Information Flow in Credential Systems

Moritz Y. Becker
Microsoft Research
Cambridge, United Kingdom
moritzb @microsoft.com

Abstract—This paper proposes a systematic study of
information flow in credential-based declarative autho-
rization policies. It argues that a treatment in terms of
information flow is needed to adequately describe, analyze
and mitigate a class of probing attacks which allow an
adversary to infer any confidential fact within a policy.
Two information flow properties that have been studied in
the context of state transition systems, non-interference and
opacity, are reformulated in the current context of policy
languages. A comparison between these properties reveals
that opacity is the more useful, and more general of the
two; indeed, it is shown that non-interference can be stated
in terms of opacity. The paper then presents an inference
system for non-opacity, or detectability, in Datalog-based
policies. Finally, a pragmatic method is presented, based
on a mild modification of the mechanics of delegation, for
preventing a particularly dangerous kind of probing attack
that abuses delegation of authority.

I. INTRODUCTION

This paper is motivated by a class of attacks on access
control systems. The systems that are susceptible to such
attacks are the ones that subscribe to the trust man-
agement principle [8]: authorization decisions are based
on the service’s local policy (consisting of declarative
assertions) in union with a (potentially empty) set of
supporting credentials (containing assertions) submitted
by the requester. Access requests are mapped to queries,
so that access is granted if the corresponding query
succeeds when evaluated in the context of the policy
and the submitted credentials.

It turns out that if the language supports credentials of
sufficient expressiveness, then by creating and submit-
ting certain credentials and by observing the correspond-
ing results of a series of access requests, an adversary
can potentially gain knowledge about any confidential
fact in the service’s local policy. Such probing attacks are
particularly dangerous when mounted against policies
written in languages supporting decentralized delegation
of authority (e.g. Delegation Logic [27], SPKI/SDSI
[12], RT [29], SD3 [25], Binder [15], Cassandra [7], Sec-
PAL [4]). Gurevich and Neeman [21] recently described
an example of such an attack on SecPAL. We briefly
recall their example (in a paraphrased, but equivalent
form). Imagine a service with a policy that gives parking

permissions to principals that consent to the relevant
terms and conditions, but additionally contains confiden-
tial facts (here hyperbolically represented by secret agent
memberships). The adversary Alice submits two self-
issued credentials containing the following assertions
to the service, together with her request for a parking
permission:

(1) Alice says Alice consents to parking rules if
Bob is a secret agent

(2) Alice says Service can say
Bob is a secret agent

Suppose the access request succeeds: in other words,
the corresponding query (Service says Alice can park)
evaluates to true in the service’s policy augmented by (1)
and (2), and this positive result is observed by Alice.
Gurevich and Neeman [21] argue that Alice can now
infer a secret from this observation, namely that (3)
Service says that Bob is a secret agent: (3) and (2)
together would imply that Alice also says that Bob is
a secret agent, hence the condition of (1) would be
satisfied and Alice’s consent would be valid, which in
turn would explain why the query succeeds. However,
a closer look reveals that Alice cannot be absolutely
certain that (3) holds in the service’s policy. For instance,
it may be the case that (3) is not true, but the fact
(Alice says Bob is a secret agent) is true in the policy,
which would result in the same observation from Alice’s
restricted point of view.

But the attack can be made more precise by Alice
conducting a second probe, again with the same request
(and thus the same query), but submitting only the first
of the two assertions above. If this second probe yields
a negative response, Alice can be certain that Bob is
indeed a secret agent (according to Service), for then she
knows that (2) is essential in making the query succeed.
A similar attack can be mounted in order to check for
the absence of any secret agent fact. Such attacks, where
successive probing effectively provides a covert channel
for confidential facts, work with a wide range of modern
policy systems, including the ones mentioned above, as
well as any of their derivatives.

Gurevich and Neeman propose a new policy language,

DKAL [21], [22], with a “says to” construct, to mitigate
such unintended information leaks. However, as we will
argue towards the end of this paper, their solution does
not offer a good tradeoff between protection, expressive-
ness and usability. But more fundamentally, we currently
lack a formal framework that could state which security
properties an effective mitigation mechanism should
guarantee. Indeed, there has so far been no systematic
description of what is meant by “probing attack”, and no
analysis on what information is leaked. As the example
above shows, informal reasoning easily leads to false
inferences, and later examples in this paper will illustrate
that the general inference problem is far from trivial.

The problem is clearly closely related to the well-
studied research area of information flow. However,
information flow in credential-based policy systems is
distinctly different from that in state transition systems
and executable programs, which have traditionally been
the focus of such research. In particular, in the current
setting there is no notion of state, state transition, or
trace, and, most importantly, adversaries have the power
to inject credentials into the policy. As such, the es-
tablished techniques cannot be directly transferred to
credential-based policy systems.

We wish to initiate a systematic study of information
flow in the context of credential policies. The current
paper is a first step in this direction. Our main contribu-
tions can be summarized as follows.

o A reformulation of the well-known information
flow property, non-interference [20], in the con-
text of credential policies, based on observational
equivalence. We then consider another property,
opacity [10], which so far has received somewhat
less attention. We redefine opacity as the inability
to infer a specific predicate about a policy and
prove that non-interference can be stated in terms
of opacity. Opacity turns out to be far more useful
(but harder to check) for our purposes. (Section II)

o An inference system for checking the negation of
opacity, which we call detectability, in policies
based on Datalog. The system can be used to
analyze probing attacks and to prove that certain
properties about a policy are leaked. (Section III)

o A pragmatic method for mitigating information
leaks caused by delegation-based probing. The
method consists of a mild modification of the
delegation mechanism in policy languages. The
concepts developed in this paper allow us to pre-
cisely describe the security guarantees from this
modification. (Section IV)

Connections to traditional information flow, the database
inference problem, automated trust negotiation, and hy-
pothetical logic programming are pointed out in Sec-

tion V. We discuss further issues and conclude with
a critical examination of the mitigation mechanism in
Cassandra and DKAL/DKAL?2 in Section VI.

II. NON-INTERFERENCE AND OPACITY

The goal of this section is to establish basic concepts
for reasoning about information flow in declarative cre-
dential policies. We define a policy language L as a triple
(A, Q,F) where A and Q are countable sets called as-
sertions and queries, respectively, and the binary relation
F C p(A) x Q is the decision relation. Note that the
decision relation need not be monotonic, although the
concrete ones considered in later sections of this paper
are all monotonic. A policy A is a subset of A.

At this stage, our definition of policy language is kept
very abstract in order to cover a wide range of existing
declarative policy languages. In later sections, we will
concretise this concept and consider concrete languages
or specific classes of languages.

For instance, in the language of Datalog (cf. Sec-
tion III), assertions are Horn clauses, queries are boolean
formulas over ground atoms, and A + ¢ holds iff ¢ holds
in the unique minimal model of A. To model XACML
[30], assertions would correspond to Rules, Policy Target
declarations and references to Combining Algorithms; a
query would model a Request together with a Response
(Permit, Deny, Indeterminate, NotApplicable); and the
decision relation would model the Policy Determination
Point (PDP).

We fix a complete lattice of security labels (A, <), and
a security environment T' = (C, I), where C': AUQ —
A is called the confidentiality mapping, and I : A — A
is the integrity mapping. We generalize C' and I to sets
by computing the least upper bound on the labels of the
elements, e.g. C(A) =1lub{C(z) | z € A}.

All definitions in this section are parameterized by L,
A and T'; they are left implicit for the sake of readability.
For the remainder of this paper, let ¢ denote a label in
A. Given a policy A, we define visible;(A) = {a € A |
C(a) < £}

The security environment can be seen as defining a
multi-level security meta-policy on the assertions within
a service’s local policy. The labels represent adversaries
with varying clearance levels. The confidentiality map-
ping C(a) specifies the minimal label, or the weakest
adversary, capable of viewing (i.e., knowing) a specific
assertion a inside a service’s policy. The set visible,(A)
therefore denotes the part of A that can be passively
observed (and reasoned about) by an adversary of level /.
In many systems, this set will be empty, or only contain
the public access rules but not the extensional facts.

Additionally, an adversary may actively infer infor-
mation about a policy by running a probe, that is,

submitting a set of credentials (which are assertions) and
evaluating a query against the union of the policy and
the credentials. An adversary can gain more information
by running a sequence of probes, but the set of probes
available to the adversary is typically restricted: C(q)
is the minimal label needed to evaluate (and read the
result of) the query ¢. For instance, in SecPAL [4], this
part of C' would model the Authorization Query Table,
which exposes a list of queries to the public and prohibits
evaluation of any other query.

The integrity mapping I(a) denotes the minimal label
required for being able to submit an assertion a as a
credential. To model a typical setting for decentralized
systems where assertions are statements “said” (or is-
sued) by a principal, A could be defined as the powerset
of the set of principals, ordered by the superset ordering
(so the set of all principals is bottom and the empty set is
top). The integrity label I (a) of a credential a issued and
signed by a principal p would typically always include
p (since p can freely create such an assertion), and
additionally any other principal p’ that is in possession of
a (for instance, because p has issued and given credential
a to p').

Definition II.1 (Alikeness, observational equivalence).
Two policies A and A’ are alike up to ¢ (A ~, A’) iff
visible,(A) = visible,(A").
Two policies A and A’ are observationally equivalent
up to £ (A=, A') iff
1) A~, A’, and
2) for all assertion sets A" C A and queries ¢ € Q
such that I(A”) < ¢ and C(q) < ¢:
AUA"Fq < A UA+q. O

A passive adversary of level ¢ can only see the /-
visible assertions, and hence cannot distinguish policies
that are alike up to £. An active adversary can see
the visible assertions and run probes against the policy.
These two capabilities are represented by conditions 1
and 2, respectively, in the definition of observational
equivalence. Hence an active adversary of level £ cannot
distinguish policies within any (=¢)-equivalence class.

Example. Consider the assertions and the query from
Fig. 1. Under the given security environment, {a;} ~,
{a1,a2} ~1, {a1,a2,a3}. As for observational equiva-
lence, we have {a;} =1, {a1,a2} because ¢; has the
same outcomes in both policies, no matter whether the
Lo-integrity a4 is injected or not. However, {a1,as} #Lo
{a1, as, a3} because the latter satisfies ¢, (without injec-
tion of any assertion), whereas the former does not. [

Alikeness and observational equivalence are essential
in the following definitions of two information flow
properties, non-interference and opacity.

Definition I1.2 (Non-interference). A policy A has the
non-interference property for £ iff for all policies A’:

AZ@A/éAEgA/. O

Informally, a policy has the non-interference property
if any policy that looks the same to a passive adversary
also behaves the same way when probed by an active ad-
versary. This formulation based on observational equiv-
alence is inspired by the definition of non-interference
in transition systems by Zdancewic and Myers [39]. But
the definition is also equivalent to the more informal
way of describing non-interference: low output (i.e., the
results of evaluating low queries) only depends on low
input (the immutable visible part of the policy and the
submitted assertions); in particular, it is independent of
high input (i.e., the confidential assertions in the policy).

Example. Continuing the example above, neither {a; }
nor {ay,as} nor {aj,as,asz} has the non-interference
property for Lo, but adding the Lo-visible a4 to either
of these policies results in a policy that has the non-
interference property. This is because whenever a policy
contains both a; and a4, the only Lo-query ¢; is always
true (since SecPAL is monotonic). O]

Non-interference is a very restrictive property that,
in the case of programming languages, rules out many
innocuous programs that intentionally declassify confi-
dential information. In our context, there are many useful
policies in which the result of a low query intentionally
depends on the presence or absence of some confidential
information. For example, a patient may read an item
from his medical record if it does not contain any
confidential information about a third party. The result
of checking if the patient’s read request is permitted thus
legitimately depends on a confidential fact, even if this
fact should not be directly disclosed.

Another problem with non-interference is that it is
too coarse. The policy mentioned above breaks non-
interference, but all this tells us is that there is some
dependency between the confidential information and the
query result. It does not tell us what exactly the patient
learns from the result. Indeed, he might not learn any-
thing substantial from the fact that his read request was
denied, because there may be several potential reasons
for access denial, some of which may be unknown to
him. Conversely, we could try to restore non-interference
by classifying the confidential third party fact down
to the patient’s security label. This measure, however,
would be too drastic, as it would fully disclose the
third party information to the patient even without him
probing.

What is needed is a property that provides a more fine-
grained handle on what an active adversary may infer

(a1) Service says z can park if (as)
x consents to parking rules (a4)

(az) Service says x can park if (@)

T is a secret agent

Service says Bob is a secret agent
Service says Bob consents to parking rules

Service says Bob can park

C(z) = Lo if z € {a1,a4,q1 }, and Hi otherwise.
I(x) = Lo if x = a4, and Hi otherwise.

Figure 1. Running example: the policy language is SecPAL [4], and A is the two-point lattice Lo < Hi.

from a series of probes. This leads us to the information
flow property of opacity, and its complement, which we
call detectability. Opacity has been studied in the context
of Petri nets and state transition systems [33], [10],
where it is described as “the inability of an observer to
establish the truth of a predicate over system traces”. We
reformulate this concept by replacing “system traces” by
“policies”.

Definition II.3 (Detectability, opacity). A policy prop-
erty @ is a set of policies. We often identify ® with its
indicator function, i.e., ®(A) is equivalent to A € P.

A policy property ® is ¢-detectable in a policy A iff
for all policies A’:

A=, A = B(A).

A policy property ® is f-opaque in a policy A iff it
is not /-detectable in A, or equivalently, iff there exists
a policy A’ such that A =, A’ and —=®(A). O

Intuitively, a policy property is ¢-detectable in A if
the adversary ¢ can infer (from the visible part of A and
from running his probes against A) that A must have that
property. Conversely, a policy property that holds in A
is £-opaque in A if the adversary cannot be sure that A
has that property, because there exists some policy A’ in
which the property does not hold and that masquerades
as A with respect to all probes available to £.

Note that detectability requires knowledge with abso-
lute certainty, and not simply high probability. It may
for instance be the case that “Alice is a secret agent
or Bob is a nurse” is the smallest (i.e., most accurate)
property that is detectable in the policy. From this it
follows that the stricter property “Alice is a secret agent”
is deemed opaque, simply because there is a possibility
that Alice is not a secret agent but Bob is a nurse. In
other words, opacity is based on a notion of uncertainty
that is possibilistic as opposed to probabilistic.

Example. Under the given security environment from
Fig. 1, the property that, according to the policy, Ser-
vice says that Bob is a secret agent is Lo-opaque in
{a1,a2,as}, and the property that Service does not say
Bob is a secret agent is Lo-opaque in {a1, as }. The prop-

erty that Service does not say that Bob consents to park-
ing rules is Lo-detectable in a; (by first injecting noth-
ing, and then ay4), but Lo-opaque in {a1, a9, as}. O

The following is a list of basic sanity properties that
follow directly from the definitions.

Proposition I1.4. Let ¢,/ € A with £ < /. The
following propositions hold:
1) A~y A=A g Al
2) A=y A= A =y A
3) If A has the non-interference property for £/, then
A also has it for £.
4) If @ is /'-opaque in A, then @ is also f-opaque in
A.
5) If ® is /¢-detectable in A, then ® is also /'-
detectable in A.
6) If =-®(A), then P is f-opaque in A.
7) If ® is {-detectable in A, then ®(A) holds.
8) If & C & and P is f-opaque in A, then P’ is
{-opaque in A.
9) If ® DO ® and P is (-detectable in A, then ®’ is
{-detectable in A.

What is the relationship between non-interference
and opacity? Ryan and Peacock [33] showed, in the
context of transition systems, that non-inference [31]
can be cast in terms of opacity, but conjectured that
the same cannot be easily done for non-interference.
Theorem II.6 below shows that non-interference can be
precisely characterized in terms of opacity.

Definition II.5 (Discriminating property). Let A be a
policy. A policy property @ is (A, £)-discriminating iff
there exists a policy A’ ~; A such that ®(A) <=
-®(A).

Theorem II.6. A policy A has the non-interference
property for ¢ iff all (A, ¢)-discriminating policy prop-
erties are f-opaque in A.

Proof: First, assume A has the non-interference
property, and consider any (A, ¢)-discriminating policy
property ®. If ~®(A), then ® is opaque in A any-
way. In the other case, ®(A), and by Def. IL5, there

exist A" ~, A such that =®(A’). By non-interference,
A=, A’. Hence @ is (-opaque in A.

For the other direction, assume the right hand side
of the proposition, and consider any A’ ~, A. For the
sake of contradiction, suppose A =, A’ does not hold.
Then ® = p(A)\ {A'} is a (A, ¢)-discriminating policy
property. By opacity, there exists A” =, A such that
—P(A”). By construction of &, A” = A’, hence A =
A’, which contradicts the assumption.]

We have now defined two information flow proper-
ties for credential policies, non-interference and opac-
ity. There is a crude and simple way of deriving
a non-interference-enforcing decision relation , from
the original decision relation F: when evaluating a
probe for ¢, ignore all assertions in the policy that
are higher than ¢. More formally, for all policies A:
A k4 g iff visibley(A) F g. As a result, all A have the
non-interference property for ¢ under ;. This method is
safe if the language is monotonic in the sense that fewer
assertions lead to fewer permissions.

Opacity (or likewise, detectability), on the other hand,
is much harder to check, but also more flexible and
suitable for our purpose. In fact, it is easy to see that
opacity is generally undecidable for any policy language,
as opacity is defined with respect to any arbitrary policy
property, which may itself be undecidable.

III. INFERRING DETECTABILITY

The scenario in Section I is an example of a probing
attack through which an adversary can gain knowledge
of confidential parts of a service’s policy. The tools
developed in the last section allow us to formally de-
fine and reason about this class of attacks. To do so
effectively, the concepts of policy language and policy
properties have to be concretized somewhat, while keep-
ing them still abstract enough to be applicable to many
concrete existing policy languages.

In this section, we will instantiate the policy language
to Datalog [36], [11]. Datalog has a small syntax and
semantics and can thus be reasoned about without much
overhead, yet it is expressive enough to express a wide
range of policies. It is the underlying semantics (though
sometimes extended with constraints) for a number of
policy languages [27], [25], [29], [15], [28], [7], and a
number of others such as SecPAL [7] or fragments of
DKAL [21] can be translated into it.

The concepts of opacity and detectability allow us to
precisely quantify the information obtained through a
probing attack. The last section ended on the remark
that the generality of policy properties made opacity
and detectability hard to check. In this section, we
will therefore restrict policy properties to those linked
directly to Datalog queries about the Datalog policy.

Such properties include, for instance, “Bob is a secret
agent or Mary does not have read access”, but not “the
policy has an odd number of assertions”.

The main technical result of this section is an in-
ference system for detectability of policy properties
in Datalog policies. As was hinted at in Section I,
and which will become more evident in the following,
analysing detectability is highly non-trivial, and it is easy
to make mistakes. Given a set of probes, our inference
system allows us to deduce what information about the
policy is leaked. To be more precise, Theorem III.8 is
a soundness result in that it allows us to prove that an
adversary can detect some policy property.

For safety analysis, it would be useful also to have the
completeness result in order to prove opacity, i.e., that
no adversary can detect some secret property. Whether
the inference system for Datalog is complete or not
remains an open problem (see discussion in Section VI),
but Section IV presents a more restrictive language that
enforces certain opacity guarantees.

A. Datalog

We fix a function-less first order signature with pred-
icate names and constants. An expression e is a variable
or a constant. An atom (or fact) f = p(€) is a predicate
name p applied to an expression tuple € of the correct
arity. A clause is of the form

fO A fla"'afTH

where n > 0, and f; is called the head and f: the
body. The arrow is usually omitted if n = 0. If a is
a clause, then we write hd(a) to denote its head. A
program is a set of clauses. A query q is either true,
false or a ground (i.e., variable-free) boolean formula
(i.e., involving connectives —, A and V) over atoms.

For the remainder of this section, we instantiate the
set of assertions A to the set of Datalog clauses, and
the set of queries Q to the set of Datalog queries. A
policy is therefore a Datalog program. There are several
equivalent definitions of the decision relation F. The
model-theoretic formulation is quite intuitive: given a
policy A C A, close each clause by universal quantifers
and form the conjunction of all such quantified clauses.
This formula has a unique minimal Herbrand model M.
Then we define A F ¢ iff M = q.

For our proofs, a more operational definition is useful
that is based on the intuition that Datalog programs
are inductive definitions. Given a policy A, we define
the consequence operator T4 as a monotonic mapping
between sets S of ground atoms. In the following defi-
nition', let -y be a ground substitution (a total mapping

IThroughout the paper, we will occasionally use pointed brackets
(_) as meta-level parentheses to delimit phrases of concrete syntax.

from variables to constants).

Ta(S) =A{fo | Fv IHfo < f1,... fn) € A,
7({f1a7fn}) g 57
fo=~(fo) }

The least fixed point of the consequence operator, T ((),
is equal to the model M above, so we can equivalently
define A F ¢ iff T4(0) |= q.

Datalog lends itself well to specifying policies be-
cause many policy rules can be naturally expressed
as if-statements. For example, the SecPAL delegation
assertion

A says B can say x has age n if x is a User

could be translated” into two Datalog assertions:

canSayHasAge(A, B, z,n) < isA(A, z, User)

hasAge(A, z,n) < hasAge(B, z,n),
canSayHasAge(A, B, z,n)

B. Probing environments

In Section II, the adversary was characterized by a
security label ¢ and a security environment I" = (C, I).
The confidentiality mapping C defined which assertions
were visible to her and which queries she could run,
and the integrity mapping I defined which assertions
she could submit and inject into the policy. But even
though the adversary may have a large or infinite number
of probes at her disposal, she will typically only use a
subset of them in a particular probing attack. In this
section, we will specify the adversary in a more fine-
grained fashion as a specific set of probes, corresponding
to a concrete probing attack.

Definition IIL.1 (Probe, probing environment). A probe
m = (A, q) is a pair consisting of an assertion set A C A
and a query ¢q € Q.

A probing environment 11 = (C, ¢, Ay, P) is a 4-tuple
consisting of a confidentiality mapping C' : A — A, a
security label £ € A, a policy Ag C A, and a set P of
probes. U

A probing environment (C, ¢, Ag, P) is a complete
specification of a probing attack. Ay is the service’s
policy that is under attack; as before, C' determines
which assertions in Ag are visible to the adversary, who
is assumed to have label ¢; and P is the set of probes
that are run against Ag. The probe set P could be seen
as a fine-grained instantiation of both the part of C' that

2The actual translation according to [4] is actually a bit more
complicated due to the fact that SecPAL supports a second kind of
delegation construct, can say, that forbids redelegation.

defined the queries available to the adversary and the
integrity mapping I from Section II.

We say that a probe (A, q) is positive if Ag U A
q, and negative otherwise. For each probe 7 in P, the
adversary can observe if 7 is positive or negative. Based
on the notion of probing environment, we generalize the
definition of detectability.

Definition IIL.2 (Observational equivalence). Two poli-
cies A, A’ are observationally equivalent under a prob-
ing environment IT (we write A = A') iff
1) A >y A/, and
2) for all probes (A”,q) in P:
AUA"Fq < A UA"Fq. O

Definition III.3 (Detectability). A query ¢ is II-
detectable iff for all policies Aj:

AL =n Ao = AL Fq.
A query q is II-opaque iff it is not II-detectable. O

This refined definition of detectability allows us to
state succinctly what information about a policy is leaked
to the adversary in a given probing attack.

C. An informal example

We now develop an inference system that proves if a
query is detectable in a probing environment. To give an
intuition for the problem, we first consider an example
that is small and yet illustrates the surprising complexity
of this problem. Suppose that the adversary cannot read
anything from the policy Ag, so visible,(4g) = 0.
Suppose further that the probe set consists of three
probes that all have the same query, (A;,0k), (Asz,ok),
and (As, ok), where

Ay ={(a)}, A2 ={(b)}, and
As={{a+c),(b+ a)}.

(The nullary predicates a, b, ¢ and ok in this example
could represent any security-relevant facts in the policy.)

Now suppose that the first two probes are negative
and the third is positive, i.e.,

AouAlj’éOk, and AOUAQ}LOI(, (1)
and
A() U A3 F ok.

From these three probes alone, what can the adversary
infer with certainty about the policy Ag?

First of all, what does the fact Ay U A3 I ok convey?
The probe would be trivially positive if ok were already
true in Ap. But from (1) we can infer that actually
—ok holds in Ag U Ay, and thus also in Ag, by anti-
monotonicity. So it must be the case that at least one of

the two assertions in Ag play an essential role in causing
the third probe to be positive. Either the first assertion
“fired”, in which case a could not have already been true
in Ay, and furthermore, ¢ must hold. Or else the second
assertion fired, in which case b is false in Ag, and either
a or c are true, for these are the only two possibilities
for firing the second assertion (we say: a and c¢ form the
support of b in As). In summary, AgU A3 F ok (together
with (1)) implies

Aok (manc)V (-bA(aVc)).)

But there is more to be inferred. We can widen the
two assertions in Az to AL = {(a), (b)} (we say: A3 is
contained in A%) and, by monotonicity, be certain that

Ao U A+ ok. 3)

Note that A; and A, are proper subsets of Af5. This
fact can be exploited: from (3), we can infer (again by
arguing that either ok already holds or that the other
assertion has fired):

Ao U {(a)} - ok V —b, and symmetrically, @)
Apg U {(b)} I ok V —a.

Combining these with the two results from (1), we get
ApU{(a)} F —b, and Ao U {(b)} F —a. Then, by anti-
monotonicity of the last two queries, we can infer Ag -
—a A —b. Finally, this can be combined with (2) and
our knowledge of —ok to yield (after some algebraic
simplification)

AgF ok A—aA-bAc.

The adversary can thus infer that ok, a and b are false,
and c is true in Ag.

D. The inference system

We now formalize the intuition given in the example
above. In particular, we first need to make the notions of
monotonicity, containment, support, and firing precise.

Definition III.4 (Monotonicity, containment). A query
is monotonic iff it is equivalent to one without negation.
A policy A is contained in a policy A’ (we write:
A < A') iff for all sets S of ground atoms, T4 () C

“4os(0). 0

A useful proposition that follows from this definition
is that if ¢ is monotonic and A < A’ then for all policies
Ag, AU Ay + ¢ implies A’ U Ag F g. Conversely, if
A’ U Ag + —q holds, then so does AU Ag F —q.

Containment is an undecidable problem in unrestricted
Datalog. However, we will only check containment on
ground policies, for which the problem is decidable
(this follows from decidability results on containment
in monadic Datalog [13]). Moreover, any conservative

approximation of containment can be used without af-
fecting soundness of the inference system (such as the
syntactic widening hinted at in the example, or simply
the subset relation).

Definition IIL.5 (Support). Let support be a function
from any assertion set A and any ground atom f to a
set of sets A of ground atoms such that the following
holds:

1) If A € support(A, f) then AUAF f.

2) If AUA f, then there exists A’ C A such that
A’ € support(A, f).

3) If A, A’ € support(A, f) and A’ C A then A =
A O

The first two requirements represent soundness and
completeness of support, respectively, and the third is
minimality. This function can be computed directly using
standard abduction [26]. Abduction has been used in
Al applications such as planning and fault diagnosis,
and has also been applied to security policy analysis for
explaining access denial, for policy debugging [5] and
for distributed credential gathering [2]. For unrestricted
Datalog, support(A, f) may be infinite, which would
result in infinite queries in our inference system. How-
ever, if A is finite and ground, then for all ground atoms
f, support(A, f) is a finite set and all members of the
set are finite sets of ground atoms. For this reason, we
will restrict submitted assertions in probes to be ground,
to prevent the inference system generating judgements
of infinite size.

Definition III.6 (Firing). Let A be a ground assertion
set, f a ground atom, and S = support(A, f). Then
fired(A, f) denotes the query

-fa\ A\A. O

AeS

Suppose A; is a partially unknown policy and As a
known ground policy. If we know that A; U A5 F g,
what does this tell us about A;? Either ¢ already holds
in Aj, or at least one of the assertions in A, is essential
in proving g¢: it is “fired” in the context of A;. More
precisely, if f is the head of the fired assertion, then
fired(As, f) holds in A;. Lemma IIL.7 formalizes this
argument, and is the cornerstone of the correctness proof
for the inference system.

Lemma IIL.7. Let q be a query, and A;, A5 be policies
where As is ground. If A1 U As + ¢ then A1 F gV
Vaea, fired(Az, hd(a)).

Proof: Assume the left hand side of the proposition,
and A; ¥ ¢. It remains to show that the big disjunction
is derivable in A;. Let n be the smallest integer such
that T7 4, (0) # T4 (0). Then by definition of the

visible,(Ag) UA F ¢
q is monotonic A is ground

P
(PEER (C7€aA07P)7A‘Fq
AgUAkq (Aq €eP
(POKEI)
(C, 4, Ay, P),AlF q
ILAIFq A=A
q is monotonic A’ is ground
(MoNo1)
LA I g
c H,AW q1 H,AWQQ
(Con ILAIF g Age

I, Al- =q
Wiy AT g Fq=gq
ILAIF¢
AgUA¥Fq (Aq€eP
(POKE2)
(C, 4, Ay, P), A Ik —g
II,AIFgq A< A
—q is monotonic A’ is ground
(MONO2)
LA I g
H, A1 U A2 I+ q
(DIFF)
IL, Ay IF ¢ V'V e, fired (A2, hd(a))

Figure 2. Inference system for detectability.

consequence operator, there must exist a ground asser-
tion (f < f1,..., fm) in A such that A; - —f and all
fi are in T, (0) = T% " (0) (the equality holds by
construction of n). Moreover, by definition of support,
there exists A € support(As, f) such that all f; are in
A. Hence the big disjunction holds. []

We now have all the tools needed to assemble the
inference system for checking detectability (Fig. 2).
The inference system generates judgements of the form
ILA I g where IT = (C,¢, Ap,P) is a probing
environment, A a set of ground assertions, and g a query.
This judgement states that the adversary can learn that ¢
holds in Ay U A, just from looking at the visible part
of the policy and from running the probes P. More
precisely, the essential property of the inference system
is as follows:

If II, A I ¢ then for all policies Aj:)

The axiom (Peek) models the knowledge gained from
just passively reading the visible part of the policy.
(WEAK) allows the conclusion to be weakened; this rule
is useful when the premise of another rule requires the
query to be monotonic. The axioms (Pokel) and (POKE2)
model the positive or negative result from a single probe
from P. (Monol) and (Mono2) exploit the properties of
monotonicity and containment. (Cony) allow conclusions
to be conjoined if they hold in the same credential
context A. The last rule, (Dirr), is the one that does
most of the work: it encapsulates the implication of
Lemma II1.7.

Finally, Theorem III.8 formalizes the correctness of
the inference system.

Theorem IIL8. Let ¢ be a query and II = (C, ¢, Ay, P)
be a probing environment where P is ground. If II,) I- ¢
then ¢ is II-detectable.

Proof: (Sketch.) We prove the more general state-

ment (5) above. The proof proceeds by rule induction on
IF. The interesting case is (Dirr). Suppose II, A; U Ay I+
g. Consider any A{, =r; Ag. By the induction hypothesis,
AjU A U Ay F q. Hence Lemma II1.7 can be applied

to yield Ag U Ay gV V, ¢y, fired(Az, hd(a)). [|

Example. Returning to the example from Section III-C,
we sketch how the proof of detectability proceeds ac-
cording to the inference system. First of all, the basic
facts AgU A7 ¥ ok, AgU As ¥ ok, and AgU A3 F ok are
obtained by applying (Poke2) to (A1, 0k) and (A, ok),
and (Pokkl) to (As, ok).

Then (Mono2) is applied to the basic fact from
(A1, ok) (with § < A;) to get the subresult IT, §) IF —ok.
The result from applying (Dirr) to the basic fact from
(As,0k) (with (in the conclusion) is conjoined with
the latter result by (Cons), yielding the subresult (2).
Now we apply (Monol) to the basic fact of (As,ok)
(with A5 = Aj3) and obtain (3). Applying (D1FF) in two
different ways (with A; or with Ay in the conclusion)
yields (4). The —ok in the conclusions of these two
judgements is eliminated by (Coni) by conjoining with
the basic facts from (A;,0k) and (As,ok). Applying
(Mono2) on the two results and then combining them
with (Coni) yields the subresult IT, () IF —a A —b. Finally,
repeated application of (Con) on all the subresults yields
IT, ® IF —ok A—aA—=bAc. By Theorem III.8, the formula
in the conclusion is II-detectable.

IV. INFORMATION FLOW CONTROL

We now turn to the question as to how information
flow can be controlled in a “real” policy language,
namely SecPAL. SecPAL lends itself well to this pur-
pose, as it has been designed with the goal of maximising
generality and expressiveness while keeping the number
of primitive constructs minimal. But more importantly,
it is paradigmatic in its susceptibility to probing attacks

based on delegation. This vulnerability is shared by
almost the entire family of related languages that support
the decentralized delegation of authority via the says-
operator, first introduced in the ABLP logic et al. [1], or
any equivalent construct.

We briefly recall SecPAL, before taking a closer look
at what causes the vulnerability. We then show how this
vulnerability can be mitigated by a mild modification
of the way delegation works in SecPAL. This method
can be easily transferred to other policy languages that
support delegation.

A. SecPAL

We give a very brief overview of SecPAL; for a more
careful treatment, see [3] and [4].

Syntax. We fix an arbitrary first-order function-less
signature with countably infinite sets of predicate names
and constants (including principals). An expression e is
either a variable or a constant. A fact f is either flat,
i.e., it is a predicate atom (which we often write in infix
notation, e.g. e can read ¢€’), or nested, i.e., it is of the
form e can say f’ or e can say, f’, where f’ may be
nested itself.

We further fix an arbitrary constraint language. A con-
straint c is a first-order formula over atomic constraints
(such as equality, inequalities, arithmetic constraints or
regular expression constraints). The only requirement
on the constraint language is that it be equipped with
a computable unary relation |=, such that = ¢ holds
whenever the ground constraint ¢ is true. SecPAL can
thus be flexibly adapted to various specific domains
by choosing a domain-specific predicate name set and
constraint language.

An assertion a is of the form

e says f if fi,..., fn where c,

where n > 0, e is ground and the f; are flat. We say
that e is the issuer of this assertion. We omit the “if” if
n = 0 and the “where” if ¢ = true. An assertion of the
form (e says f) is an atomic assertion.

A query is a boolean formula over ground atomic
assertions involving only flat facts. (SecPAL actually
allows non-ground, constrained and quantified queries,
but we omit these for simplicity.)

For the remainder of this section, we instantiate A to
the set of SecPAL assertions and Q to the set of SecPAL
queries.

Decision relation. Fig. 3 shows the decision relation
for atomic queries (i.e., ground atomic assertions). In the
modus ponens rule (Conp), v is a ground substitution.
Note that (Conp) requires the conditional facts f; to be
issued by the same principal e that issues the original

assertion and the conclusion fact. The only way that for-
eign facts may enter the derivation is via (CanSay) and
(Cansav0). The former implements standard delegation
of authority: e; delegates authority over f to es, so e; is
willing to vouch for f whenever es says it. The latter is
similar, but prohibits redelegation: the delegator es must
say f directly, without any dependencies on what other
principals say.

If A is a policy, then let [A] denote the set of atomic
queries a such that A F a. Then for a general query g,
we define A b ¢ iff [A] = ¢. We refer the interested
reader to [4] for a collection of example policies and
policy idioms expressed in SecPAL.

B. Probing attacks revisited

From Section III, it is clear that in all but the most
trivial circumstances, any confidential fact in the policy
can be detected with the right combination of probes,
even if the query does not mention the fact at all.
Consider for instance the following two SecPAL probes:

m1 = ({A says ok if secret}, A says ok)
o = (0, A says ok)

If 7 is positive and 5 is negative, then (A says secret)
can be detected by any B running these probes. But since
the essential credential in 7 is issued by A herself, one
could argue that the only one who could run this probe
would be A herself, or perhaps A intended this infor-
mation flow since she allowed this obviously dangerous
credential to get into somebody else’s possession (or else
A is grossly careless).

But the real danger of probing lies in the fact that
any confidential fact issued by A can be detected using
probes that do not contain any assertions issued by A.
Indeed, even the queries in the probes need not mention
A at all, as the following example shows:

w1 = ({B says ok if secret,
B says A can say secret}, C says foo)
75 = ({B says ok if secret}, C says foo)

If these assertions are translated into Datalog [4], the
inference system from Section III can be used to infer
that (A says secret) is detectable if 7] is positive and
74 is negative.

Clearly, the underlying mechanism for this attack (and
similar attacks) works by exploiting the ability to dele-
gate authority over facts to others. In other words, these
attacks depend on the rules (CanSay) and (CANSAYO).
Taking a closer look at the (CanSay) rule, note its original
intention is for e; to specify who (e3) can be trusted on
saying f. The principal e; is willing to import f from
eo if e; has issued the corresponding can say assertion.
But the rule also reveals an apparent asymmetry between

(e says fif fi,...,fn wherec) € A Ev(c)

AF ~(esays f;) forall i€ {1..n}

Co
(COND) At v(e says f)
At eq says es can say f
(CAxS At ey says f CANSAYO
ANSAY ANSAY
) At e says f ()

Al ey says eg can say, f
{a € A| es is the issuer of a} I ey says f
At eq says f

Figure 3. SecPAL proof system.

e; and ey: e; has to explicitly agree to importing es’s
fact f, but there is no premise that requires e to agree
to exporting the fact to e;. Hence e; can import from
eo without ey’s consent, under the guise of delegating
authority over f to es.

C. SecPAL*t

Based on the intuition developed above, we now
propose a mild modification to the two delegation rules
which provides a more symmetric protection of both
the delegator — the one who imports a fact — and
the delegatee — the one who exports the fact. We
first introduce a new type of nested fact of the form
(e can listen to f), where f is a (possibly nested) fact.
The rules (CanSay) and (CanSav0) are then replaced by
(CanSay™) and (CanSav0t) (below, A,, denotes {a € A |
eo is the issuer of a}):

AF ey says e can say f
A F ey says e; can listen to f

At eg says f
CANSAYT
(CANSAYT) AFeq says f
At eq says es can say, f
Ae, - e2 says e; can listen to f
A., F eg says
(CANSAYOT) 2 2 says |

At eq says f

We call the language with the modified delegation
rules SecPAL™. Consider the following (re-)delegation
chain:

A says B can say f
B says C can say f
C says D can say f
D says f

In standard SecPAL, these assertions would suffice to
derive A says f. In SecPAL™, we need additional
assertions to make the delegation succeed:

B says A can listen to f
C says B can listen to f
D says C can listen to f

This conforms nicely with the idea of a delegation chain,
in which each principal only knows the peer above and
below the chain. The final delegatee D, for instance, need
not specify that B and A can listen to f.

Opacity in SecPAL". The goal of modifying Sec-
PAL’s delegation mechanism was to rule out probing
attacks based on delegation. But what exactly do our
modifications achieve? We can answer this question in
terms of opacity and detectability.

In the following, let A be the two-point lattice Lo <
Hi. For simplicity, we let C be a confidentiality mapping
such that C'(a) = Hi, for all assertions a. Hence for any
policy Ay, visible;,(Ag) = 0; we thus assume that the
entire policy is invisible to a low passive adversary.

Theorem IV.1 below provides a simple opacity guar-
antee for a confidential fact gy that is issued by some
e1. Assuming that (1) the adversary is not permitted to
directly query qo, (2) the adversary is not in possession
of any obviously compromising assertion issued by e;
(cf. Section IV-B), and (3) the adversary is not in
possession of a {(can listen to)-assertion for ¢y issued
by ej, the theorem guarantees opacity of qp.

Theorem IV.1. Let gy be a possibly negated atomic
query of the form (—)(ep says p(€)), and II =
(C,Lo, Ag, P) a (SecPAL™) probing environment. If for
all (4,q) € P,

1) qo is not a subquery of ¢, and
2) p does not occur in any eg-issued assertion a € A,
and
3) for all a € A:
Ag U A ¥ ey says e, can listen to f,
where ¢, is the issuer of a,

then ¢qq is II-opaque.

Proof: (Sketch.) The main idea of the proof is
to construct some A{ such that (a) Aj ¥ go and (b)
Ay =n Ao. In the case where gy is positive, Af is
obtained from Aj by renaming all occurrences of p to
some p’ that does not occur in II. Clearly, (a) holds.
Next, suppose for sake of contradiction that (b) does
not hold. Then we can show that ¢y is crucial to one
of the probes: there would exist some (A,q) € P

such that Aj U A ¢ iff Ay U AU {q} ¥ ¢. With
assumption (1), go would have to appear as a premise in
the inference of either ¢ or —¢ on the right hand side of
this equivalence. A simple rule induction over - shows
that, with assumption (2), this particular inference step
cannot involve (Conp). The only possible inference step
would thus be an instance of (CANSAY™') or (CANSAYO™T)
that would contradict assumption (3). Therefore, (b)
holds.

In the other case where ¢ is negated, A{, is con-
structed from Aj by adding e says p(€) (and thus mak-
ing (a) true) and by applying the additional following
transformations (for making (b) true). For each eg-issued
assertion in which p(€’) occurs in the body, replace the
original constraint ¢ by ¢cA€ # €. Furthermore, for each
assertion in which (e’ can say p(€”’)) occurs in the head,
replace the original constraint ¢ by cAe’ # eg Ae’ # €.
The rest of the argument is similar to the positive case.

|

V. RELATED WORK

To our knowledge, this is the first systematic study of
information flow in credential-based policy systems, in
particular with respect to probing attacks. This section
gives a brief overview of related areas of research.

Automated trust negotiation (ATN), first introduced by
Winsborough et al. [38], is concerned with negotiation
strategies for exchanging confidential credentials be-
tween mutual strangers. The notion of negotiation safety
is formalized in Winsborough and Li [37], which also
provides a comprehensive overview of research efforts
in this area. Informally, a safe negotiation strategy does
not reveal anything about the presence or absence of
a credential (or an attribute) to the negotiation partner
before the latter has proved that he satisfies the necessary
disclosure conditions, specified by some policy. There
are two main differences between the ATN setting and
the current one which make the two hard to directly
compare. Firstly, ATN considers the confidentiality of
credentials of all involved parties, which necessitates a
sequential and gradual negotiation process. In contrast,
we are only concerned with the confidentiality of the
service’s policy. Secondly, work in ATN has so far not
considered the possibility of agents injecting objects
into the policy. Our adversaries, in contrast, can submit
credentials that, in effect, logically extend the service’s
policy for the duration of one probe. This ability is
natural in the context of trust management [8], but it
also complicates the analysis.

Information flow has been studied since the mid 1970s
[14], though research has mainly been concerned with
stateful, temporal computations. A good survey is found
in [34]. The current setting is quite different as there

is no notion of state, state transition, run or trace,
and adversaries are traditionally not permitted to inject
code into the program. Nevertheless, on an abstract
level, many of the traditional concepts can be adapted,
such as non-interference (introduced by Goguen and
Meseguer [20]). In fact, our definition is inspired by
Zdancewic and Myers’ definition [39], which is also
based on observational equivalence (albeit on traces).
Opacity [33], [10] is another, less known, information
flow property that we reformulated and that proved very
useful for our purposes; it is also closely related to non-
inference [31] and non-deducibility [35].

The knowledge operator K; in epistemic modal logic
[17] bears some resemblance to our definition of de-
tectability, and has been used for reasoning about se-
crecy in (stateful and temporally evolving) multi-agent
systems [23]. We leave it to future work to investigate
if reformulating our framework in such a logic may be
fruitful.

The database inference problem is concerned with
indirect inference channels through which confidential
information from a database can leak to a database user.
A wide variety of such channels have been identified
and studied [24], [18]. In particular, Bonatti et al. have
studied the inference problem in deductive databases [9],
which are similar to declarative policies. However, they
do not consider users who can temporarily inject new
rules and relations into the database, as this is not natural
in the database context.

The notions of probing attacks and detectability in
Datalog policies (Section III) are related to hypothetical
logic programming [16], where goals (corresponding
to our queries) may be supplemented by hypotheti-
cal clauses which are temporarily added to the logic
program (corresponding to the submitted credentials).
However, we are not just interested in evaluating such
hypothetical goals (i.e., probes), but in finding an ex-
planation for the result of these goals. Abduction, in its
most general form, is about finding explanations to a set
of observations [32], and has been extensively studied in
the context of standard logic programming [26], but so
far not of hypothetical reasoning. Indeed, the inference
system in Section III could be viewed as an abduction
method for hypothetical goals in Horn logic programs.

VI. DISCUSSION

In Section II, we developed an information flow
framework for credential-based policy systems, on the
basis of alikeness (with respect to the visible part of a
policy) and observational equivalence (with respect to
probes). This abstract setting gave rise to very general
and elegant formulations of the relevant information flow
properties: a policy has the non-interference property if

any policy that looks alike is observationally equivalent;
and a policy property is detectable in a policy if any
observationally equivalent policy has that property. We
leave it to future work to examine if some of the
many other information flow properties [19] can also
be usefully adopted.

Completeness. This framework was then put to good
use in Section III where we formalized probing attacks
and developed an inference system for checking de-
tectability in Datalog policies. Theorem IIL.8 proves the
soundness of the system: whenever a query is derivable
in the system, then it is also detectable. However, the
corresponding completeness statement remains a conjec-
ture:

Conjecture VILI1. Let ¢ be a query and II =
(C,¢,Ag, P) be a probing environment where Ag is
finite and P is ground and finite. If ¢ is II-detectable
then II, () I ¢ holds.

Completeness would be a useful property because it
would imply at least semidecidability of detectability
(for ground Datalog probes), and thus detectability could
be positively checked in finite time. Furthermore, if
II,0 ¥ ¢ holds, then ¢ would also be known to be
opaque in the policy. Of course, to check II,{ ¥ ¢
in general would require full decidability, which is not
automatically implied by completeness.

The reason why completeness is not easy to prove
is that the premise of detectability, being a universally
quantified implication, does not provide any obvious
information that would guide the inference proof. In any
case, the inference proofs do not seem to be very goal-
directed, as the small example in Section III-C illus-
trated. In particular the combination of (Weak), (MoNo1)
and (DiFF) contribute to the apparent unconstructiveness
of the inference system.

A more promising strategy may be to prove the modus
tollens direction: assume II,# } ¢, and then construct a
policy that masquerades as A, with respect to the probes,
but in which ¢ does not hold. While it is easy to modify
Ap in such a way that =q holds, the difficulty here lies in
the fact that it is not clear how to “repair” the modified
policy in order to successfully masquerade as Ay.

Of course, it may turn out that completeness does not
hold. However, a simple informal argument suggests that
ground finite detectability is actually fully decidable: it
seems almost certain that all maximally strong queries
that are detectable only mention predicate names and
constants that occur in the probes or the visible part of
the policy. If this is true, then there are only finitely
many maximally strong detectable queries, and all other
detectable queries are implications of these. Hence the
set of detectable queries is decidable. So it seems that at

least some complete finite axiomatization of detectability
exists, although it may be an extension of the given
inference system.

There are other interesting open problems apart from
completeness. In particular, we have not analyzed the
complexity of the inference system, nor have we ex-
plored detectability in the context of a non-monotonic
language such as Datalog with negation.

Opacity in DKAL ef al. In Section IV we then pro-
posed a modification to SecPAL’s delegation mechanism
in order to control information leak from probing.

Cassandra [7], [6] is an earlier authorization language
in which probing attacks are mitigated by design, albeit
by much cruder means. In Cassandra, submitted creden-
tials must not have any conditional facts. Furthermore,
as in most other languages, delegation can only be
expressed using conditional facts. Therefore, the only
information that may be leaked by probing is the result
of the query, and possibly that the submitted credential
does not exists in the local policy as an assertion. The
latter leakage is also possible in SecPAL™: suppose the
adversary submits no credentials and gets a negative
result for a query, and subsequently submits a single
credential a that does not contain any conditional facts,
and receives a positive result for the same query. Then
—a 1is detectable in the policy. However, this scenario
is usually not problematic, firstly, as the local policy
must have been written explicitly to be dependent on a,
and secondly, as the adversary’s possession of a usually
implies that a is not confidential to the adversary. But
while Cassandra provides opacity guarantees similar to
SecPAL™, it does so at the cost of severely restricting
the expressiveness of submitted credentials.

DKAL is a language specifically designed to avoid
probing attacks, but the paper [21] does not specify
exactly what it is trying to protect against and how, as
it lacks a formal framework for quantifying information
flow. DKAL does seem to provide similar opacity guar-
antees as SecPAL™, and at first sight, the mechanism that
enforces these is the introduction of a “saysto” operator,
which specifies and restricts the audience of what is said.
But saysto actually does more than that; a statement of
the form?

A saysto B: fy if f1

has a non-declarative, operational meaning in DKAL.
Essentially, it means that as soon as A manages to
derive the condition f; from local knowledge, it will
send a credential stating f; via a secured communication
channel to B, who will then know that A said fy. It

3The syntax for DKAL/DKAL2 statements is slightly modified here
for simplicity. For example, “if” is actually written “<—”, and says is
written said.

follows that the only credentials that can be sent over the
network are ones that do not contain any conditions that
may depend on other principals’ utterances. Therefore,
the opacity guarantees in DKAL are achieved by similar
means as in Cassandra, and at the same high cost.

The main motivation of DKAL2, then, is to remove
DKAL’s implicit restriction on credentials [22]. Asser-
tions can now be of the form

A saysto B: [fo < fi] if fo

So when condition f5 is locally met, A sends the whole
conditional credential fy < f; to B. But of course, this
opens the door to probing attacks. In an attempt to shut
the door again, DKAL?2 lets B define whitelist filters of
the form

B frome: [f} « fi].

So A’s conditional credential above is only imported
into B’s local knowledge if (e : f} < fi) is unifiable
with (A : fo < fi). This purely syntactic ad hoc
matching mechanism is problematic as it breaks declar-
ativeness (e.g., (ok + true) may cause a behaviour that
is significantly different from the logically equivalent
(ok)). Also, it is unreasonable to assume that B can
foresee all possible syntactic forms of incoming cre-
dentials that may be acceptable. But, more importantly
for the present discussion, it does not provide adequate
protection against probing attacks. Suppose B wishes
to delegate authority over a fact f to A, permitting A
to redelegate (e.g., A could redelegate f to C, and C
actually says f, and A submits the whole redelegation
chain to B). Then B needs to provide filters of the form

B from x : [f « y says f].

But this allows anyone in A’s redelegation chain to detect
(Y says f) with a self-signed probe, for any Y, which
clearly is a breach of confidentiality.

Despite the evident shortcomings of the saysto ap-
proach, we initially explored if a similar mechanism
could be used in SecPAL to prevent malicious probing
attacks. Indeed, we found that this is possible with-
out needing to commit to DKAL’s operational, non-
declarative semantics for “saysto”. One possible solution
in this direction would be to replace (CanSay) by the
following rule (and similarly for (CANSAY0)):

Al ej saysto ez : es can say f
At eqgsaystoe: f

CANSAY’
(CANSAY) Akl e saystoes: f

This approach was eventually abandoned because the
SecPALT approach scores higher in several dimensions
of usability. A detailed exploration of the design space
and a comparative usability analysis will be presented

in a future paper.

Conclusion. The short case study of previous attempts
to mitigate the probing attack illustrates what can go
wrong if the fundamental security questions are not
systematically answered [9]: what do we protect, against
whom do we protect, what does “protect” mean, and how
do we protect?

In this paper, we provided a formal framework as
a first step towards answering these questions. The
design of the framework was driven by concepts from
traditional information flow research. What we protect
is expressed in terms of multi-level security labels on
policy assertions and queries. Against whom we protect
is specified by a formal definition of probe as a query
together with a set of supporting credentials that are
temporarily injected into the policy, and adversaries that
differ in which probes are available to them, again
induced by the security labels. We quantify the effective
power of a specific adversary by means of an inference
system that tells us what the adversary can detect about
the policy. What protection means is stated in terms of
non-interference, which we found to be too restrictive
and coarse, and opacity, both based on a notion of
observational equivalence. Finally, we provided a simple
and elegant protection method that works by restoring
symmetry in delegation of authority and comes with
strong opacity guarantees.

Acknowledgements. 1 thank Cédric Fournet, Arne
Heizmann, Andy Gordon, and the anonymous referees
for helpful comments.

REFERENCES

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A
calculus for access control in distributed systems. ACM
Transactions on Programming Languages and Systems,
15(4):706-734, 1993.

[2] M. Becker, J. Mackay, and B. Dillaway. Abductive
authorization credential gathering. In IEEE International
Symposium on Policies for Distributed Systems and Net-
works (POLICY 2009), 2009.

[3] M. Y. Becker. SecPAL formalisation and extensions.
Technical Report MSR-TR-2009-127, Microsoft Re-
search, 2009.

[4] M. Y. Becker, C. Fournet, and A. D. Gordon. Design and
semantics of a decentralized authorization language. In
IEEE Computer Security Foundations Symposium, pages
3-15, 2007.

[5] M. Y. Becker and S. Nanz. The role of abduction in
declarative authorization policies. In 10th International
Symposium on Practical Aspects of Declarative Lan-
guages (PADL), 2008.

(6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

M. Y. Becker and P. Sewell. Cassandra: distributed
access control policies with tunable expressiveness. In
IEEE International Workshop on Policies for Distributed
Systems and Networks, pages 159-168, 2004.

M. Y. Becker and P. Sewell. Cassandra: Flexible trust
management, applied to electronic health records. In
IEEE Computer Security Foundations, pages 139-154,
2004.

M. Blaze, J. Feigenbaum, and A. D. Keromytis. The role
of trust management in distributed systems security. In
Secure Internet Programming, pages 185-210, 1999.

P. Bonatti, S. Kraus, and V. Subrahmanian. Foundations
of secure deductive databases. IEEE Transactions on
Knowledge and Data Engineering, 7(3):406-422, 1995.

J. Bryans, M. Koutny, L. Mazaré, and P. Ryan. Opacity
generalised to transition systems. International Journal
of Information Security, 7(6):421-435, 2008.

S. Ceri, G. Gottlob, and L. Tanca. What you always
wanted to know about Datalog (and never dared to ask).
IEEE Transactions on Knowledge and Data Engineering,
1(1):146-166, 1989.

D. Clarke, J. E. Elien, C. Ellison, M. Fredette, A. Mor-
cos, and R. L. Rivest. Certificate chain discovery in
SPKI/SDSI. Journal of Computer Security, 9(4):285-322,
2001.

S. Cosmadakis, H. Gaifman, P. Kanellakis, and M. Vardi.
Decidable optimization problems for database logic pro-
grams. In ACM Symposium on Theory of Computing,
pages 477-490, 1988.

D. E. Denning. A lattice model of secure information
flow. Communications of the ACM, 19(5), 1976.

J. Detreville. Binder, a logic-based security language. In
IEEE Symposium on Security and Privacy, pages 105-
113, 2002.

P. Dung. Declarative semantics of hypothetical logic
programming with negation as failure. Lecture Notes in
Computer Science, pages 45-58, 1993.

R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning
About Knowledge. 2003.

C. Farkas and S. Jajodia. The inference problem: a
survey. ACM SIGKDD Explorations Newsletter, 4(2):6—
11, 2002.

R. Focardi and R. Gorrieri. A classification of security
properties. Journal of Computer Security, 3(1):5-33,
1995.

J. Goguen and J. Meseguer. Security policies and security
models. In IEEE Symposium on Security and privacy,
volume 12, 1982.

Y. Gurevich and I. Neeman. DKAL: Distributed-
knowledge authorization language. In IEEE Computer
Security Foundations Symposium (CSF), pages 149-162,
2008.

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

(36]

[37]

Y. Gurevich and I. Neeman. DKAL 2 - a simplified
and improved authorization language. Technical Report
MSR-TR-2009-11, Microsoft Research, 2009.

J. Halpern and K. O’Neill. Secrecy in multiagent systems.
ACM Transactions on Information and System Security
(TISSEC), 12(1), 2008.

S. Jajodia and C. Meadows. Inference problems in multi-
level secure database management systems. Information
Security: An Integrated Collection of Essays, pages 570—
584, 1995.

T. Jim. SD3: A trust management system with certified
evaluation. In Proceedings of the 2001 IEEE Symposium
on Security and Privacy, pages 106-115, 2001.

A. C. Kakas, R. A. Kowalski, and F. Toni. The role
of abduction in logic programming. In D. M. Gabbay,
C. J. Hogger, and J. A. Robinson, editors, Handbook of
Logic in Artificial Intelligence and Logic Programming,
volume 5, pages 235-324, 1998.

N. Li, B. Grosof, and J. Feigenbaum. A practically
implementable and tractable delegation logic. In IEEE
Symposium on Security and Privacy, pages 27-42, 2000.

N. Li and J. C. Mitchell. Datalog with constraints: A
foundation for trust management languages. In Practical
Aspects of Declarative Languages, pages 5873, 2003.

N. Li, J. C. Mitchell, and W. H. Winsborough. Design of
a role-based trust management framework. In Symposium
on Security and Privacy, pages 114-130, 2002.

OASIS. eXtensible Access Control Markup Language
(XACML) Version 2.0 core specification, 2005.

C. O’Halloran. A calculus of information flow. In
Proceedings of the European Symposium on Research in
Computer Security, Toulouse, France, 1990.

C. S. Peirce. Abduction and induction. In J. Buchler, edi-
tor, Philosophical Writings of Peirce. Dover Publications,
Oxford, 1955.

P. Ryan and T. Peacock. Opacity — Further Insights on
an Information Flow Property. Technical Report Series —
University of Newcastle Upon Tyne Computing Science,
958, 2006.

A. Sabelfeld and A. Myers. Language-based information-
flow security. IEEE Journal on selected areas in com-
munications, 21(1):5-19, 2003.

D. Sutherland. A model of information. In Proceedings of
the 9th National Computer Security Conference, volume
247, 1986.

J. Ullman. Implementation of logical query languages
for databases. ACM Transactions on Database Systems
(TODS), 10(3):289-321, 1985.

W. Winsborough and N. Li. Safety in automated trust
negotiation. = ACM Transactions on Information and
System Security (TISSEC), 9(3), 2006.

[38] W. H. Winsborough, K. E. Seamons, and V. E. Jones.
Automated trust negotiation. In DARPA Information
Survivability Conference and Exposition, volume 1, 2000.

[39] S. Zdancewic and A. Myers. Robust declassification. In
IEEE Computer Security Foundations Workshop, pages
15-23, 2001.

