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The widely discussed scientific data deluge creates 

a need to computationally scale out eScience 

applications beyond the local desktop and cope with 

variable loads over time. Cloud computing offers a 

scalable, economic, on-demand model well matched to 

these needs. Yet cloud computing creates gaps that 

must be crossed to move existing science applications 

to the cloud. In this article, we propose a Generic 

Worker framework to deploy and invoke science 

applications in the cloud with minimal user effort and 

predictable cost-effective performance. Our 

framework addresses three distinct challenges posed 

by the cloud: the complexity of application 

deployment, invocation of cloud applications from 

desktop clients, and efficient transparent data 

transfers across desktop and the cloud. We present an 

implementation of the Generic Worker for the 

Microsoft Azure Cloud and evaluate its use for a 

genomics application. Our evaluation shows that the 

user complexity to port and scale the application is 

substantially reduced while introducing a negligible 

performance overhead of < 5% for the genomics 

application when scaling to 20 VM instances. 

1.  Introduction 

Cloud computing has emerged as a viable platform 

for running large-scale computation and data analysis 

[8]. Building on prior work on Grid and cluster 

computing, it offers an evolutionary paradigm that 

approaches utility computing [3,11,13]. The 

advantages of cloud computing are well known: on-

demand and scalable resources, pay as you go policy 

that avoids costly capital costs, competitive pricing due 

to economies of scale, and simple service interfaces for 

easy access and management. Commercial Clouds 

backed by large global datacenters have been available 

for some time from vendors such as Amazon [24], 

RackSpace [23], and Microsoft [22]. There is also 

active research on open source and private clouds [14], 

such as Eucalyptus [4], Nimbus [30] and CAIRN [12], 

and on improving cloud operations [6,18]. 

Cloud computing holds benefits for science 

applications at different scales [7,16,29], from the 

desktop to the  supercomputer. Desktop applications 

that have outgrown single machine cores can leverage 

the cloud on demand rather than build and maintain 

clusters [10]. Existing applications on older clusters 

can migrate to cloud virtual machines (VMs) that track 

technology to provide a quicker and cheaper alternative 

to cluster upgrades or securing access to 

supercomputing centers [5]. Supercomputing users can 

consider the cloud for surge computing during peak 

loads to lower queue latency [3,9]. 

While cloud computing is promising for scaling 

eScience applications beyond the desktop, it poses 

significant challenges for many users [20,21,29]. In 

this article, we focus on tools to develop, deploy, and 

operate eScience applications on commercial clouds. 

Specifically, we identify and address three barriers to 

wider eScience usage of cloud:   

1. Application Deployment – Ease of application 

porting and initial deployment to the cloud,  

2. Application Execution – Simple invocation and 

tracking of cloud applications from remote clients,  

3. Data Access – Efficient data access for eScience 

applications across the desktop and the cloud. 

Our Generic Worker framework lowers these barriers 

by providing a set of intuitive desktop client tools and a 

single wrapper binary that executes on all cloud VMs. 

The framework supports simple registration and 

deployment of .NET, Java, and command line 

applications. Once deployed, cloud applications can be 

instantiated on-demand and at scale from a desktop or 

remote client: through a command shell, from a 

workflow, or a .NET or web service API. The 

framework tracks runtime execution and data 

provenance automatically. Lastly, the framework 

transparently performs automatic and just in time file 

movement between the desktop, cloud storage and 

cloud VMs with efficient caching. 

We implement the framework on Microsoft’s Azure 

Cloud platform [22] and evaluate its ease of use and 

performance for a real genomics application. While our 

implementation is on Azure, we believe the same 

Generic Worker pattern applies to Amazon EC2 and 

other IaaS/PaaS clouds [31], albeit with somewhat 

different implementation. 

The rest of the paper is structured as follows. In 

Section 2, we discuss the challenges of migrating 

eScience applications to the cloud and related work. 

Section 3 introduces the Generic Worker framework. 

Section 4 evaluates the framework used for a genomics 

application. Lastly, Section 5 presents conclusions and 

future work. 
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2. Motivation and Related Work  

Cloud computing is commonly categorized as 

Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS) and Software as a Service (SaaS) [31]. IaaS, 

such as Amazon EC2, abstracts the hardware resources 

as a virtual machine to give the equivalent of bare 

metal machine. PaaS, such as Google AppEngine, 

provides a scalable programming platform that runs 

within a sandbox. SaaS provides applications as 

scalable services that can be customized or composed 

into other applications, examples being business 

applications from SalesForce.com. This paper focuses 

on effective use of IaaS and PaaS clouds for scientific 

applications; eScience SaaS will arrive when these 

applications become offered as public services.  

2.1. Cloud Computing Benefits for eScience 

Cloud computing offers benefits [7,16,29] for 

eScience applications at scales ranging from desktop 

scientists to supercomputing power users.  

Desktop applications must be scaled out rather than 

simply scaled up because scientific computing and data 

needs are outpacing Moore’s Law and local disk 

capabilities [32]. The prospect of building, operating, 

and porting applications to a cluster can be daunting as 

scientists must rewrite code and become cluster 

operators.  The cloud can offer longer-term scalability 

and hide much of that complexity if programming 

models and interfaces remain simple [33]. Also, the 

cyclic nature of some scientific computing needs, such 

as just after annual field campaigns, fits well with the 

on-demand flexibility offered by the cloud [32]. 

For existing local research cluster users, the cloud 

can reduce the lower real (non-subsidized) total cost of 

ownership by reducing the operations people cost, peak 

networking bandwidth requirements, and technology 

upkeep through constant machine upgrades [5]. For 

cluster users considering a step up to national 

supercomputing centers, paperwork and eligibility 

requirements may restrict and delay access as well as 

limit the software stack or services that can be 

deployed due to security restrictions. With cloud 

computing, all it takes is a credit card to open a new 

account online and access compute node VMs. 

Users of supercomputing centers can use the near-

instantaneous access of clouds to reduce the queue wait 

times [9]. Clouds can also be used as resource surge 

during peak load at centers, or during special events 

like tutorials that require large, reserved resources for 

guest users for a short duration [3]. Lastly, large 

datasets generated in the cloud can be easily shared for 

analysis within or outside the cloud, democratizing 

access to scientific results. Supercomputing centers 

restrict ad hoc hosting of datasets and limit their local 

analysis to authorized users. 

2.2. Migrating Applications to the Cloud 

Running an eScience application in an infrastructure 

cloud presents three different challenges: (1) 

application deployment, (2) application execution, and 

(3) file transfers to, from, and within the cloud.  

2.2.1. Application Deployment 

Simplistically, deploying an application to an IaaS 

cloud requires installing it on an existing or new VM 

image and then copying the image into cloud storage so 

instances of that VM can be created [25]. This model is 

used in Amazon EC2. Deployment on the Microsoft 

Azure PaaS is similar. Each application must be 

packaged as a .NET “role”. That package is then 

copied into cloud storage so that instances of that role 

can be created by copy to a Windows 64bit Server VM.  

Both clouds require the scientist user to manage 

application binaries and dependencies [29]. Images and 

packages must be recreated and redeployed in the event 

of any change to an application, its configuration or 

dependencies [20,21]. For example, the user must 

explicitly manage application dependencies on a 

version of MatLab and the Java VM. This becomes 

more complicated when several applications are 

deployed in a single VM for optimal use of VM 

resources. Users must either maintain many VM 

images and running instances, or stage application 

dependencies on the fly within a transient VM instance.  

2.2.2. Application Execution 

Applications deployed in cloud VM instances need 

to be invoked from outside that instance – from 

workflows, scripts, command lines or web forms 

executing in or outside the cloud. This requires the 

application and its clients to be modified to support 

remote calls and/or a custom proxy service written that 

marshals and unmarshals parameters as requests passed 

as service calls or messages in reliable cloud queues. 

Code maintenance becomes tedious as applications and 

their clients increase in time or their APIs change.  

2.2.3. Data Transfer 

Passing files as parameters to cloud applications 

introduces problems in managing data transfers 

between clients outside the cloud and VM instances 

[3]. Files on local disks or network shares are 

important, often primary, inputs and outputs for 

scientific applications. Cloud applications need to 

access files passed as input by clients outside the cloud, 

and vice versa for output files. For example, a desktop 

workflow may use applications on the local machine 

and the cloud with files passed between them. Also, 

since VM local disks are transient, any persisted files 

must be moved to cloud persistent storage. Not all 

cloud platforms provide a network file system 

accessible both inside and outside the cloud. This 
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necessitates data transfers using REST protocols to 

cloud storage that are less intuitive for scientific 

applications and require them to be changed to use 

such protocols. Lastly, the low bandwidth into and out 

of the cloud means users have to be more aware of 

client data transfers.  

2.3. Related Work  

Cloud vendors provide tools to install and manage 

applications in a VM image that is then copied to and 

scaled in the cloud. Examples include Amazon EC2 

AMI tools [24,25] and image managers like 

OpenNebula [27]. However, a VM image is too coarse 

a granularity to manage for a constantly changing pool 

of applications where the upload time can add 

significant delay – a 2GB VM image takes 

approximately 15mins to upload [26]. Also, these tools 

do not address the challenge of remote execution or 

efficient data transfer between desktop and cloud.  

A profile-based approach proposed recently [35] 

allows on-demand deployment and load-driven scale 

out of applications onto clouds. While this partly 

addresses the dynamic deployment problem we solve, 

it requires install scripts configured by experts to 

update predefined VM images. Also, several persistent 

infrastructure services are required for the architecture, 

relegating its use to large institutions and advanced 

users. In comparison, our single-step application 

registration process is more accessible to most 

eScience users and the single, self-contained Generic 

Worker VM (that also executes the applications) is the 

only custom service required. 

Similar application and service deployment tools 

[18] for clusters and grids, such as ADEM [28], GADe 

[15] and Distributed Ant [19], support complex 

dependencies, but are meant for online nodes rather 

than VM images. Using them with transient VM 

instances induces repeated deployments. Also, their 

complexity is prohibitive for scientists wishing to 

deploy and run applications that have a self-contained 

set of binaries and libraries in the cloud. 

Toolkits such as GFac [1], Opal [2] and gRAVI [36] 

use a factory pattern to create dynamic web services 

that wrap commandline applications on the grid. They 

allow users to describe the commandline parameters 

and create services with matching interfaces that when 

invoked, schedule the application to execute using a 

batch scheduler. While the intent of easily supporting 

remote application is similar, they differ from our 

Generic Worker model in several ways: 

1. The toolkits require users to explicitly specify 

parameter bindings. We additionally support automatic 

binding of .NET or Java applications using reflection.  

2. Only gRAVI packages applications for automatic 

deployment like we do instead of assuming the 

applications are already installed.  

3. The toolkits do not address data transfer 

optimization. Our file caching and just in time data 

movement avoids costly file movement between cloud 

and client unless required.  

4. All of these toolkits are tightly coupled to grid 

installations for job scheduling and file transfer using 

GridFTP. We instead focus on cloud platforms and 

reuse simple native cloud primitives like reliable 

queues and REST storage protocols. This makes our 

framework readily usable without complex installation 

and more easily portable across cloud vendors. 

Programming platforms such as workflow systems 

[34], Dryad [37] and Hadoop [38] automate application 

and file transfer across heterogeneous environments. 

However, they require applications to be composed as 

workflows or Map-Reduce constructs. Our model is an 

execution platform, which allows application 

deployment without modification by supporting 

application execution and transparent data transfer 

through command shell, APIs or even workflows. 

3. Generic Workers for Cloud Applications 

In this section, we describe the architecture of our 

Generic Worker framework. A Generic Worker is an 

instance of our common VM image that executes the 

cloud portion of our framework. We explain how 

applications are registered in the cloud using our client 

tools, instantiated on-demand by Generic Workers, and 

then invoked by clients using our client tools or APIs. 

We also discuss how our framework provides 

transparent and efficient file movement between client, 

cloud persistent store, and cloud VM local store.  

3.1. Application Deployment 

Applications need to be registered with the Generic 

Worker Registry before they are available for 

execution in the cloud. This involves a two-step 

deployment process. The first step, Application 

Upload, copies the application binaries and 

dependency libraries into cloud storage. The second 

step, Application Registration, informs the Generic 

Workers of the application location in cloud storage 

and its parameter signature. Our register.exe client tool 

performs both these operations and we persist 

registration information in Azure tables.  

 In the application upload step, users provide a 

desktop directory location that has all the binaries and 

dependency libraries required to be present in the VM 

for execution. This self-contained directory is packaged 

into a compressed file and uploaded into Azure’s 

persistent blob storage by our register tool. Outside any 

input parameters, the contents of that directory and the 

OS image will be the only set of files the Generic 
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Worker can access when executing the application. 

This sandboxing allows us to deploy an application on 

demand by just performing a directory copy from 

persistent cloud blob storage to transient VM local 

storage with no other state. 

Users can specify a predefined application runtime 

when registering. This frees the user from managing 

the details of that runtime as well as eliminating the 

upload from desktop to cloud. Each predefined runtime 

is associated with invocation mechanics, environment 

configuration details, and a set of pre-packaged 

libraries or binaries that are available in Azure blob 

store. For example, a Java1.6 runtime type would have 

the /java/bin directory present in the search path, set the 

JAVA_HOME environment variable and include JRE 

v1.6 files at that path. We support common eScience 

runtime types like .NET, Java and MatLab and allow 

more to be configured.  

In the second step of application registration, the 

register tool stores details about the application in 

Azure table storage. These include a friendly name, 

runtime type, package location in blob store, parameter 

signature, and invocation target. The latter identifies 

the package entity to be executed. This may be a 

method in a class for .NET or Java applications, a 

compiled script for MatLab, or an executable file. In 

case of .NET or Java applications, users can register 

one or all methods in a class as applications and also 

automatically determine the input and output 

parameters using reflection. For other applications, the 

typed parameters are explicitly passed to the register 

tool commandline.  

Figure 1 shows the register tool being used to 

register a .NET class and a commandline application. 

The first command in Fig. 1(b) uploads the DLLs for 

the MathOps.NET class in Fig 1(a) present in the 

.\SampleCloudApp\bin directory to Azure blob store 

and registers both methods, Add and Mult, with the 

Generic Worker Registry using the logical name of 

MyMathOps. The inputs and output for both methods 

are determined by reflection. The second register 

command in Fig 1(b) deploys a blastall commandline 

application and passes the template shell command to 

be executed (-cmd “…”), the input and output 

parameter types and their mapping to the template. 

Corresponding steps in Figure 3 show the upload to 

blob store from desktop (R1) followed by registration 

of application (R2) and parameter signature (R3) with 

Azure tables. 

3.2. Application Invocation 

Applications written for the cloud are typically 

initiated by clients through custom web services in the 

cloud that launch the application in a VM using cloud 

queues for passing work requests monitored by the 

application from VMs, or by custom RPC mechanism 

shared by client and application. For applications and 

clients not designed for remote execution, each of these 

methods requires rewriting client and application code. 

Our command line option eliminates the need for such 

a rewrite. We also provide three programmatic ways – 

.NET API, REST service and workflow activity – to 

invoke a registered cloud application.  

Our commandline tool, invoke.exe, takes the friendly 

name of the application and the list of input 

parameters. This tool internally uses our Invoker .NET 

client library, which .NET clients can also use directly. 

The Invoker API uses the passed application friendly 

name to query the Generic Worker Registry table for 

the application parameter details and then serializes the 

strongly typed input parameters into an XML message. 

File inputs are uploaded to blob store and their 

references passed, as discussed in Section 3.4.1 (Fig. 3, 

step 1). The Invoker also creates and passes the IDs of 

a cloud App Response queue for the application output 

and an optional log queue or cloud table for execution 

progress and provenance messages. The resulting XML 

work request message is placed in the common Job 

Request queue monitored by the Generic Workers (Fig. 

3, step 2); the queue is accessed using the Azure REST 

web service API. 

(a) class SampleCloudApp.MathOps { 

  int Add(int i, int j) { return i + j; } 

  int Mult(int i, int j) { return i * j; }  

} 

(b) > register -type .net -name MyMathOps  

    -class SampleCloudApp.MathOps  

    –appDir c:\SampleCloudApp\bin 

> register -type bin -name MyBlastAll  

    -cmd “blastall –p blastn –d refseq_rna  
-i {1} -o {2}” 

    -in #1 file  #2 string -out #2 file 

    –appDir c:\ncbi\blast\bin  

Figure 1: Registering applications with Generic 

Worker.framework using register.exe tool (a) Sample 

MathOps .NET class whose Add and Mult  methods will be 

register as cloud applications. (b) register command to register 

MathOps class and blastall shell application. 

(a) > invoke MyMathOps.Add 1 5 

Return value: 6 

> invoke MyBlastAll input.fasta output.txt  

Return value: c:\workdir-036\output.txt 

Download Console.Out file (y/n)? 

(b) // int s = (new MathOps()).Add(1,5);  

Invoker invkr = new Invoker(“MyMathOps); 

int s = (int)invkr.Invoke(“Add",new[]{1,5}); 

Figure 2: Generic Worker commandline and API access to 

invoke applications. (a) invoke.exe shell tool used to call 

MathOps.Addmethod and blastall application in the Generic 

Worker VM (b) Invoker .NET utility used to run MathOps.Add 

application in the Generic Worker VM from a C# program. 
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Our Invoker library monitors the newly created App 

Response queue for a matching response message to 

arrive (Fig. 3, step 11), deserializes the response (or 

exception) and returns (throws) it as objects to the 

client. In the case of the invoker.exe tool, this causes 

the response (or exception) to be printed on the screen. 

File references in the response are optionally 

dereferenced and downloaded from blob store (Fig. 3, 

step 12) as is the console output file. This automatic 

polling provides a more intuitive synchronous 

invocation for clients as opposed to the actual 

asynchronous model used through message passing.  

Service oriented architecture clients or those written 

in non-CLR languages can directly call the Job Request 

queue’s REST service to pass an appropriately 

formatted XML message and poll the App Response 

queue for the completion message. We also provide a 

CloudApp activity that allows cloud applications to be 

composed as part of workflows in the Trident 

Scientific Workbench [27]. 

3.3. Application Execution 

The function of a Generic Worker is to execute any 

registered application on-demand while freeing users 

from having to manage the VM images, write roles or 

modify their application. When started, an Azure VM 

hands off control to the Start method of the only role 

deployed in the VM. In our case, this is the Generic 

Worker. Our worker starts in a clean OS VM and the 

only local files available are its own libraries.  

A Generic Worker begins to monitor the common 

Job Request queue in the Start method. Workers 

process work requests in the order of arrival; since all 

workers are identical and do not persist local state in 

the VM, any worker can dequeue a work request and 

execute it. Users can start as many Workers as they 

wish to meet their application demand.   

When a Generic Worker dequeues the next work 

request message (Fig 3, step 4), it checks the 

application name, verifies the parameters against the 

Registry tables, and, if necessary, prepares the VM for 

running with that particular application’s runtime type 

(Fig. 3, step 5). As explained previously, for Java type 

applications, this involves copying the JRE files 

present in the Java package in Azure blob store to a 

local directory in the VM and setting the search and 

environment variables.   

The Generic Worker then creates a working 

directory for this execution, downloads the application 

package from the Azure cloud blob store location listed 

in the Registry, and extracts it to the working directory 

(Fig. 3, step 5). Input parameters present in the work 

request are deserialized and dereferenced from blob 

store in case of files or large objects (Fig. 3 step 6). 

Next, the application is actually executed in the VM 

(Fig. 3, step 7). This may be through method reflection 

(.NET) or forking a separate process (Java, binary). 

Input parameters are passed either as objects (.NET) or 

in commandline (all others).  

Once application execution completes, the Generic 

Worker collects results from the invocation. These are 

serialized back into strongly typed output parameters 

(or exception details in case of an execution error) as 

specified in the Registry entry for the application, and 

placed as an XML response message in the App 

Response queue specified in the work request (Fig. 3, 

step 9). The serialization includes persisting output 

files and console output to blob store with their 

references returned in the response message (Fig. 3, 

step 8). Finally, the Generic Worker cleans up the 

working directory, permanently deletes the original 

        
Figure 3. Generic Worker Architecture on Microsoft Azure (left) and Application execution sequence diagram (right). Numbered 

arrows R1-3 are application registration steps. Arrows 1-10 are application execution steps. 
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work request from the Job Request queue, and returns 

to polling the Job Request queue. 

Because Generic Workers can run any registered 

application and they poll a common Job Request 

queue, the application is automatically load balanced 

across all active worker instances. Each Worker can 

also run multiple applications concurrently in separate 

threads, with a configured upper bound. Workers 

guarantee reliable completion of job requests by 

leveraging non-destructive read capability of Azure 

queues that revives messages when not permanently 

deleted within a certain period.  

3.4. Data Access for Cloud Applications 

In this section, we address the twin data access 
challenges of transparent and efficient file movement 
between desktop client, cloud persistent storage, and 
VM transient storage.  

3.4.1. Transparent File Movement 

Our Generic Worker and client tools enable desktop 

clients and cloud applications running in VMs to pass 

local files as parameters by transparently copying files 

between client local disk, VM local disk and cloud 

persistent store as necessary. This allows both clients 

and applications to access the files as if they were 

local, though created and used remotely. 

When an application is registered, the parameters 

that correspond to input or output files are marked as a 

special file type in the Registry. These may be 

explicitly specified in case of commandline 

applications (e.g. for blastall in Fig. 1) or automatically 

determined for .NET applications when a FileInfo 

native type is used to pass file parameters. When our 

Invoker or a Generic Worker serializes input or output 

parameters, file parameters receive special handling. 

Rather than pass the entire file as input in the message 

(overflowing message size limits) or pass the local file 

path (which does not exist remotely), the file is 

transferred to the shared cloud blob storage and a 

reference to the blob location passed in the message. 

Upon deserialization, the blob file reference is 

downloaded from cloud storage by the Invoker or 

Generic Worker and a path to the local file passed to 

the desktop client or cloud application. That path is 

either a string for commandline applications or a 

FileInfo object for .NET types.  

This has several advantages. First and foremost, 

eScience applications and clients can continue to use 

local files as parameters without modification. Files are 

transferred automatically using persistent, shared cloud 

storage as an intermediary. File path rewriting ensures 

that the correct local path is passed at all times. Lastly, 

very large files or memory objects that overflow 

message size limits can be chunked for transport.  

3.4.2. Efficient File Movement 

While transparent file transfer minimizes user 

complexity, transferring files between desktop and 

cloud storage can be costly in time and money. The 

download bottleneck can be due to bandwidth limits in 

the desktop client network or throttling in the cloud 

instance (~1-10MB/sec on Azure). Very large science 

data set transfers can also be costly monetarily ($0.10-

$0.15/GB). Intermediate data in workflows can benefit 

from a more intelligent approach.  

The cloud enables scientific workflows to run on a 

user desktop while the constituent activities run locally 

or in the cloud. When successive activities run as cloud 

applications, it is often unnecessary to download 

intermediate data produced by one activity to the 

desktop only to upload again for the next activity. 

Similarly, while it is often necessary to upload 

intermediate results from transient local VM storage to 

persistent cloud storage, it may be unnecessary to 

redownload the same data to the same VM prior to 

executing the next activity.  

We provide a .NET BlobFile object type that 

abstracts whether the file is accessible via a local file 

path or cloud blob storage. Data transfer between local 

path and cloud storage occurs only when the 

application actually accesses the local path/blob 

location. For example, when a desktop client reads a 

BlobFile, the download occurs only if the client 

explicitly accesses the LocalFile field in the BlobFile. 

Similarly, no file transfer is necessary and only the 

blob storage location is passed when two cloud 

applications in a workflow pass BlobFiles objects. This 

can save both time and cost for data intensive 

applications. CloudApp activities in Trident Workflows 

use the BlobFile object by default for file parameters to 

optimize data transfers. .NET applications can also 

benefit from this feature by replacing the native 

FileInfo type with a BlobFile type.  

Each Generic Worker also maintains a file cache 

within local VM disk storage. All VM-Cloud storage 

transfers pass through our write-through cache library 

that leverages the checksum/versioning feature of the 

Azure blob store.  Prior to an application invocation, 

input blob parameters are downloaded from the Azure 

blob store only if there is a cache miss or the cache is 

dirty. After execution, dirty output blob parameters are 

uploaded from cache to the Azure blob store to prevent 

data loss. We use the cache not only for application 

data, but also any necessary application binaries and 

runtimes.  

4. Evaluation for eScience Application 

There are two main overheads in running 

applications using the Generic Worker. The first is a 

one-time overhead to start the required number of 
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Generic Worker VM instances to run applications at 

scale. This is amortized across all applications that run 

in the workers over time. The second is the application 

runtime overhead imposed by the framework. This 

includes time to upload and download input/output 

parameters and files to blob storage, the queue wait 

times, and time to download application binaries to 

VM. While the first two are common for any 

application running across desktop and cloud, the last 

is an overhead unique to the Generic Worker model. 

VM Start Overhead. The Generic Worker imposes 

negligible VM start overhead. Figure 4(a) compares the 

time taken to start between 1 and 16 instances of the 

Generic Worker VMs against an equal number of blank 

VMs. In many cases, the Generic Worker VMs start 

faster than the blank VMs. This can be attributed to the 

inherent variability of VM startup times we have 

observed. For example, when starting 8 blank VMs, a 

difference of 3mins in startup times was seen between 

two runs as compared to the average of 5mins.  

Runtime Overhead. The runtime overhead of the 

Generic Worker framework is measured for a Genome 

Wide Association Study (GWAS) .NET application 

with a Map-Reduce pattern [39]. Each Map process 

takes consumes a <1MB input file, runs for 10 mins, 

and creates an 8MB output file. The Reduce stage 

aggregates that output, also runs in about 10mins, and 

generates a single 8MB output file. The application has 

120 libraries that total 45MB. The client to each stage 

runs on the desktop; the Map and Reduce run on 

Generic Workers in Azure. 

Figure 4(b) shows the GWAS application with a 

Map fanout of 20 run on 20 Generic Workers. The 

primary overhead is the download of application 

binaries from blob storage to local VM store. This 

overhead of 17 seconds (half the total overhead) could 

be eliminated by our file cache for subsequent 

executions. The parameter upload and download times 

for the Map-Reduce calls are small (<2secs) since we 

use blob file references to reduce intermediate data 

transfer between desktop client and the workers. The 

queue wait times for the request and response messages 

are about 5 secs, which matches with the 5 secs polling 

delay in the client invoker library and Generic Worker. 

In a parallel application like GWAS, this has minimal 

impact on total application runtime.  The time taken to 

run the actual GWAS application is 10mins and dwarfs 

the 35sec (~5%) overhead imposed by the Generic 

Worker. 

Application Scalability. The Generic Worker 

model allows easy scale-out of applications. We 

measure the time taken to complete the GWAS 

application with a Map-Reduce fanout of 128 using 4 

to 20 Generic Workers. We  measure the total time 

taken to complete the application and compute the 

speedup with respect to running locally on an 

equivalent single core workstation that takes 

129×10mins to finish (128 for map, 1 for reduce). 

Figure 4(c) shows the total runtime and speedup of 

the GWAS application. The line graph shows that 

increasing the number of workers reduces the total time 

to complete GWAS linearly. While a perfect speedup 

when using, say, 12 VMs would be 12x compared to a 

desktop, we only observe a 9x speedup in the bar 

graph. The overheads discussed earlier cause this less 

 
Figure 4(a). Average time in mins taken to start Blank Azure VMs 

vs. Generic Worker Azure VMs over 3 iterations. 

 
Figure 4(b). Average Overhead Time in secs contributed by each 

Generic Worker framework stage for GWAS application over 3 

iterations. Total overhead is just 5% of the total GWAS runtime. 

 
Figure 4(c). Total time (line graph) to complete GWAS application 

using increasing number of Generic Workers. Speedup (bar graph) 

as compared to a single core workstation that takes 21:30hrs. 

Reference line showing perfect linear speedup time shown in gray. 
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than perfect speedup. However, even this speedup 

allows the Generic Worker framework scale out 

applications effectively. 

5. Conclusion 

In this paper, we have shown the benefits of using 

the Generic Worker model to easily deploy and execute 

applications in the cloud with minimal user effort. This 

further lowers the complexity barrier to entry for 

science applications. Our model imposes negligible 

overhead of 5% when scaling the GWAS application to 

20 workers. Techniques such as on-demand data 

transfers and VM file caches can actually reduce the 

performance penalty for data transfer between desktop, 

cloud and VM storage. The linear speedup we 

observed shows the effectiveness of the Generic 

Worker to scale out applications to the cloud with ease.  

As future work, we can include additional common 

eScience runtime types such as R.  A similar Generic 

Worker model can also be considered for *nix IaaS 

platforms. While it is possible to support more complex 

deployment dependencies based on existing work, the 

goal of making the framework easily accessible should 

not be compromised. 

Our stateless Generic Worker architecture allows 

dynamic load balancing to be easily implemented; 

while users can do this manually now, we envision 

adding more Worker VMs to add capacity for all 

queued applications and/or likewise for scaling down. 

Another scheduling optimization would leverage data 

locality of pipelined workflow applications by having 

Workers preferentially dequeue work requests whose 

input files are already present in their local file cache.  

Together, these lead us to an accessible science 

platform for the cloud that further enhances application 

scalability. 
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