
Designing Application Specific Circuits with Concurrent C# Programs

David Greaves
Computer Laboratory

University of Cambridge
Cambridge CB3 0FD

United Kingdom
David.Greaves@cl.cam.ac.uk

Satnam Singh
Microsoft Research Cambridge

Cambridge CB3 0FB
United Kingdom

satnams@microsoft.com

Abstract—This paper presents an investigation into the pos-
sibility of using a regular concurrent programming language
for modeling and implementing digital circuits. Some of the
reasons for using an existing language include the ability to use
existing compilers and analysis tools for circuit design and ver-
ification. Another important reason is the ever increasing need
to model complete systems that comprise interacting software
and hardware in a single framework which facilitates easier
migration of sub-components between hardware and software
implementations compared to multi-model approaches. To this
end we present the design of the Kiwi system which models
digital circuits with concurrent programs using a standard
library in C# for multi-threaded programming. Kiwi models
can be executed using a regular C# compiler. Also, the compiled
bytecode can be automatically converted into circuits using our
Kiwi hardware synthesis system.

I. INTRODUCTION

To what extent can we use a regular programming lan-
guage to model and implement digital circuits? This is
an interesting question because the ability to exploit an
existing language for hardware design confers upon us
many advantages including the use of regular, off-the-shelf
compilers; the use of existing training material e.g. books
and tutorials; the use of sophisticated tools for profiling,
debugging and verification; and the possibility of supporting
a hardware/software co-design framework based on a sin-
gle language that facilitates shifting the hardware/software
boundary. A key aspect of modeling digital circuits is the
ability to express parallel behaviour through appropriate lan-
guage constructs or other abstractions provided by a library
interface. Although many languages have direct support for
expressing parallel behaviour through the use of concurrent
multi-threaded language constructs or library modules these
mechanisms are rarely used because they are considered too
heavyweight. This is because concurrent programs that use
abstractions like locks and monitors provide an economic
way of writing coarse-grain programs but they are hard to
use for the efficient execution of very fine grain parallel
systems like digital circuits.

Some systems do use very lightweight concurrency mech-
anism to facilitate circuit modeling e.g. on Windows there
is an implementation of SystemC that uses very lightweight

fibers which are user scheduled onto operating system
threads. However, the user-level concurrency abstraction
provided by SystemC is still very closely related to the
process, shared-variable and sensitivity list model found in
VHDL and Verilog. We argue that aspects of a circuit’s
parallel behaviour should be directly modeled by language
and system-level threads which leads to clearer descriptions
and exploits existing features and tools to support concurrent
programming.

A significant amount of valuable work has already been
directed at the problem of transforming sequential imper-
ative software descriptions into good-quality digital hard-
ware and these techniques are especially good at control-
orientated tasks which can be implemented with finite-state
machines. Our approach builds upon this work by proposing
the use of concurrent multi-threaded software descriptions
which capture more information from the designer about
the parallel architecture of a given problem that can then be
exploited by our tools to generate good-quality hardware for
a wider class of descriptions.

A novel contribution of this work is a demonstration
of how systems-level concurrency abstractions, like events,
monitors and threads, can be mapped onto appropriate hard-
ware implementations. Furthermore, our system can process
bounded recursive methods and object-orientated constructs
(including object pointers). Figure 1 illustrates how our
approach identifies a new part of the design spectrum by
focusing on an area which is much more abstract than
structural design but still leaves enough control to the pro-
grammer via threading compared to synthesis from purely
sequential descriptions. It is our hope that such technology
will make FPGA-based co-processor more accessible to non-
FPGA or hardware experts.

The approach described in this paper uses programming
language concurrency mechanisms to model the architecture
of circuits by expressing important aspects of their parallel
behavior. As compiler technology matures, we might ulti-
mately expect the same parallel expression of an algorithm
to be efficiently converted both for execution on a multi-
core processor and on FPGA, but in our current work, we
expect the programmer to insert more parallelism than might

978-1-4244-7886-6/10/$26.00 ©2010 IEEE 21



structural impera�ve (C)parallel

impera�ve

gate-level 

VHDL/Verilog Kiwi
C-to-

gates

&0

0

0

Q

Q
SET

CLR

S

R

;

;

;

jpeg.cthread 

2

thread 

3

thread 

1

Figure 1. Kiwi relative to other approaches.

be best for today’s multi-core processors. Running the same
program on a multi-core processor can then be thought of as
a multi-threaded simulation of the target hardware. The ben-
efit of our approach is to allow scientists to express parallel
computations in a programming language environment with
the associated tools for debugging and verification and then
automatically produce circuits which perform faster than
the corresponding program running on a regular processor.
So we make FPGA-based co-processing more accessible to
domain experts in other areas (scientific computing, biology
etc.) that have a secondary skill in programming/hardware
to allow them to exploit FPGA-based co-processors without
detailed knowledge of the FPGA hardware design or syn-
thesis flow.

Fine-grained parallelism running on multi-core proces-
sors (CMPs) suffers synchronization overheads compared
with the synchronous, globally clocked FPGA. Conventional
approaches have tended to address this by reducing the
frequency of interaction between tasks or using SIMD in-
structions. Where task run time and communication patterns
are predictable at compile time the FPGA solution should
ultimately prevail since no run-time flow control overheads
exist.

In this paper we outline the architecture of our Kiwi
synthesis system and present results obtained from a pro-
totype implementation that generates Verilog circuits which
are processed by Xilinx implementation tools to produce
FPGA programming bit-streams for a filter example.

Although we present work in the context of the .NET
system the techniques are applicable to other platforms
like the Java Virtual Machine (JVM). The experimental
work described in this paper was undertaken on Windows
machines and also on Linux machines running the Mono
system.

II. BACKGROUND

There has been significant interest in the area of compiling
circuit descriptions that look like programs automatically
into circuits. Most approaches take an imperative, C-like
language as a starting point and then try to work out how

to efficiently represent an equivalent sequential computation
in terms of a circuit with an appropriate level of parallelism
and efficient communication between sub-blocks.

The task of taking a sequential program and then auto-
matically transforming it into an efficient circuit is strongly
related to work on automatic parallelization. Indeed, it is
instructive to notice that C-to-gates synthesis and automatic
parallelization are (at some important level of abstraction)
the same activity although research in these two areas has
often occurred without advances in one community being
taken up by the other community. Both procedures are
ultimately limited by the level of achievable parallelism in
a program which, in turn, is limited by a number of well-
known programming artifacts, such as the decidability of
conditional branches and array pointer comparisons.

The idea of using a programming language for digital
design has been around for at least two decades [1]. Previous
work has looked at how code motions could be exploited as
parallelization transformation technique [2].

Examples of C-to-gates systems include Catapult-C [3]
from Mentor Graphics, SystemC synthesis with Synop-
sys CoCentric [4], Handel-C [5], the DWARV [6] C-to-
VHDL system from Delft University of Technology, single-
assignment C (SA-C) [7], ROCCC [8], SPARK [9], and
Streams-C [10].

Some of these languages have incorporated constructs to
describe aspects of concurrent behavior e.g. the par blocks
of Handel-C. The Handel-C code fragment below illustrates
how the par construct is used to identify a block of code
which is understood to be in parallel with other code (the
outer par on line 1) and a parallel for loop (the par at line
4).

par
{ a[0] = A; b[0] = B;
c[0] = a[0][0] == 0 ? 0 : b[0] ;
par (i = 1; i < W; i++)
{ a[i] = a[i−1] >> 1 ;
b[i] = b[i−1] << 1 ;
c[i] = c[i−1] + (a[i][0] == 0 ? 0 : b[i]);

}
∗C = c[W−1];

}

IBM’s Liquid Metal co-synthesis system [11] requires the
programmer to use specific enumeration types with write
once restrictions and it automatically synthesizes the soft-
ware and hardware components and the interfaces between
them. In our approach, certain methods or classes from the
source code are manually marked with a C# Kiwi.Hardware()

attribute to denote that they should be implemented in
FPGA. Automatic generation of interfaces can then follow
the same pattern, but we allow free use of all .NET value
types and these can be annotated with further attributes
to trim implementation register widths. We report compile-
time errors if a custom-width hardware register may wrap
in a different way from the .NET value type. Like the

22



‘SIR’ intermediate language of Liquid Metal, we generate a
structure that is the union datapath of all of the VLIW-style
operations performed by a thread.

The SpC compiler [12] uses ‘points-to’ analysis to par-
tition addressable objects into separate memories. We do
the same, with the proviso that the heap has the self-
same structure on each iteration of a non-unwound loop.
SpC also implements hoisting of loads to reduce control
flow hazards. Jonathan Babb’s group at MIT has developed
an interesting system for synthesizing sequential C and
FORTRAN programs into circuits by using the notions of
small memories and virtual wires [13]. These approaches
are complementary to the Kiwi front end processing and
can be orthogonally incorporated in the scheduling and
mapping stages of the back end processing to achieve the
same expected benefits. Similarly to how we make use of
an existing compiler framework based on .NET and its
associated compiler support, the MIT work exploits the rich
SUIF framework.

A notable recent example of exploiting high-level parallel
descriptions for hardware design is the Bluespec SystemVer-
ilog language [14] which provides a rule-based mechanism
for circuit description which is very amenable to formal
analysis.

Our approach involves providing hardware semantics for
existing low-level concurrency constructs for a language that
already supports concurrent programming and then defines
features such as the Handel-C par blocks out of these
basic building blocks in a modular manner. By expressing
concurrent computations in terms of standard concurrency
constructs, we hope to make our synthesis technology acces-
sible to mainstream programmers. Although synthesisable
SystemC descriptions may lead to very efficient circuits,
they still require the designer to think like a digital circuit
engineer: the designer must explicitly implement all of
the handshaking wires between components or else keep
a mental model of when each shared variable is read or
written. Our approach allows software engineers to remain
in the software realm, to help them move computationally
demanding tasks from executing on processors to implemen-
tation on FPGAs.

III. PARALLEL CIRCUIT DESCRIPTIONS

We provide a conventional concurrency library, called
Kiwi, that is exposed to the user and which has two
implementations:

• A software implementation which is defined purely in
terms of the supporting .NET concurrency mechanisms
(events, monitors, threads).

• A corresponding hardware semantics which is used to
drive the .NET IL to Verilog flow to generate circuits.

The design of the Kiwi library tries to capture a common
ground between the concurrency models and constructs used
for hardware and software (see Figure 2). Our aim to is

hardware

concurrency

models

software

concurrency

models

Kiwi

event-based

simulation

Kahn networks

multi-clock

synchronous data-flow

asynchronous threads

monitors

events

message passing

priorities

Figure 2. Concurrency models and constructs.

Kiwi

Library

Kiwi.cs

circuit

model

JPEG.cs

Visual Studio

mul!-thread simula!on

debugging

verifica!on

Kiwi Synthesis

circuit

implementa!on

JPEG.v

Figure 3. Kiwi descriptions as programs and circuits.

try to identify concurrency models and constructs which
have a sensible meaning both for programs and circuits and
this may involve restricting the way they are used in order
to support our synthesis approach. However, although we
use software concurrency mechanisms to model the parallel
computations performed by hardware we do not expect these
parallel programs to execute efficiently on multi-processor
computers. This is because we will often express very fine
grain parallelism which can be implemented effectively in
circuits but which is not economic when mapped to threads
of a conventional operation system. The dual design-flow
nature of the Kiwi system is illustrated in Figure 3.

A major paradigm in parallel programming is thread
forking, with the user writing something like:

ConsumerClass consumer = new ConsumerClass(...);

Thread thread1 = new Thread(new ThreadStart(consumer.process));
thread1.Start();

Within the Kiwi hardware library, the .NET library functions
that achieve this are implemented either by compilation in
the same way as user code or using special action. Special
action is triggered when the newobj ThreadStart is elabo-
rated: the entry point for the remote thread is added to a list
that was first created by the user from a command line list of
entry points. On the other hand, the call to Threading::Start

that enables the thread to run is implemented entirely C#
(and hence compiled to hardware) simply as an update to a

23



fresh gating variable that the actual thread waits on before
starting its normal behavior.

Another important paradigm in parallel composition is the
channel. The implementation uses blocking read and write
primitives to convey a potentially composite item, of generic
type T , atomically. These channels are designed to allow one
circuit to produce a result which is consumed by another
circuit and in hardware they can be compiled into single
place buffers which are placed between a single producer
circuit and a single consumer circuit.
public class channel<T>
{ T datum;
bool empty = true;
public void write(T v)
{ lock(this)
{ while (!empty)

Monitor.Wait(this) ;
datum = v ;
empty = false ;
Monitor.PulseAll(this);

}
}

public T read()
{ T r ;
lock (this)
{ while (empty)

Monitor.Wait(this);
empty = true;
r = datum;
Monitor.PulseAll(this);

}
return r;

}
}

The lock statements on lines 5 and 16 are translated by the
C# compiler to calls to Monitor.Enter and Monitor.Exit with
the body of the code inside a try block whose finally part
contains the Exit call. This construct can be used to model a
rendezvous between a specific producer and consumer pair.

One way to logically view the system is shown in
Figure 4, which shows the original parallel program being
decomposed into a static collection of threads each of which
is subjected to a synthesis pass described in the following
sections. The separately produced sub-circuits are then com-
posed into a single circuit with the inter-thread communica-
tion implemented with appropriate hardware structures.

IV. SYNTHESIS FLOW

In our synthesis flow C# source code passes through three
general stages of processing and several intermediate forms
before being emitted as synthesisable Verilog RTL. The first
intermediate form is CIL (common intermediate language)
and the subsequent forms are an internal virtual machine
(VM) code. A bison parser is used to convert the textual
CIL form into an abstract syntax tree (AST) as an SML
data structure and the rest of the flow is implemented in
Moscow ML.

We start by using either the Microsoft or the Mono C#
compiler to convert the source code to CIL code. Although

parallel

program

C#

Thread 1

Thread 2

Thread 3

Thread 3

C to

gates

C to

gates

C to

gates

C to

gates

circuit

circuit

circuit

circuit

Verilog

for system

Figure 4. Synthesis of threads to circuits

these two tools occasionally diverge in the way they handle
certain details, such as the way arrays are initialized and
the layout of basic blocks, they have so-far been fully
interchangeable without affecting experimental results

For illustration, we show some CIL code below. Key
aspects of the CIL code include the use of a stack rather than
registers (e.g. mul pops two elements off the stack, multiplies
them and pushes the result onto the stack); local variables
stored in mutable state (e.g. ldloc.1 pushes the value at local
memory location 1 onto the stack); control flow through
conditional and unconditional branches; and direct support
for overloaded method calls.
IL 0019: ldc.i4.1
IL 001a: stloc.0
IL 001b: br IL 005b
IL 0020: ldc.i4.1
IL 0021: stloc.1
IL 0022: br IL 0042
IL 0027: ldloc.0
IL 0028: ldloc.1
IL 0029: mul
IL 002a: box [mscorlib]System.Int32
IL 002f: ldstr ” ”
IL 0034: call string string::Concat(object, object)

Certain restrictions exist on the C# that the user can write.
Currently, in terms of expressions, only integer arithmetic
and limited string handling are supported, but floating point
could be added without re-designing anything, as could other
sorts of run-time data. More importantly, we are generating
statically allocated output code, therefore:

1) arrays must be dimensioned at compile time
2) the structure of the heap, in terms of number of objects

and their type, must be constant at each iteration of
any loop not unwound at compile time,

3) recursive function calling must bottom out at compile
time and so the depth cannot be run-time data depen-
dent.

Hardware description languages such as VHDL and Ver-
ilog 2000 contain constructs for generating structure at
compile time. These two languages specifically use the
keyword ‘generate’ for this, and certain variables are

24



specifically associated with the generate statements. On
the other hand, C# programs do not necessarily possess a
clear delineation between structural-generation and run-time
evaluation. Another major difference between C# and RTL
is the lack of dynamic-storage allocation in synthesisable
RTL. Therefore, our first stage of processing, referred to
as Assembly Language Elaboration, decides what to do at
compile time and what to leave to run time, as well as
reducing the program to use a fixed number of storage
variables. It totally removes the CIL stack.

We say that the elaboration process ‘subsumes’ a number
of variables present in the input source code, meaning that
they do not need to be represented in the executing RTL.
In CIL, a variable is either a static or dynamic object
field, a top-level method formal, a local variable, or a stack
location. Subsumed variables include object pointers and
array handles that are initialized once and not subsequently
changed, as well as loop variables where the loops are fully
unwound and removed during elaboration. Other variables
might also be removed in a later stage of processing if
they have no effect or influence on the outputs of the RTL.
Most object pointers and array handles are subsumed, but
certain of them are represented in the final RTL. These are
ones that range over a fixed, finite set of objects, created
during elaboration, but which get pointed at from different
places: e.g. as messages are passed between objects. Since
these pointers range over a known, fixed population, they
can be recoded into a packed form using an appropriate
number of bits. Our current approach does not support fresh
object allocation or garbage generation during run-time RTL
execution, although, in the future, using more static analysis,
we hope to be able to compile any program that uses a
bounded number of objects.

The first step of processing of the AST is to form an
hierarchic symbol dictionary containing the classes, meth-
ods, fields, and custom attributes. Other declarations, such
as processor type, are ignored.

We have two ways of deciding which methods to convert
to hardware. In the first method, a command line flag to the
compiler, called -root, enables the user to select a number of
methods or classes for compilation. The argument is a list
of hierarchic names, separated by semicolons. The second
method consists of a Kiwi.Hardware() attribute that is placed
on certain classes or methods by the user to nominate them
from compilation. Either way, the tool is presented with one
or more thread starting points for hardware compilation.
Additionally, every class in CIL has a class constructor
method, that is considered to be an entry point if that class
is nominated for compilation by either way. Other items
present in the .NET input code are ignored, unless called
from a root thread.

All procedure calls made by a thread are ‘in-lined’ in
the elaborate stage by macro-style expansion of the CIL
subroutine call instructions. This is possible because we

maintain sufficient type information about what is stored
in what variable to select between different overloaded
implementations of methods. Each thread is symbolically
evaluated using a two-stage mechanism. The first stage is a
pre-processing run on each method body when the thread
first enters it. It does not expand the called function bodies,
whereas the second stage performs function body expansion.

The first stage operations on a method body eliminate
the CIL stack. Symbolic tracking of expression types and
code reachability is used to determine the concrete type
stored in every variable and the layout of the stack and heap
at every basic block boundary. Such symbolic evaluation
is straightforward since every operator and method call is
strongly typed. In our implementation of this approach,
which of several overloaded method bodies is called cannot
currently be controlled by run-time data, but this limita-
tion can be removed in the future. At the entrance and
exit to each basic block, load and store instructions are
respectively inserted, to load and store the contents of the
stack at the block boundaries into statically-scoped surrogate
variables, created for this purpose. The surrogate variables
are frequently subsumed, but can appear in the VM code
and hence, from time-to-time, in the output RTL. Where
a method is expanded, in line, multiple times, to reduce
run-time register generation the same surrogate variable
instances are shared across all instances of a stack frame at
the same depth of recursion. Since we have full knowledge
of when a variable is potentially live, alternative methods
for variable sharing could be explored in the future, such
as re-using variables between stack frames that cannot be
concurrently active, but registers are not at a premium in
modern target technologies, such as FPGA and ASIC, and
such an approach would most-likely result in slower designs
owing to the multiplexors needed. The same algorithm is
used for local variable allocation.

The second stage of processing for a thread performs loop
unwinding and VM code generation. Certain loops must
be unwound since they contain calls to new that are not
matched with a dispose on each iteration and, as mentioned,
this is not supported at runtime. Forking new threads often
happens inside loops and these loops too must be unwound
at compile time if the resulting design is to be finite, since
each new thread turns into new hardware. Other loops may
be selectively unwound to alter the trade off between silicon
use and clock cycle use. The user can control clock cycle
use and loop unwinding by inserting calls to the dummy
functions Kiwi.Pause() and Kiwi.NoUnroll() in the bodies of
the loop. In the future, we want to reduce dependence on
such user-inserted directives and instead allow such trade
offs to be controller by higher-layer metrics.

Future work will allow partial unwinding of loops (e.g.
doing four or eight source-level iterations in parallel at
run time) and hoisting of loop exit predicates. Loop order
inversions can also be implemented to assist with ‘blocking’

25



leading to spatio/temporal reuse on large arrays held in
cached DRAM.

As mentioned, C# does not have an RTL-like generate
statement and so the same looping constructs are used both
for structural generation and runtime process loops. The
separation of function is achieved by compiling the program
using as much compile-time constant propagation as possible
and following conditional branches whose branch conditions
are fully determined. Where the boundary conditions of a
loop are determined only by constants, and the loop does
not contain a call to Kiwi.Pause() or Kiwi.NoUnroll() then it
will be unwound. The heap storage allocator is modelled
in full with every call to newobj or newarr allocating a
nominal, numeric address to each nominal object and all
of its contents. These nominal addresses appear in the VM
code generated for each pointer assignment or as arguments
to calls to side-effecting hook in the run-time system.

Loops that consume run-time clock cycles, because they
contain, directly or indirectly, a Kiwi.Pause() call, certainly
cannot be unwound at compile time. In order to determine
such a loop, each thread is compiled with the concept of
a current region which is an integer. The operation of the
elaborator when it encounters a call to Kiwi.Pause() is both
to emit the call to an internal pause routine to the output
VM code and also to note that the thread has entered a new
region by incrementing the region counter. The operation
of the elaborator when it encounters a back jump (i.e. to a
point it has already covered), where the destination point had
a different value of region, is to emit a VM jump statement
rather than following the flow of control.

Where an assignment to a variable that is not written by
another thread is of a constant value, for which purpose
nominal addresses and constant operations on them are
considered constant, the value is kept by the elaborator as
part of its current environment for that thread, as a variable
to value mapping, and substituted out in any subsequent
references to that variable by the thread. Where a thread
makes a back jump, where the environment on the previous
pass contained a different assumption over the value of a
variable, the whole elaboration of that thread is rolled back
to an earlier point in its progress, where the work can be
done again, augmented with a note not to store that variable
in the environment at that point in the code.

In a third stage of processing, a points-to analysis finds
disjoint regions in the nominal address space and then
implements each region as a register, register file, RAM or
DRAM segment according to its size. A cone-of-influence
analysis deletes any code that has no effect on output values.
Each VM is then mapped to hardware components using
conventional C-to-gates synthesis techniques that balance
loads on structural resources, such as memory ports.

Producer
thread

Consumer
thread

one-place
channel

one-place
channel

produces output
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

consumes input,
multiplies it by 2,
output it, forever

0, 2, 6, 8, 10, 12, 14, 16, 18

chan1 chan2

Figure 5. A producer/consumer scenario.

V. PRODUCER CONSUMER EXAMPLE

This section presents a small example of two commu-
nicating threads which are synthesized into a circuit. The
following section presents a more realistic example of a
filter circuit. However, before tackling a more sophisticated
example we describe in detail an example built using threads
and the one place channels described in the previous sections
to build an example of a producer/consumer scenario which
is a common idiom for channel based concurrent systems.

The example in this section comprises two threads: a
producer thread which generates the values 0, 1, 2, 3, 4,
5, 6, 7, 8, 9 and then stops; and a consumer thread which
continually reads integer values from a channel and outputs
their double on an output channel. The two threads are joined
by a shared channel as shown in Figure 5.

This circuit is represented by a collection of methods in a
class ProducerConsumerExample which are used to spawn off
threads plus other declarations to define the ports of the cir-
cuit and the channels used for inter-thread communication.
For example, here is the portion of the code that specifies
the output to be an integer port and which also declares and
creates the two channels used for communication between
the threads and the main program.

1 class ProducerConsumerExample
2 {
3 [Kiwi.OutputIntPort(”result”)]
4 public static int result;
5
6 static Kiwi.Channel<int> chan1 = new Kiwi.Channel<int>();
7 static Kiwi.Channel<int> chan2 = new Kiwi.Channel<int>();

The two channels that are created are exactly the same
one-place channels described in the previous sections. Note
that all of the declarations in this class have so far been of
static fields.

The producer is described by a thread which is an instan-
tiation of the following static method.

1 public static void Producer()
2 {
3 for (int i = 0; i < 10; i++)
4 {
5 chan1.Write(i);
6 Kiwi.Pause();
7 }
8 }

The producer writes out ten values and then stops. The
values are written to the shared channel chan1 and the
writing of values is sequenced to synchronize with an
implicit clock by called Kiwi.Pause();.

26



The consumer is another static method which runs forever.

1 public static void Consumer()
2 {
3 while (true)
4 {
5 int i = chan1.Read();
6 chan2.Write(2 ∗ i);
7 Kiwi.Pause();
8 }
9 }

The consumer reads values from the shared chan1 (which
is populated by the producer thread) and then writes the
double of the read value to the output channel chan2.

The top level circuit description instantiates the producer
and consumer threads and then reads the result values from
chan2 which are used to drive the result output.

1 public static void Behaviour()
2 {
3 Thread ProducerThread =
4 new Thread(new ThreadStart (Producer));
5 ProducerThread.Start();
6
7 Thread ConsumerThread =
8 new Thread(new ThreadStart(Consumer));
9 ConsumerThread.Start();

10
11 while (true)
12 {
13 Kiwi.Pause();
14 result = chan2.Read();
15 Console.Write(result + ” ”);
16 }

When this program is compiled and run on the command
line or in the Visual Studio IDE it produces the expected
output values.

>ProducerConsumerExample
0 2 4 6 8 10 12 14 16 18 ˆC

The consumer executes indefinitely so this execution of
the program has been terminated with a control-C signal.

The pause statements in the producer, consumer or output
loop can be omitted, thereby not dictating a particular
mapping of the behavior to hardware clock cycles, although
clock cycles will still be consumed by a thread if it blocks in
one of its Read or Write calls to a Kiwi.Channel. The thread
schedule that is chosen by the compiler can alter whether
the data is passed using combinational logic between a
pair of stages or whether it is registered and consumes a
clock cycle at that point. For instance, if a data generator
is statically scheduled before an always-ready sink, then no
handshake wires are needed in the generated hardware at that
point and the decision between combinational and pipelined
data transfer can be made based on other grounds, such
as conventional high-level synthesis metrics that globally
balance pipeline stages or balance loading on structural
resources, such as memory ports.

VI. FILTER EXAMPLE

This section demonstrates how a filter can be designed as
a collection of communicating threads. First, we describe a
5-tap filter without using any threads other than the main
program. This produces a filter with five multipliers and a
combinational adder tree. Later we shall show how a semi-
systolic filter can be designed with multiple threads.

The specification of the filtering operation we describe
and implement in this section is shown below.

yt =

N−1∑
k=0

akxt−k

The code to implement a simple finite impulse response
filter as described above is shown below as a static method
in C#.

1 public static int[] SequentialFIRFunction (int[] weights, int[] input)
2 {
3 int[] window = new int[size];
4 int[] result = new int[input.Length];
5
6 // Clear to window of x values to all zero.
7 for (int w = 0; w < size; w++)
8 window[w] = 0;
9

10 // For each sample...
11 for (int i = 0; i < input.Length; i++)
12 {
13 // Shift in the new x value
14 for (int j = size − 1; j > 0; j−−)
15 window[j] = window[j − 1];
16 window[0] = input[i];
17
18 // Compute the result value
19 int sum = 0;
20 for (int z = 0; z < size; z++)
21 sum += weights[z] ∗ window[z];
22 result[i] = sum;
23 }
24 return result;
25 }

Note that this code has no explicitly sequencing through calls
to Kiwi.Pause() and there is no inter-thread communication.
This code can be synthesized into a circuit which fairly
directly implements the logic above with the loops unrolled
to yield five multipliers.

A much better way to make a filter is to use 5-taps with
registers between the taps to yield either a semi-systolic
or systolic filter which will have a much better throughput
than the one produced from the design above and which
will also not suffer from a long combinational critical path.
Furthermore the filter can be transposed to allow the input
samples to be broadcast to each stage. Such a design is
illustrated in Figure 6.

The first design decision we make is to represent each tap
of the transposed filter with one thread. This will not result in
an efficient software implementation but this decision does
allow us to express the idea that we want to build a filter
using N parallel stages which then does result in fast parallel
hardware.

27



xa
4

+

xa
3

+

xa
2

+

xa
1

+

xa
0

+0

x
t-k

y
t

Figure 6. A transposed multi-tap filter.

A static method can be defined which can be instantiated
several times to create multiple tab threads. Each tap-thread
is passed in its weight, a channel to read its x sample value
from, a channel to read the sum of the previous multiply-add
operations and a channel to write out the result. Each tap
tread contains an infinite loop which repeatedly consumes
values from the input channels and writes results to the
output channel. Synchronization occurs implicitly through
the use of the read and write methods of the channel class.

1 static void Tap(int a, Kiwi.Channel<int> xIn, Kiwi.Channel<int> yIn,
2 Kiwi.Channel<int> yout)
3 {
4 int x;
5 int y;
6 while(true)
7 { y = yIn.Read();
8 x = xIn.Read();
9 yout.Write(x ∗ a + y);

10 }
11 }

In the description shown above the reads from the yIn

and xIn channels may occur sequentially. We could have
explicitly specified that the reads are concurrent by spawning
off a thread for one of the reads and then joining on it and
this will schedule the read operations within the same clock
cycle. However, this is rather clumsy in C# and this is case
where having a language level par block is useful (e.g. as is
done in Handel-C). However, we believe this problem can be
alleviated through the use of a join pattern which expresses
the notion of reading from multiple channels atomically. It
is possible to implement join patterns as a library in C#
without changing the compiler or runtime.

The filter architecture shown in Figure 6 can now be mod-
eled by instantiating the tap thread multiple times with the
appropriate channels between the threads and the addition
of some extra threads to provide the zero input along to the
y chain of channels.

1 static void ParallelFIR(int size, Kiwi.Channel<int> xin,
2 Kiwi.Channel<int> yout)
3 {
4 Kiwi.Channel<int>[] Xchannels = new Kiwi.Channel<int>[size];
5 Kiwi.Channel<int>[] Ychannels
6 = new Kiwi.Channel<int>[size + 1];
7
8 // Create the channels to link together the taps
9 for (int c = 0; c < size; c++)

10 {
11 Xchannels[c] = new Kiwi.Channel<int>();
12 Ychannels[c] = new Kiwi.Channel<int>();
13 Ychannels[c].Write(0); // Pre−populate y−registers with zeros
14 }

15 Ychannels[size] = new Kiwi.Channel<int>();
16
17 // Connect up the taps for a transposed filter
18 for (int i = 0; i < size; i++)
19 {
20 int j = i;
21 Thread tapThread = new Thread(delegate()
22 { Tap(j, weights[j], Xchannels[j], Ychannels[j],
23 Ychannels[j+1]); });
24 tapThread.Start();
25 }
26
27 // Broadcast the input
28 Thread broadcast = new Thread(delegate()
29 { BroadcastInput(xin, Xchannels); });
30 broadcast.Start();
31
32 // Insert an infinite sequence of 0s into the first Y channel stage
33 Thread zeroYs = new Thread(delegate()
34 { ZeroFirstY(Ychannels[0]); });
35 zeroYs.Start();
36
37 // Drive yout
38 int yresult;
39 while (true)
40 {
41 yresult = Ychannels[size].Read();
42 yout.Write(yresult);
43 }
44 }

The top-level inputs and outputs of the circuit are repre-
sented by integer ports. The class that defines the transposed
convolver starts with the port declarations and a definition
of the weights.

1 class ParallelConvolver
2 {
3 const int size = 5;
4 static int[] weights = new int[size] {2, 5, 6, 3, 1} ;
5
6 [Kiwi.InputIntPort(”sample”)]
7 public static int sample;
8
9 [Kiwi.OutputIntPort(”result”)]

10 public static int result;

We may also have explicit control over the bit-vector
representation of an output port e.g to create a 32-bit bit-
vector in the generated Verilog instead of an integer port we
could write:

1 [Kiwi.OutputWordPort(”result”, 31, 0)]
2 public static int result;

Finally the top-level definition of the filter is a static
method that consumes sample values every tick from the in-
put and pumps them into the filter and which also consumes
a value from the filter and writes it to the output port. This
is the method that is nominated as the ‘root’ method to the
Kiwi tools for the generation of a Verilog netlist.

1 static void FIRtop()
2 {
3 // Create channels to allow the main program to communicate
4 // with the filter sub−circuit
5 Kiwi.Channel<int> xin = new Kiwi.Channel<int>();
6 Kiwi.Channel<int> yout = new Kiwi.Channel<int>();
7

28



8 // Create a thread to filter a single channel.
9 Thread filterChannel = new Thread(delegate()

10 { ParallelFIR(xin, yout); });
11
12 // Perform the parallel filtering.
13 filterChannel.Start();
14
15 while (true)
16 {
17 xin.Write(sample);
18 Kiwi.Pause();
19 result = yout.Read() / sumOfWeights;
20 }
21 }

The sequential filter code was used for the kernel of a
program for convolving Windows BMP images and we in-
strumented its performance. On a dual-core Pentium Q6700
system running at 2.67GHz with 3GB of memory the
sequential code could process 6,562,500 pixels per second.
We measured only the time taken for the kernel operation
on the image in memory and not the time taken to read or
write images to the disk.

The parallel software version of the kernel which used
a separate filter thread for each of three color channels
operated at 10,467 pixels per second which gives an indi-
cation of how poorly very fine grain parallelism maps onto
a conventional multi-core architecture. The FPGA version
has a critical path of 7.1 nanoseconds on an XC5VLX50T-1
part and can operate at 141MHz. The handshaking protocol
that was generated used four cycles to process each sample
so this circuit operates at 35,000,000 pixels per second.
The generated Verilog produces a circuit which is mapped
into 359 slice LUTs and 4 DSP48E blocks. (We believe
the insertion of another register would make the FPGA
synthesis tools map the remaining filter tap stage into a
DSP48E block and this would have been present if our part
of the flow had chosen a different static schedule for the
user’s threads.) A similar filter generated using Xilinx’s core
generator which makes aggressive use of DSP48E blocks
and pipelining operate at around 400MHz. We generated a
similar transposed systolic filter using Core Generator

On the BEE3 RAMP board the DRAM memory controller
delivers 288-bits for each read operation so we can process
12 8-bit pixels in each clock ticks. This increases the perform
to 429,000,000 pixels per second if we instantiate 12 banks
of filters (with 3 filters per bank for each color channel).
There is significant room for improvement e.g. by optimizing
the implementation of the handshaking protocol (or totally
removing it through aggressive analysis) and by further
pipelining.

In conclusion our prototype system can produce a con-
volver from a parallel program which operations 3,000 times
faster (on the ML-505 board) or 40,000 times faster on the
BEE3 system than the corresponding sequential program.
However, compared to an optimized filter from Xilinx’s Core
Generator our system is ten times slower. This supports our
thesis that our approach can help to significantly speed up

certain kinds of computations compared to their sequential
software counterparts however we do not aim to match the
speed of hand-crafted designs.

VII. CONCLUSIONS

We have shown that system-level concurrency constructs
can be synthesized into circuits. This capability can be ex-
ploited for compiling parallel programs into circuits. Specifi-
cally, we have provided translations for events, monitors, the
lock synchronization mechanism and threads under specific
usage idioms. By providing support for these core constructs
we can then automatically translate higher-level constructs
expressed in terms of these constructs e.g. join patterns,
multi-way rendezvous and data-parallel programs.

We see FPGAs as a viable target platform for the future
of scientific programming and systems like Kiwi are needed
to make FPGAs accessible to the wider community. Rapid
development and debugging is facilitated by the use of
standard languages and the ability to ‘run’ the design on
a standard processor before being processed by FPGA place
and route tools. (FPGA tools may themselves be faster in the
future if FPGA architecture moves from bit-level to word-
level internal implementation.)

The designs presented in this paper were developed using
an off-the-shelf software integrated development environ-
ment (Visual Studio 2008) and it was particularly productive
to be able to use existing debuggers and code analysis tools.
By leveraging an existing design flow and existing language
with extension mechanisms like custom attributes we were
able to avoid some of the issues that face other approaches
which are sometimes limited by their development tools.

Our approach complements existing research on the au-
tomatic synthesis of sequential programs and as well as
work on synthesizing sequential programs extended with
domain-specific concurrency constructs (e.g. Handel-C). By
identifying a valuable point in the design space, i.e. parallel
programs written using conventional concurrency constructs
in an existing language and framework, we hope to pro-
vide a more accessible route to reconfigurable computing
technology for mainstream programmers. The advent of
many-core processors will require programmers to write
parallel programs anyway, so it is appropriate to investigate
whether these parallel programs can also model other kinds
of parallel processing structures like FPGAs and GPUs.

Our initial experimental work suggests that this is a viable
approach which can be nicely coupled with vendor-based
synthesis tools to provide a powerful way to express digital
circuits as parallel programs.

In this paper, we separately compiled each user thread,
generating hardware that can model all possible execution
interleavings, but in future work we will analyse inter-
thread trigger/guard dependencies and accordingly restrict
the allowable interleavings so that fewer gates are used for
handshaking.

29



nodePtr

nil 

while (nodePtr != null)

{  ProcessNode(nodePtr);

   nodePtr = nodePtr->next;

}

[0] [1] [2] [3]

for (int i=0; i<4; i++)

  ProcessNode(a[i]);

a

automatic program

transformation based

on shape analysis

Figure 7. Possible conversion of a linked list program to use arrays when
maximum list length could be determined using static analysis.

Although we currently support limited forms of dynamic
storage allocation, where the heap has the same structure on
each run-time iteration of a loop, we aim to deploy recent
results in shape analysis [15] and separation logic [16] to
automatically transform more-general programs into their
statically-allocated and array-based equivalents. We will
build upon existing work by the authors in the context of
C [17], [18] and extended it to a subset of CLR bytecode. For
example, Figure 7 demonstrates how we might apply shape
analysis and separation logic to automatically transform a
program that uses a linked list into a program that uses a
statically-allocated array. Such a technique would greatly
extend the utility of an approach that aims to take regular
parallel programs written by software engineers and convert
them into efficient circuits.

REFERENCES

[1] R. K. Gupta and S. Y. Liao, “Using a programming language
for digital system design,” IEEE Design and Test of Comput-
ers, vol. 14, Apr. 1997.

[2] M. S. Lam and R. P. Wilson, “Limits of control flow on
parallelism,” The 19th Annual International Symposium on
Computer Architecture, May 1992.

[3] A. Takach, B. Bower, and T. Bollaert, “C based hardware
design for wireless applications,” Design, Automation and
Test in Europe, 2005.

[4] F. Bruschi and F. Ferrandi, “Synthesis of complex control
structures from behavioral systemc models,” Design, Automa-
tion and Test in Europe, 2003.

[5] C. Inc., “Handel-C language overview,” Web page
http://www.celoxica.com, 2004.

[6] Y. D. Yankova, G. Kuzmanov, K. Bertels, G. N. Gaydadjiev,
Y. Lu, and S. Vassiliadis, “DWARV: Delftworkbench auto-
mated reconfigurable VHDL generator,” 17th International
Conference on Field Programmable Logic and Applications,
Aug. 2007.

[7] W. A. Najjar, A. P. W. Bohm, B. A. Draper, J. Hammes,
R. Rinker, J. R. Beveridge, M. Chawathe, and C. Ross, “High-
level language abstraction for reconfigurable computing,”
IEEE Computer, vol. 36, no. 8, 2003.

[8] B. A. Buyukkurt, Z. Guo, and W. Najjar, “Impact of loop
unrolling on throughput, area and clock frequency in ROCCC:
C to VHDL compiler for FPGAs,” Int. Workshop On Applied
Reconfigurable Computing, Mar. 2006.

[9] S. Gupta, N. D. Dutt, R. K. Gupta, and A. Nicolau, “SPARK:
A high-level synthesis framework for applying parallelizing
compiler transformations,” International Conference on VLSI
Design, Jan. 2003.

[10] M. Gokhale, J. M. Stone, J. Arnold, and M. Kali-
nowski, “Stream-oriented FPGA computing in the Streams-
C high hevel language,” 8th IEEE Symposium on Field-
Programmable Custom Computing Machines, 2000.

[11] S. S. Huang, A. Hormati, D. F. Bacon, and R. Rabbah,
“Liquid metal: Object-oriented programming across the hard-
ware/software boundary,” in ECOOP ’08: Proceedings of the
22nd European conference on Object-Oriented Programming.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 76–103.

[12] L. Séméria and G. De Micheli, “Spc: synthesis of pointers in
c: application of pointer analysis to the behavioral synthesis
from c,” in ICCAD ’98: Proceedings of the 1998 IEEE/ACM
international conference on Computer-aided design. New
York, NY, USA: ACM, 1998, pp. 340–346.

[13] J. Babb, M. Rinard, C. A. Moritz, W. Lee, M. Frank,
R. Barua, and S. Amarasinghe, “Parallelizing applications
into silicon,” 7th IEEE Symposium on Field-Programmable
Custom Computing Machines, 1999.

[14] R. Nikhil, “Bluespec SystemVerilog: Efficient, correct RTL
from high-level specifications,” Formal Methods and Models
for Co-Design (MEMOCODE), 2004.

[15] S. Magill, M. Tsai, P. Lee, and Y. Tsay, “THOR: A tool
for reasoning about shape and arithmetic,” Computer Adided
Verification (CAV), 2008.

[16] M. Raza, C. Calcagno, and P. Gardner, “Automatic paral-
lelization with separation logic,” European Symposium on
Programming (ESOP), 2009.

[17] B. Cook, A. Gupta, S. Magill, A. Rybalchenko, J. Simsa,
S. Singh, and V. Vafeiadis, “Finding heap-bounds for hard-
ware synthesis,” Formal Methods for Computer Aided Design
(FMCAD), 2009.

[18] J. Simsa and S. Singh, “Designing hardware with dynamic
memory abstraction,” ACM/SIGDA Symposium on Field Pro-
grammable Gate Arrays (FPGA), 2010.

30


