small datasets that are either private or have been pre-staged on the 
user’s machine. Since the trend in ocean sciences (and, indeed, in all scientific fields) 
is toward establishing large shared data repositories, we believe that aggressive pre-
fetching and caching on user’s local machines will become increasingly important. 

 

 
Fig. 7. The average runtime of all 12 workflows for each of the 6 architecture configurations is 
dominated by data transfer overhead. The Local configuration, although not necessarily feasible 
in practice, eliminates this overhead and therefore offers the best performance. This result 
suggests that aggressive caching and pre-fetching methods should be employed to make best 
use of local resources. 



5.3 Visual Analytics Benefit from GPU-Based Processing 

Tasks involving significant visualization processing benefit from having access to 
GPUs. Although GPUs are becoming popular for general computation due to their 
vector processing capabilities, they can of course be used for visualization tasks with 
no change to the application. Using the instrumented COVE and Trident platform, we 
tested whether having access to a GPU would improve performance for the visual 
data analytics tasks. In particular, in the Thin Client and All Cloud configurations, the 
visualization engine ran in the cloud and performed rendering in software using the 
Mesa 3D library, a state-of-the-art OpenGL software renderer. On average, the 
workflow set ran 5x faster overall with access to a GPU (Fig. 7). The visualization 
portion of the work ran 9x faster. This result suggests that the generic environment 
typically found on cloud computing platforms may be insufficient for visual data. 

 

 
Fig. 8. Scatter plot of estimated results from Eq. 2 compared to actual results. 

5.4 A Simple Cost Model Informs Architecture Decisions 

The proxy cost model presented in Section 3 is very simple, capturing only the data 
transfer costs between each step. We allow the source data and each of these two 
steps to be located on any of the three tiers in the client-server-cloud pipeline, subject 
to technical constraints. Despite its simplicity, we find that this cost model adequately 
describes several of the computations, suggesting that a very simple “architecture 
optimizer” could be based on it. 

In Fig. 8, we plot the estimated running time against the actual measured times 
using a model that ignores everything except for transfer times. A linear relationship 
is clear, though of course it underestimates CPU and Visualization-heavy workflows, 
as well as fully local configurations that do not require any data transfer. For these 
cases, we are exploring an incrementally more sophisticated model based on 
parameters that can be estimated by the scientists ad hoc. 



6 Conclusions and Future Work 

Overall, we conclude that cloud-based platforms must be augmented with significant 
local processing capabilities for maximum performance. Due to the overhead of data 
transfer, access to GPUs for high-performance visualization, and the interactive 
nature of interactive visual data analytics, “Client + Cloud” architectures are 
appropriate for maximizing resource utilization and improving performance. 

We base our conclusions on 1) a comprehensive, multi-year collaboration with 
ocean scientists from which we gleaned a suite of representative workflows, 2) a 
complete visual ocean analytics system involving immersive visualization capabilities 
in COVE and a flexible workflow environment in Trident, and 3) a set experiments 
testing each workflow in a variety of client, server, and cloud configurations.  

Based on these results, we are pursuing an architecture optimization framework 
that will dynamically distribute computation across the client-server-cloud pipeline to 
maximize utilization and improve performance. We distinguish this work from the 
heterogeneous resource scheduling problem by focusing on visualization and a 
domain-specific and realistic suite of workflows. 
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