
PRE-PRINT

Bridging the Gap between Desktop and the Cloud for eScience Applications

Yogesh Simmhan, Catharine van Ingen

Microsoft Research

Los Angeles, CA

{yoges,vaningen}@microsoft.com

Girish Subramanian

Indiana University,

Bloomington, IN

subramag@cs.indiana.edu

Jie Li

University of Virginia,

Charlottesville, VA

jl3yh@virginia.edu

The widely discussed scientific data deluge creates

a need to computationally scale out eScience

applications beyond the local desktop and cope with

variable loads over time. Cloud computing offers a

scalable, economic, on-demand model well matched to

these needs. Yet cloud computing creates gaps that

must be crossed to move existing science applications

to the cloud. In this article, we propose a Generic

Worker framework to deploy and invoke science

applications in the cloud with minimal user effort and

predictable cost-effective performance. Our

framework addresses three distinct challenges posed

by the cloud: the complexity of application

deployment, invocation of cloud applications from

desktop clients, and efficient transparent data

transfers across desktop and the cloud. We present an

implementation of the Generic Worker for the

Microsoft Azure Cloud and evaluate its use for a

genomics application. Our evaluation shows that the

user complexity to port and scale the application is

substantially reduced while introducing a negligible

performance overhead of < 5% for the genomics

application when scaling to 20 VM instances.

1. Introduction

Cloud computing has emerged as a viable platform

for running large-scale computation and data analysis

[8]. Building on prior work on Grid and cluster

computing, it offers an evolutionary paradigm that

approaches utility computing [3,11,13]. The

advantages of cloud computing are well known: on-

demand and scalable resources, pay as you go policy

that avoids costly capital costs, competitive pricing due

to economies of scale, and simple service interfaces for

easy access and management. Commercial Clouds

backed by large global datacenters have been available

for some time from vendors such as Amazon [24],

RackSpace [23], and Microsoft [22]. There is also

active research on open source and private clouds [14],

such as Eucalyptus [4], Nimbus [30] and CAIRN [12],

and on improving cloud operations [6,18].

Cloud computing holds benefits for science

applications at different scales [7,16,29], from the

desktop to the supercomputer. Desktop applications

that have outgrown single machine cores can leverage

the cloud on demand rather than build and maintain

clusters [10]. Existing applications on older clusters

can migrate to cloud virtual machines (VMs) that track

technology to provide a quicker and cheaper alternative

to cluster upgrades or securing access to

supercomputing centers [5]. Supercomputing users can

consider the cloud for surge computing during peak

loads to lower queue latency [3,9].

While cloud computing is promising for scaling

eScience applications beyond the desktop, it poses

significant challenges for many users [20,21,29]. In

this article, we focus on tools to develop, deploy, and

operate eScience applications on commercial clouds.

Specifically, we identify and address three barriers to

wider eScience usage of cloud:

1. Application Deployment – Ease of application

porting and initial deployment to the cloud,

2. Application Execution – Simple invocation and

tracking of cloud applications from remote clients,

3. Data Access – Efficient data access for eScience

applications across the desktop and the cloud.

Our Generic Worker framework lowers these barriers

by providing a set of intuitive desktop client tools and a

single wrapper binary that executes on all cloud VMs.

The framework supports simple registration and

deployment of .NET, Java, and command line

applications. Once deployed, cloud applications can be

instantiated on-demand and at scale from a desktop or

remote client: through a command shell, from a

workflow, or a .NET or web service API. The

framework tracks runtime execution and data

provenance automatically. Lastly, the framework

transparently performs automatic and just in time file

movement between the desktop, cloud storage and

cloud VMs with efficient caching.

We implement the framework on Microsoft’s Azure

Cloud platform [22] and evaluate its ease of use and

performance for a real genomics application. While our

implementation is on Azure, we believe the same

Generic Worker pattern applies to Amazon EC2 and

other IaaS/PaaS clouds [31], albeit with somewhat

different implementation.

The rest of the paper is structured as follows. In

Section 2, we discuss the challenges of migrating

eScience applications to the cloud and related work.

Section 3 introduces the Generic Worker framework.

Section 4 evaluates the framework used for a genomics

application. Lastly, Section 5 presents conclusions and

future work.

PRE-PRINT

2. Motivation and Related Work

Cloud computing is commonly categorized as

Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Software as a Service (SaaS) [31]. IaaS,

such as Amazon EC2, abstracts the hardware resources

as a virtual machine to give the equivalent of bare

metal machine. PaaS, such as Google AppEngine,

provides a scalable programming platform that runs

within a sandbox. SaaS provides applications as

scalable services that can be customized or composed

into other applications, examples being business

applications from SalesForce.com. This paper focuses

on effective use of IaaS and PaaS clouds for scientific

applications; eScience SaaS will arrive when these

applications become offered as public services.

2.1. Cloud Computing Benefits for eScience

Cloud computing offers benefits [7,16,29] for

eScience applications at scales ranging from desktop

scientists to supercomputing power users.

Desktop applications must be scaled out rather than

simply scaled up because scientific computing and data

needs are outpacing Moore’s Law and local disk

capabilities [32]. The prospect of building, operating,

and porting applications to a cluster can be daunting as

scientists must rewrite code and become cluster

operators. The cloud can offer longer-term scalability

and hide much of that complexity if programming

models and interfaces remain simple [33]. Also, the

cyclic nature of some scientific computing needs, such

as just after annual field campaigns, fits well with the

on-demand flexibility offered by the cloud [32].

For existing local research cluster users, the cloud

can reduce the lower real (non-subsidized) total cost of

ownership by reducing the operations people cost, peak

networking bandwidth requirements, and technology

upkeep through constant machine upgrades [5]. For

cluster users considering a step up to national

supercomputing centers, paperwork and eligibility

requirements may restrict and delay access as well as

limit the software stack or services that can be

deployed due to security restrictions. With cloud

computing, all it takes is a credit card to open a new

account online and access compute node VMs.

Users of supercomputing centers can use the near-

instantaneous access of clouds to reduce the queue wait

times [9]. Clouds can also be used as resource surge

during peak load at centers, or during special events

like tutorials that require large, reserved resources for

guest users for a short duration [3]. Lastly, large

datasets generated in the cloud can be easily shared for

analysis within or outside the cloud, democratizing

access to scientific results. Supercomputing centers

restrict ad hoc hosting of datasets and limit their local

analysis to authorized users.

2.2. Migrating Applications to the Cloud

Running an eScience application in an infrastructure

cloud presents three different challenges: (1)

application deployment, (2) application execution, and

(3) file transfers to, from, and within the cloud.

2.2.1. Application Deployment

Simplistically, deploying an application to an IaaS

cloud requires installing it on an existing or new VM

image and then copying the image into cloud storage so

instances of that VM can be created [25]. This model is

used in Amazon EC2. Deployment on the Microsoft

Azure PaaS is similar. Each application must be

packaged as a .NET “role”. That package is then

copied into cloud storage so that instances of that role

can be created by copy to a Windows 64bit Server VM.

Both clouds require the scientist user to manage

application binaries and dependencies [29]. Images and

packages must be recreated and redeployed in the event

of any change to an application, its configuration or

dependencies [20,21]. For example, the user must

explicitly manage application dependencies on a

version of MatLab and the Java VM. This becomes

more complicated when several applications are

deployed in a single VM for optimal use of VM

resources. Users must either maintain many VM

images and running instances, or stage application

dependencies on the fly within a transient VM instance.

2.2.2. Application Execution

Applications deployed in cloud VM instances need

to be invoked from outside that instance – from

workflows, scripts, command lines or web forms

executing in or outside the cloud. This requires the

application and its clients to be modified to support

remote calls and/or a custom proxy service written that

marshals and unmarshals parameters as requests passed

as service calls or messages in reliable cloud queues.

Code maintenance becomes tedious as applications and

their clients increase in time or their APIs change.

2.2.3. Data Transfer

Passing files as parameters to cloud applications

introduces problems in managing data transfers

between clients outside the cloud and VM instances

[3]. Files on local disks or network shares are

important, often primary, inputs and outputs for

scientific applications. Cloud applications need to

access files passed as input by clients outside the cloud,

and vice versa for output files. For example, a desktop

workflow may use applications on the local machine

and the cloud with files passed between them. Also,

since VM local disks are transient, any persisted files

must be moved to cloud persistent storage. Not all

cloud platforms provide a network file system

accessible both inside and outside the cloud. This

PRE-PRINT

necessitates data transfers using REST protocols to

cloud storage that are less intuitive for scientific

applications and require them to be changed to use

such protocols. Lastly, the low bandwidth into and out

of the cloud means users have to be more aware of

client data transfers.

2.3. Related Work

Cloud vendors provide tools to install and manage

applications in a VM image that is then copied to and

scaled in the cloud. Examples include Amazon EC2

AMI tools [24,25] and image managers like

OpenNebula [27]. However, a VM image is too coarse

a granularity to manage for a constantly changing pool

of applications where the upload time can add

significant delay – a 2GB VM image takes

approximately 15mins to upload [26]. Also, these tools

do not address the challenge of remote execution or

efficient data transfer between desktop and cloud.

A profile-based approach proposed recently [35]

allows on-demand deployment and load-driven scale

out of applications onto clouds. While this partly

addresses the dynamic deployment problem we solve,

it requires install scripts configured by experts to

update predefined VM images. Also, several persistent

infrastructure services are required for the architecture,

relegating its use to large institutions and advanced

users. In comparison, our single-step application

registration process is more accessible to most

eScience users and the single, self-contained Generic

Worker VM (that also executes the applications) is the

only custom service required.

Similar application and service deployment tools

[18] for clusters and grids, such as ADEM [28], GADe

[15] and Distributed Ant [19], support complex

dependencies, but are meant for online nodes rather

than VM images. Using them with transient VM

instances induces repeated deployments. Also, their

complexity is prohibitive for scientists wishing to

deploy and run applications that have a self-contained

set of binaries and libraries in the cloud.

Toolkits such as GFac [1], Opal [2] and gRAVI [36]

use a factory pattern to create dynamic web services

that wrap commandline applications on the grid. They

allow users to describe the commandline parameters

and create services with matching interfaces that when

invoked, schedule the application to execute using a

batch scheduler. While the intent of easily supporting

remote application is similar, they differ from our

Generic Worker model in several ways:

1. The toolkits require users to explicitly specify

parameter bindings. We additionally support automatic

binding of .NET or Java applications using reflection.

2. Only gRAVI packages applications for automatic

deployment like we do instead of assuming the

applications are already installed.

3. The toolkits do not address data transfer

optimization. Our file caching and just in time data

movement avoids costly file movement between cloud

and client unless required.

4. All of these toolkits are tightly coupled to grid

installations for job scheduling and file transfer using

GridFTP. We instead focus on cloud platforms and

reuse simple native cloud primitives like reliable

queues and REST storage protocols. This makes our

framework readily usable without complex installation

and more easily portable across cloud vendors.

Programming platforms such as workflow systems

[34], Dryad [37] and Hadoop [38] automate application

and file transfer across heterogeneous environments.

However, they require applications to be composed as

workflows or Map-Reduce constructs. Our model is an

execution platform, which allows application

deployment without modification by supporting

application execution and transparent data transfer

through command shell, APIs or even workflows.

3. Generic Workers for Cloud Applications

In this section, we describe the architecture of our

Generic Worker framework. A Generic Worker is an

instance of our common VM image that executes the

cloud portion of our framework. We explain how

applications are registered in the cloud using our client

tools, instantiated on-demand by Generic Workers, and

then invoked by clients using our client tools or APIs.

We also discuss how our framework provides

transparent and efficient file movement between client,

cloud persistent store, and cloud VM local store.

3.1. Application Deployment

Applications need to be registered with the Generic

Worker Registry before they are available for

execution in the cloud. This involves a two-step

deployment process. The first step, Application

Upload, copies the application binaries and

dependency libraries into cloud storage. The second

step, Application Registration, informs the Generic

Workers of the application location in cloud storage

and its parameter signature. Our register.exe client tool

performs both these operations and we persist

registration information in Azure tables.

 In the application upload step, users provide a

desktop directory location that has all the binaries and

dependency libraries required to be present in the VM

for execution. This self-contained directory is packaged

into a compressed file and uploaded into Azure’s

persistent blob storage by our register tool. Outside any

input parameters, the contents of that directory and the

OS image will be the only set of files the Generic

PRE-PRINT

Worker can access when executing the application.

This sandboxing allows us to deploy an application on

demand by just performing a directory copy from

persistent cloud blob storage to transient VM local

storage with no other state.

Users can specify a predefined application runtime

when registering. This frees the user from managing

the details of that runtime as well as eliminating the

upload from desktop to cloud. Each predefined runtime

is associated with invocation mechanics, environment

configuration details, and a set of pre-packaged

libraries or binaries that are available in Azure blob

store. For example, a Java1.6 runtime type would have

the /java/bin directory present in the search path, set the

JAVA_HOME environment variable and include JRE

v1.6 files at that path. We support common eScience

runtime types like .NET, Java and MatLab and allow

more to be configured.

In the second step of application registration, the

register tool stores details about the application in

Azure table storage. These include a friendly name,

runtime type, package location in blob store, parameter

signature, and invocation target. The latter identifies

the package entity to be executed. This may be a

method in a class for .NET or Java applications, a

compiled script for MatLab, or an executable file. In

case of .NET or Java applications, users can register

one or all methods in a class as applications and also

automatically determine the input and output

parameters using reflection. For other applications, the

typed parameters are explicitly passed to the register

tool commandline.

Figure 1 shows the register tool being used to

register a .NET class and a commandline application.

The first command in Fig. 1(b) uploads the DLLs for

the MathOps.NET class in Fig 1(a) present in the

.\SampleCloudApp\bin directory to Azure blob store

and registers both methods, Add and Mult, with the

Generic Worker Registry using the logical name of

MyMathOps. The inputs and output for both methods

are determined by reflection. The second register

command in Fig 1(b) deploys a blastall commandline

application and passes the template shell command to

be executed (-cmd “…”), the input and output

parameter types and their mapping to the template.

Corresponding steps in Figure 3 show the upload to

blob store from desktop (R1) followed by registration

of application (R2) and parameter signature (R3) with

Azure tables.

3.2. Application Invocation

Applications written for the cloud are typically

initiated by clients through custom web services in the

cloud that launch the application in a VM using cloud

queues for passing work requests monitored by the

application from VMs, or by custom RPC mechanism

shared by client and application. For applications and

clients not designed for remote execution, each of these

methods requires rewriting client and application code.

Our command line option eliminates the need for such

a rewrite. We also provide three programmatic ways –

.NET API, REST service and workflow activity – to

invoke a registered cloud application.

Our commandline tool, invoke.exe, takes the friendly

name of the application and the list of input

parameters. This tool internally uses our Invoker .NET

client library, which .NET clients can also use directly.

The Invoker API uses the passed application friendly

name to query the Generic Worker Registry table for

the application parameter details and then serializes the

strongly typed input parameters into an XML message.

File inputs are uploaded to blob store and their

references passed, as discussed in Section 3.4.1 (Fig. 3,

step 1). The Invoker also creates and passes the IDs of

a cloud App Response queue for the application output

and an optional log queue or cloud table for execution

progress and provenance messages. The resulting XML

work request message is placed in the common Job

Request queue monitored by the Generic Workers (Fig.

3, step 2); the queue is accessed using the Azure REST

web service API.

(a) class SampleCloudApp.MathOps {

 int Add(int i, int j) { return i + j; }

 int Mult(int i, int j) { return i * j; }

}

(b) > register -type .net -name MyMathOps

 -class SampleCloudApp.MathOps

 –appDir c:\SampleCloudApp\bin

> register -type bin -name MyBlastAll

 -cmd “blastall –p blastn –d refseq_rna
-i {1} -o {2}”

 -in #1 file #2 string -out #2 file

 –appDir c:\ncbi\blast\bin

Figure 1: Registering applications with Generic

Worker.framework using register.exe tool (a) Sample

MathOps .NET class whose Add and Mult methods will be

register as cloud applications. (b) register command to register

MathOps class and blastall shell application.

(a) > invoke MyMathOps.Add 1 5

Return value: 6

> invoke MyBlastAll input.fasta output.txt

Return value: c:\workdir-036\output.txt

Download Console.Out file (y/n)?

(b) // int s = (new MathOps()).Add(1,5);

Invoker invkr = new Invoker(“MyMathOps);

int s = (int)invkr.Invoke(“Add",new[]{1,5});

Figure 2: Generic Worker commandline and API access to

invoke applications. (a) invoke.exe shell tool used to call

MathOps.Addmethod and blastall application in the Generic

Worker VM (b) Invoker .NET utility used to run MathOps.Add

application in the Generic Worker VM from a C# program.

PRE-PRINT

Our Invoker library monitors the newly created App

Response queue for a matching response message to

arrive (Fig. 3, step 11), deserializes the response (or

exception) and returns (throws) it as objects to the

client. In the case of the invoker.exe tool, this causes

the response (or exception) to be printed on the screen.

File references in the response are optionally

dereferenced and downloaded from blob store (Fig. 3,

step 12) as is the console output file. This automatic

polling provides a more intuitive synchronous

invocation for clients as opposed to the actual

asynchronous model used through message passing.

Service oriented architecture clients or those written

in non-CLR languages can directly call the Job Request

queue’s REST service to pass an appropriately

formatted XML message and poll the App Response

queue for the completion message. We also provide a

CloudApp activity that allows cloud applications to be

composed as part of workflows in the Trident

Scientific Workbench [27].

3.3. Application Execution

The function of a Generic Worker is to execute any

registered application on-demand while freeing users

from having to manage the VM images, write roles or

modify their application. When started, an Azure VM

hands off control to the Start method of the only role

deployed in the VM. In our case, this is the Generic

Worker. Our worker starts in a clean OS VM and the

only local files available are its own libraries.

A Generic Worker begins to monitor the common

Job Request queue in the Start method. Workers

process work requests in the order of arrival; since all

workers are identical and do not persist local state in

the VM, any worker can dequeue a work request and

execute it. Users can start as many Workers as they

wish to meet their application demand.

When a Generic Worker dequeues the next work

request message (Fig 3, step 4), it checks the

application name, verifies the parameters against the

Registry tables, and, if necessary, prepares the VM for

running with that particular application’s runtime type

(Fig. 3, step 5). As explained previously, for Java type

applications, this involves copying the JRE files

present in the Java package in Azure blob store to a

local directory in the VM and setting the search and

environment variables.

The Generic Worker then creates a working

directory for this execution, downloads the application

package from the Azure cloud blob store location listed

in the Registry, and extracts it to the working directory

(Fig. 3, step 5). Input parameters present in the work

request are deserialized and dereferenced from blob

store in case of files or large objects (Fig. 3 step 6).

Next, the application is actually executed in the VM

(Fig. 3, step 7). This may be through method reflection

(.NET) or forking a separate process (Java, binary).

Input parameters are passed either as objects (.NET) or

in commandline (all others).

Once application execution completes, the Generic

Worker collects results from the invocation. These are

serialized back into strongly typed output parameters

(or exception details in case of an execution error) as

specified in the Registry entry for the application, and

placed as an XML response message in the App

Response queue specified in the work request (Fig. 3,

step 9). The serialization includes persisting output

files and console output to blob store with their

references returned in the response message (Fig. 3,

step 8). Finally, the Generic Worker cleans up the

working directory, permanently deletes the original

Figure 3. Generic Worker Architecture on Microsoft Azure (left) and Application execution sequence diagram (right). Numbered

arrows R1-3 are application registration steps. Arrows 1-10 are application execution steps.

PRE-PRINT

work request from the Job Request queue, and returns

to polling the Job Request queue.

Because Generic Workers can run any registered

application and they poll a common Job Request

queue, the application is automatically load balanced

across all active worker instances. Each Worker can

also run multiple applications concurrently in separate

threads, with a configured upper bound. Workers

guarantee reliable completion of job requests by

leveraging non-destructive read capability of Azure

queues that revives messages when not permanently

deleted within a certain period.

3.4. Data Access for Cloud Applications

In this section, we address the twin data access
challenges of transparent and efficient file movement
between desktop client, cloud persistent storage, and
VM transient storage.

3.4.1. Transparent File Movement

Our Generic Worker and client tools enable desktop

clients and cloud applications running in VMs to pass

local files as parameters by transparently copying files

between client local disk, VM local disk and cloud

persistent store as necessary. This allows both clients

and applications to access the files as if they were

local, though created and used remotely.

When an application is registered, the parameters

that correspond to input or output files are marked as a

special file type in the Registry. These may be

explicitly specified in case of commandline

applications (e.g. for blastall in Fig. 1) or automatically

determined for .NET applications when a FileInfo

native type is used to pass file parameters. When our

Invoker or a Generic Worker serializes input or output

parameters, file parameters receive special handling.

Rather than pass the entire file as input in the message

(overflowing message size limits) or pass the local file

path (which does not exist remotely), the file is

transferred to the shared cloud blob storage and a

reference to the blob location passed in the message.

Upon deserialization, the blob file reference is

downloaded from cloud storage by the Invoker or

Generic Worker and a path to the local file passed to

the desktop client or cloud application. That path is

either a string for commandline applications or a

FileInfo object for .NET types.

This has several advantages. First and foremost,

eScience applications and clients can continue to use

local files as parameters without modification. Files are

transferred automatically using persistent, shared cloud

storage as an intermediary. File path rewriting ensures

that the correct local path is passed at all times. Lastly,

very large files or memory objects that overflow

message size limits can be chunked for transport.

3.4.2. Efficient File Movement

While transparent file transfer minimizes user

complexity, transferring files between desktop and

cloud storage can be costly in time and money. The

download bottleneck can be due to bandwidth limits in

the desktop client network or throttling in the cloud

instance (~1-10MB/sec on Azure). Very large science

data set transfers can also be costly monetarily ($0.10-

$0.15/GB). Intermediate data in workflows can benefit

from a more intelligent approach.

The cloud enables scientific workflows to run on a

user desktop while the constituent activities run locally

or in the cloud. When successive activities run as cloud

applications, it is often unnecessary to download

intermediate data produced by one activity to the

desktop only to upload again for the next activity.

Similarly, while it is often necessary to upload

intermediate results from transient local VM storage to

persistent cloud storage, it may be unnecessary to

redownload the same data to the same VM prior to

executing the next activity.

We provide a .NET BlobFile object type that

abstracts whether the file is accessible via a local file

path or cloud blob storage. Data transfer between local

path and cloud storage occurs only when the

application actually accesses the local path/blob

location. For example, when a desktop client reads a

BlobFile, the download occurs only if the client

explicitly accesses the LocalFile field in the BlobFile.

Similarly, no file transfer is necessary and only the

blob storage location is passed when two cloud

applications in a workflow pass BlobFiles objects. This

can save both time and cost for data intensive

applications. CloudApp activities in Trident Workflows

use the BlobFile object by default for file parameters to

optimize data transfers. .NET applications can also

benefit from this feature by replacing the native

FileInfo type with a BlobFile type.

Each Generic Worker also maintains a file cache

within local VM disk storage. All VM-Cloud storage

transfers pass through our write-through cache library

that leverages the checksum/versioning feature of the

Azure blob store. Prior to an application invocation,

input blob parameters are downloaded from the Azure

blob store only if there is a cache miss or the cache is

dirty. After execution, dirty output blob parameters are

uploaded from cache to the Azure blob store to prevent

data loss. We use the cache not only for application

data, but also any necessary application binaries and

runtimes.

4. Evaluation for eScience Application

There are two main overheads in running

applications using the Generic Worker. The first is a

one-time overhead to start the required number of

PRE-PRINT

Generic Worker VM instances to run applications at

scale. This is amortized across all applications that run

in the workers over time. The second is the application

runtime overhead imposed by the framework. This

includes time to upload and download input/output

parameters and files to blob storage, the queue wait

times, and time to download application binaries to

VM. While the first two are common for any

application running across desktop and cloud, the last

is an overhead unique to the Generic Worker model.

VM Start Overhead. The Generic Worker imposes

negligible VM start overhead. Figure 4(a) compares the

time taken to start between 1 and 16 instances of the

Generic Worker VMs against an equal number of blank

VMs. In many cases, the Generic Worker VMs start

faster than the blank VMs. This can be attributed to the

inherent variability of VM startup times we have

observed. For example, when starting 8 blank VMs, a

difference of 3mins in startup times was seen between

two runs as compared to the average of 5mins.

Runtime Overhead. The runtime overhead of the

Generic Worker framework is measured for a Genome

Wide Association Study (GWAS) .NET application

with a Map-Reduce pattern [39]. Each Map process

takes consumes a <1MB input file, runs for 10 mins,

and creates an 8MB output file. The Reduce stage

aggregates that output, also runs in about 10mins, and

generates a single 8MB output file. The application has

120 libraries that total 45MB. The client to each stage

runs on the desktop; the Map and Reduce run on

Generic Workers in Azure.

Figure 4(b) shows the GWAS application with a

Map fanout of 20 run on 20 Generic Workers. The

primary overhead is the download of application

binaries from blob storage to local VM store. This

overhead of 17 seconds (half the total overhead) could

be eliminated by our file cache for subsequent

executions. The parameter upload and download times

for the Map-Reduce calls are small (<2secs) since we

use blob file references to reduce intermediate data

transfer between desktop client and the workers. The

queue wait times for the request and response messages

are about 5 secs, which matches with the 5 secs polling

delay in the client invoker library and Generic Worker.

In a parallel application like GWAS, this has minimal

impact on total application runtime. The time taken to

run the actual GWAS application is 10mins and dwarfs

the 35sec (~5%) overhead imposed by the Generic

Worker.

Application Scalability. The Generic Worker

model allows easy scale-out of applications. We

measure the time taken to complete the GWAS

application with a Map-Reduce fanout of 128 using 4

to 20 Generic Workers. We measure the total time

taken to complete the application and compute the

speedup with respect to running locally on an

equivalent single core workstation that takes

129×10mins to finish (128 for map, 1 for reduce).

Figure 4(c) shows the total runtime and speedup of

the GWAS application. The line graph shows that

increasing the number of workers reduces the total time

to complete GWAS linearly. While a perfect speedup

when using, say, 12 VMs would be 12x compared to a

desktop, we only observe a 9x speedup in the bar

graph. The overheads discussed earlier cause this less

Figure 4(a). Average time in mins taken to start Blank Azure VMs

vs. Generic Worker Azure VMs over 3 iterations.

Figure 4(b). Average Overhead Time in secs contributed by each

Generic Worker framework stage for GWAS application over 3

iterations. Total overhead is just 5% of the total GWAS runtime.

Figure 4(c). Total time (line graph) to complete GWAS application

using increasing number of Generic Workers. Speedup (bar graph)

as compared to a single core workstation that takes 21:30hrs.

Reference line showing perfect linear speedup time shown in gray.

PRE-PRINT

than perfect speedup. However, even this speedup

allows the Generic Worker framework scale out

applications effectively.

5. Conclusion

In this paper, we have shown the benefits of using

the Generic Worker model to easily deploy and execute

applications in the cloud with minimal user effort. This

further lowers the complexity barrier to entry for

science applications. Our model imposes negligible

overhead of 5% when scaling the GWAS application to

20 workers. Techniques such as on-demand data

transfers and VM file caches can actually reduce the

performance penalty for data transfer between desktop,

cloud and VM storage. The linear speedup we

observed shows the effectiveness of the Generic

Worker to scale out applications to the cloud with ease.

As future work, we can include additional common

eScience runtime types such as R. A similar Generic

Worker model can also be considered for *nix IaaS

platforms. While it is possible to support more complex

deployment dependencies based on existing work, the

goal of making the framework easily accessible should

not be compromised.

Our stateless Generic Worker architecture allows

dynamic load balancing to be easily implemented;

while users can do this manually now, we envision

adding more Worker VMs to add capacity for all

queued applications and/or likewise for scaling down.

Another scheduling optimization would leverage data

locality of pipelined workflow applications by having

Workers preferentially dequeue work requests whose

input files are already present in their local file cache.

Together, these lead us to an accessible science

platform for the cloud that further enhances application

scalability.

References
[1] Building Web Services for scientific Grid Applications,

G. Kandaswamy, et al., IBM J. Res. & Dev. 50 (2/3) 2006.

[2] Design and Evaluation of Opal2: A Toolkit for Scientific

Software as a Service. S. Krishnan, et al., in SERVICES 2009.

[3] Above the Clouds: A Berkeley View of Cloud

Computing, M. Armbrust, et al., Technical Report

UCB/EECS-2009-28, UC Berkeley, 2009.

[4] The Eucalyptus Open-Source Cloud-Computing System,

D. Nurmi, et al., in CCGRID 2009

[5] Cost-Benefit Analysis of Cloud Computing versus

Desktop Grids, D. Kondo, et al., in IPDPS 2009.

[6] Resource Monitoring and Management with OVIS to

Enable HPC in Cloud Computing Environments, J. Brandt, et

al, in IPDPS 2009.

[7] Cloud Computing for the Sciences, F. Sullivan, CiSE

11(10) 2009.

[8] A Break in the Clouds: Towards a Cloud Definition. L.

M. Vaquero, et al., Comp. Comm. Rev. 39(1), 2008.

[9] Slow Moving Clouds Fast Enough for HPC, M. Feldman,

HPC Wire, August 10 2009.

[10] CloudBurst: Highly Sensitive Read Mapping with

MapReduce, M. Schatz, BioInformatics 25(11), 2009

[11] Cloud Computing and Grid Computing 360-Degree

Compare, I. Foster, et al, in GCE 2008.

[12] Cloud Computing for e-Science with CARMEN, P.

Watson, et al, in IBERGRID 2008.

[13] Commodity Grid Computing with Amazon's S3 and

EC2, S. Garfinkel, USENIX Magazine, 2007.

[14] Emergence of the Academic Computing Clouds. K. A.

Delic, and M. A. Walker, Ubiquity 2008.

[15] GADe: Toward Automatic Deployment of Applications

on Computational Grids, S. Lacour, et al. in Grid 2005.

[16] Coming Soon: Research in a Cloud, P. F. Gorder, CiSE

10(6), 2008.

[17] Virtual Infrastructure Management in Private and Hybrid

Clouds, B. Sotomayor, et al., Internet Comp., 13(5) 2009.

[18] Approaches for Service Deployment, V Talwar, et al.,

Internet Comp., 9(2), 2005.

[19] Distributed Ant: A System to Support Application

Deployment in the Grid, W. Goscinski, et al., in Grid, 2004.

[20] Cloud Computing for Small Research Groups in

Computational Science and Engineering: Current Status and

Outlook, H. Truong, et al., Technical Report, Vienna Univ. of

Tech., August 2009.

[21] Cloud Computing – Issues, Research and

Implementations, M. A. Vouk, in Info. Tech. Interf., 2008.

[22] http://www.microsoft.com/windowsazure/

[23] http://www.rackspace.com/

[24] http://developer.amazonwebservices.com

[25] Management Framework for Amazon EC2, F. Bitzer,

Technical Report No. 2841, University of Stuttgart, 2009.

[26] Amazon S3 for Science Grids: a Viable Solution?, M.

Palankar and A. Iamnitchi, in DADC 2008

[27] Building the Trident Scientific Workflow Workbench

for Data Management in the Cloud, Y. Simmhan, et al., in

ADVCOMP 2009.

[28] ADEM: An Automation Tool for Application Software

Deployment and Management on OSG, Z. Hou, et al., in

Grid 2009

[29] Scientific Computing in the Cloud, J. Rehr, et al., CiSE,

preprint, Jan. 2010.

[30] Sky Computing, K. Keahey, et al., Internet Comp.,

13(5), 2009.

[31] Cloud Computing and the Common Man, J. Viega,

Computer, 42(8), 2009

[32] Real-time Streaming of Environmental Field Data, E. R.

Vivoni, et al., Computers & Geosciences, 29(4), 2003.

[33] Cloud Computing for Science, K. Keahey, in SSDBM

2009.

[34] Pegasus: Mapping Large-Scale Workflows to

Distributed Resources, E. Deelman and G. Mehta, in

Workflows in e-Science, Springer, 2006.

[35] A Profile-Based Approach to Just-in-Time Scalability

for Cloud Applications, J. Yang, et al. in IEEE Cloud, 2009.

[36] Scientific Workflows as Services in caGrid: A Taverna

and gRAVI Approach, W. Tan, et al., in ICWS 2009.

[37] Dryad: Distributed Data-Parallel Programs from

Sequential Building Blocks, M. Isard, et al., in EuroSys 2007.

[38] http://hadoop.apache.org

[39] Improving Detection in Large-Scale Genetic Association

Studies, Jennifer Listgarten in Microsoft Faculty Summit,

2009.

http://www.microsoft.com/windowsazure/
http://www.rackspace.com/

