
Pattern Mining for Future Attacks

Sandeep Karanth
Microsoft Research India

skaranth@microsoft.com

Srivatsan Laxman
Microsoft Research India

slaxman@microsoft.com

Prasad Naldurg
Microsoft Research India

prasadn@microsoft.com
Ramarathnam

Venkatesan
Microsoft Research India

venkie@microsoft.com

J. Lambert
Microsoft Corporation

Jinwook Shin
Microsoft Corporation

jinshin@microsoft.com

ABSTRACT
Malware writers are constantly looking for new vulnerabil-
ities in popular software applications to exploit for profit,
and discovering such a flaw is literally equivalent to find-
ing a gold mine. When a completely new vulnerability is
found, and turned into what are called Zero Day attacks,
they can often be critical and lead to data loss or breach of
privacy. Zero Day vulnerabilities, by their very nature are
notoriously hard to find, and the odds seem to be stacked in
favour of the attacker. However, before a Zero Day attack is
discovered, attackers stealthily test different payload deliv-
ery methods and their obfuscated variants, in an attempt to
outsmart anti-malware protection, with varying degrees of
success. Evidence of such failed attempts, if any, are avail-
able on the victim machines, and the challenge is to discover
their signatures before they can be turned into exploits. Our
goal in this paper is to search for such vulnerabilities and
straighten the odds. We focus on Javascript files, and using
a combination of pattern mining and learning, effectively
find two new Zero Day vulnerabilities in Microsoft Internet
Explorer, using code collected between June and November
2009.

1. INTRODUCTION
Consider a malware-writer who wants to test a new vul-

nerability and turn it into an attack. In order to deliver the
attack payload to a victim machine, the attacker could use a
poorly validated Javascript form on a third-party web appli-
cation, e.g., by using ”eval” in string input, and redirect the
scripting engine to fetch and execute their code. Increas-
ingly, Javascript is being exploited as a vehicle to mount
reflected attacks (including XSS attacks) of this nature. As
part of the attack, buffer overflow attempts, heap overflow
attempts and heap sprays are inserted into the current exe-
cution context, in the hope that they succeed in subverting
control to execute attacker-inserted code. Attack payload
has also been found in Javascript snippets in documents such
as Adobe PDF files. The SANS 2009 report lists exploita-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

tion of client-side vulnerabilities using vulnerable Internet-
facing websites as the most important unmitigated cyberse-
curity risk [16], forming over 60% of reported attacks, with
web-application vulnerabilities resulting in reflected attacks
accounting for over 80% of such vulnerabilities discovered.

Static analysis techniques [3, 10, 4, 9, 6] can identify
attack payload in many cases, when the code is available
ahead of time. However, this is not a complete solution
for web applications that include dynamic content, such
as context-sensitive advertisements. Imposing controls on
how and where dynamic code can be downloaded on a form
may be restrictive in practice, as only a small percentage of
the downloaded code is malicious (0.06% based on our own
study, Section 4).

In order to mount a successful attack, a malware-writer
will need to prevent the detection of the attack payload by
any protective software deployed on a victim (Note that the
actual vulnerability itself will be new, and unknown to any
signature scanners). It is difficult in general for an attacker
to write attack code that uses delivery methods that are
substantially different from those that have worked in the
past. To work around this, a typical attacker uses a variety
of code-obfuscation techniques, such as introducing interme-
diate variables to store string constants, removing literals,
encryption etc., with varying degrees of success. Before a
successful attack is developed, attackers may test a care-
fully crafted version of the payload on a target configuration.
This attempt may fail, but will leave the attack fingerprints
behind on the victim machine. If these fingerprints can be
found, they can provide valuable information about poten-
tially dangerous zero-day vulnerabilities (ZDV), which are
undisclosed to a software developer, for which no security
patches or anti-malware protections are available. Based on
our own observations, these events occur at extremely low
frequencies, as attackers are careful about releasing them
widely before they work, and attackers may even wait for
months before the same vulnerability is tried again, using a
different delivery mechanism.

Increasingly, malware writers are being hired by criminal
organizations with vested interests to indulge in targeted cy-
bercrime [5]. In this market, ZDVs have a high premium,
fetching upto $250000 in 2007 [12], and a consortium of in-
dustry and researchers [13] are even attempting to legitimize
the disclosure of Zero Days with economic incentives. High
value ZDVs have the potential to cause significant damage,
leading to data loss, data theft, data corruption and ma-
nipulation and privacy breaches. As a leveraging tool for a
cyber criminal, they are only valuable as long as the par-

ticular vulnerability remains unpatched, and unknown to
everybody except the attackers. In this context, finding at-
tempted ZDVs before they can be exploited becomes increas-
ingly important.

As mentioned earlier, in practice, only a small percentage
of downloaded Javascript is malicious. Further, malicious
payload shares many common features with innocuous dy-
namic code, and the challenge is to systematically separate
the two, and characterize and identify malicious Javascript
code to find ZDVs. We approach this task with the intuition
that it is possible to characterize the difference between ma-
licious and benign Javascript. The difference may be small,
but sophisticated statistical techniques can help magnify this
difference and identify malicious payload with a high degree
of confidence.

To this end, we construct an alphabet of features or indica-
tors (and some of their obfuscated variants) that correspond
to Javascript codewords and functions that occur frequently
only in malicious payload, features that occur mostly in be-
nign payload, and features that occur in both. Once we
have an alphabet, we estimate the co-occurrence statistics,
i.e., the frequency of these features as patterns over this
alphabet. We use annotated data from a small sample of
known malicious Javascript files, as well as a larger sample
of benign files, to learn a set of weights for these pattern-
frequencies. With these weights, we develop a scoring tech-
nique that discriminates malicious payload from benign ef-
fectively, and prioritizes them based on their likelihoods in
each class. Using these patterns and weights, we test our al-
gorithm on hundreds of thousands of unannotated Javascript
files collected over a period of 4 months, from heterogeneous
sources, and score each of these reports accordingly.

Our main contribution is an automated prioritization
scheme for identifying malicious Javascripts. We develop
a scoring technique for Javascript that uses co-occurrence
statistics of features to assign a likelihood score to each
Javascript file. Our prioritizer ranks the output list of
Javascript files according to these scores; suspicious cases
with potential of being exploit-attempts on new ZDVs are
assigned higher scores (and are pushed-up the ranked list).
Our algorithm alleviates the massive manual effort required
of security experts to detect ZDV exploit-attempts from a
large number of Javascript files (that pass through standard
anti-malware signature scanners). For example, our algo-
rithm surfaced a list of 384 new vulnerability candidates
that were unknown to our anti-malware signature scanners,
out of a total of 26932 code files. Importantly, we were able
to detect a new ZDV (unknown at the time of data collection
and testing, but disclosed subsequently) and an obfuscated
variant of the ZDV; these were reported within the top 1%
and 2% respectively of our prioritized reports. We demon-
strate good precision and recall performance on annotated
data. Note that, when completely new attacks (using sub-
stantially different payload delivery techniques) surface, we
introduce new features and retrain our model. The tech-
niques developed in this paper have been incorporated in a
diagnostic tool which is used on a day-to-day basis by secu-
rity experts at Microsoft.

The rest of the paper is organized as follows: Section 2
describes the characteristics of our dataset, with a special
emphasis on our selected features and presents our intuition
for using co-occurrence statistics. In Section 3 we describe
our method in detail, concentrating on both the training and

testing phases. In Section 4 we describe our data collection
and the results of applying our method to this dataset, along
with a sensitivity study. Section 5 presents related research,
followed by conclusions and future work in Section 6.

2. BACKGROUND
In this section, we explain our intuiton for using the co-

occurence of features as a discriminatory basis for classifying
Javascript payload. We collect Javascript internet browser
attack data, obtained from Microsoft customer reported in-
cidents, submissions of malicious code and Windows error
reports, between July and November 2009. We start with
hundreds of thousands of Javascript code samples, and apply
a filter to identify Javascript files that are interesting from a
security perspective, using a list of code features or findings.
These features are selected intuitively to represent: (i) a mix
of commonly occuring actions in interesting Javascript code
(both in benign and malicious), (ii) features that largely oc-
cur only in benign code, and (iii) features that are largely
indicators of malicious attack payload. A Javascript ‘trans-
action’ is a snippet of Javascript code that contains one or
more findings. Each transaction represents around 20 lines
of Javascript code. After filtering, around 130000 transac-
tions were collected in the period of July-November 2009.

The Javascript features are listed in Table 1. For example,
in a typical heapspray attempt, an attacker is likely to use
feature 28 (a new array call to allocate memory, which is a
feature of any Javascript which requires dynamic storage)
along with features 20 and 14 (unescape to decode encoded
strings, and NOPs). Our choice for three kinds of features is
motivated by our observation that using only features that
occur frequently in malicious code snippets leads to detec-
tion of a lot of false positives, as benign code also contains
many of these features. Similarly, using only the subset of
features in the malicious list that do not occur (or occur with
low frequencies) in the benign samples leads to substantially
many false negatives, often all-together missing the ZDV at-
tempts. A mix of features allows a more robust statistical
characterization of Javascript files. Table 2 shows a sub-
set of 7 commonly occurring features in a Javascript attack
that tries to exploit three different known vulnerabities in
the Microsoft Internet Explorer browser, prior to October
2009 (Source: National Vulnerability Database, Common
Vulnerabilites and Exposures (CVE) with identifiers, CVE-
2008-4844, CVE-2008-0015 and CVE-2009-0075). A code
snippet for this attack, with the some features highlighted
is provided in Fig. 1.

Table 2 describes the marginal statistics of the selected
features in malicious and benign code. Note that some of
these features occur exclusively in malicious samples: fea-
ture 14, which indicates injection of NOP-sled blocks, and
feature 17, which indicates shell code injection. However,
both their frequencies are only about 60%; so if we restricted
our classifier to only these features we would miss around
40% of the attacks. That said, whenever 14 and/or 17 oc-
cur(s), the Javascript transaction should be given a high
score (marking it as highly suspicious). On the other hand,
feature 23 (that indicates definiton of a Javascript class or
function) and feature 18 (call to a substring function) both
have comparable frequencies in malicious and benign sam-
ples; hence they do not, by themselves, add much value
for discriminating malicious cases from benign. Feature 28
(which represent allocation of memory) and feature 20 (a

Id Feature Description Id Feature Description

1 document.write Write HTML 18 substr Extracts characters
expression from a string
to document

2 evaluate Evaluates and/or 19 shellcode Shell code
executes a presence
string in JS string

3 push Add array 20 unescape Decode an
elements encoded string

4 msDataSourceObject ActiveX object for 21 u0A0A u0A0A Injection of
Microsoft web characters 0A0A
components

5 setTimeout Evaluates expression 22 CompressedPath Download path
after timeout property on an

ActiveXObject

6 cloneNode Create object copy 23 function Function or
class definition

7 createElement Create HTML element 24 shellexecute Call Shell API

8 window Current Document 25 u0c0c u0c0c Injection of
object characters 0c0c

9 getElementbyId Get an element 26 replace Replace a matched
from the substring with
current document a string

10 object Error JS exception 27 Collab.CollectEmailInfo Adobe Acrobat
object method for

for email details

11 u0b0c u0b0b Injection of 28 new Array Heap memory
character 0b0c0b0b allocation

12 CollectGarbage Call to garbage 29 u0b0c u0b0c Injection of
collector characters 0b0c0b0c

13 SnapshotPath Snapshot path 30 LoadPage Load a HTML
property on expression
an ActiveXObject

14 u9090 u9090 NOP injection 31 createControlRange Create a control
container

15 new ActivexObject Instantiate 32 Click JS click event
ActiveX object

16 navigator.appversion Get browser version 33 appV̇iewerVersion Get Adobe Acrobat
Reader version

17 0x0c0c0c0c Injection of 0c0c0c 34 function packed JS packer function

Table 1: Javascript Features

Id Feature % Count in % Count in %
malicious benign Difference
snippets snippets

14 u9090 u9090 61 0 61
17 0x0c0c0c0c 58 0 51
18 substr 95 88 7
20 unescape 85 45 40
23 function 97 99 2
26 replace 64 87 23
28 new array 89 48 41

Table 2: Marginal statistics of some selected fea-
tures found in CVE- 2008-4844, CVE-2008-0015 and
CVE-2009-0075.

call to decode an encoded string) both occur in large num-
bers of malicious samples (> 85%) but also occur in close
to 50% of benign samples; hence, while these features have
potential as discriminators of malicious cases from benign,
when used alone, they can lead to a substantial false positive
rates. Similarly, feature 26, can be a useful discriminatory
feature for benign code, but when used alone, it can result
in a high false negative rate.

The challenge is to build a classifier that can automati-
cally select ‘interesting’ features to disambiguate malicious
scripts from benign ones. In this paper, we develop sta-
tistical methods to identify significant ‘groups of features’
in malicious and benign code-snippets. The essence of our
significance test is to determine whether some groups of fea-
tures occur with substantial statistical skew in the malicious
examples as compared to the benign ones. Typically, these
skews are easier to detect in higher order-statistics than in
single (or marginal) feature statistics, and hence we use pat-

terns of frequently co-occuring features rather than individ-
ual features. We illustrate this with an example. Table 3
presents the co-occurence statistics of various combinations
of features 20 - unescape, 26 - replace, 28 - new array. Note
that the combination of features 20 and 28 is a stronger at-
tack indicator (55% difference) than if they were considered
individually (40−41% difference). Combined with other in-
dicators of known heap sprays like nopsleds and shellcode,
e.g., features 14 and 17, these become stronger indicators
of malicious Javascripts. Using multiple features also builds
in robustness to new forms of obfuscation that may not be
directly recognized by exact signature scanners. Further, a
combination of all three features (20, 26, 28), for example,
has a lower occurence in positive samples than any pair of
features, highlighting the need for a weighted scoring tech-
nique to automatically identify high-value indicators. In this
paper, we employ a scoring technique that converts the ob-
served co-occurrence statistics into likelihood scores using a
data set of annotated examples (marked benign or malicious
by a security expert).

As a final example, we examine a new zero-day vulnerabil-
ity that surfaced on November 29th 2009 (CVE-2009-3672).
The code for the vulnerability is given in Figure 2. This par-
ticular attack can be encoded using features 18, 20, 23 and
28. We show later in Section 4 that we were able to detect
this exploit using our method based on a weighted combi-
nation of features. We explain our classification method in
detail in Section 3 next.

3. METHOD
Our goal is to identify high-value malicious Javascript pay-

load from our collected samples and look for future attack
signatures. The overall approach consists of a training phase
and a ranking phase. In the training phase, we use a set of

Figure 1: Example of exploit code for three vulnerabilities CVE- 2008-4844, CVE-2008-0015 and CVE-2009-
0075 (with some features highlighted).

Pattern Description % Count in % Count in %
malicious snippets benign snippets Difference

20, 26, 28 unescape, replace, new array 49 23 26
20, 26 unescape, replace 51 37 14
20, 28 unescape, new array 83 28 55
26, 28 replace, new array 54 40 14

Table 3: Co-occurrence (or higher-order) statistics of features found in CVE- 2008-4844, CVE-2008-0015 and
CVE-2009-0075.

annotated transactions to learn a probabilistic model for the
data (Algorithm 1). In the ranking phase, we prioritize the
unannotated transactions based on their likelihood scores
with respect to the learnt model (Algorithm 2). This sec-
tion presents details of the training and ranking phases in
our method.

We begin with an overview of the general procedure. For
the training phase, we are given annotated sets of positive
transactions (S+) and negative transactions (S−). As men-
tioned earlier, each transaction corresponds to a set of find-
ings in a snippet of Javascript code. It is is essentially a col-
lection of items (or symbols) over a finite alphabet (say A).
In our context, the alphabet A is the universal set of findings
or features which are identified as relevant for disambiguat-
ing malicious scripts from benign ones. These features were
selected from our annotated samples statistically.

An itemset is a non-empty set of items, e.g., α =
(A1. . . . , AN), Ai ∈ A, i = 1, . . . , N denotes an N -itemset
or an itemset of size N . Given a collection of transactions
(say D) the frequency of α in D is the number of transac-
tions that contain (or support) α. Patterns whose frequency

exceeds a user-defined threshold are referred to as frequent
itemsets. In our context, a frequent itemset is simply a group
of features that co-occur frequently in the Javascript snip-
pets. The goal of the training phase is to estimate which
groups of features correlate strongly in the positive exam-
ples but are absent (or are weakly correlated) in the neg-
ative examples, and vice versa. Based on these, we build
separate probabilistic models for the positive and negative
examples. During the ranking phase, we pass each test point
through these models, obtain likelihood scores for the point
(under the positive and negative models) and calculate the
corresponding likelihood ratio (positive score over negative
score). We then rank the test points in decreasing order of
likelihood ratios.

The main steps in the training phase are listed in Algo-
rithm 1. Input to the training phase are sets S+ and S−
of positive and negative training transactions, along with a
user-defined maximum size N of patterns to be considered.
Typical values we use in our experiments are N = 5 or
N = 6. The first steps (lines 1, 2, Algorithm 1) compute the
frequent itemsets for both data sets S+ and S−. The the task

Figure 2: Exploit code for ZDV CVE-2009-3672.

Algorithm 1 Training algorithm

Input: Data set of positive examples (S+), data set of neg-
ative examples (S−), maximum size of patterns (N)

Output: Generative models Λ+ (for S+) and Λ− (for S−)
1: Find the set (F+) of frequent itemsets in S+ of size N

or less, using a frequency threshold of
|S+|
2N

2: Find the set (F−) of frequent itemsets in S+ of size N

or less, using a frequency threshold of
|S−|
2N

3: Associate each αj in F+ ∪F− with an IGM Λαj (based
on Definition 1)

4: Keep only ‘significant’ patterns in F+ and F− (based on
Eq. 2)

5: Keep only ‘discriminating’ patterns in F+ and F− by
removing patterns common to both

6: Build a mixture (Λ+) of significant IGMs (Λαj , αj ∈
F+) for S+ (using Eqs. 3–5)

7: Build a mixture (Λ−) of significant IGMs (Λαj , αj ∈
F−) for S− (using Eqs. 3–5)

8: Output Λ+ and Λ−

of discovering all itemsets whose frequencies exceed a given
user-defined frequency threshold is a well-studied problem in
data mining called Frequent Itemsets Mining (FIM) [1]. We
use a standard procedure known as the Apriori algorithm for
obtaining frequent itemsets in the data [1]. We choose the
FIM framework for computing co-occurences, over comput-
ing joint probability estimates, as we do not want to make
any assumptions on the underlying distributions of the find-
ings, and efficient algorithms are available to compute these
frequencies.

For each pair (itemset, frequency), we need a way of de-
ciding if it is a useful discrimininating statistic. We use a
significance test to decide whether an itemset is interesting
or not, rejecting all patterns whose frequencies are below a
noise threshold, which corresponds to the likelihood that the

pattern occurs no frequently than background noise. In or-
der to fix this threshold, we associate each frequent itemset
discovered with a simple generative model called an Itemset
Generating Model (or IGM) [7]. Using IGMs, we build a
plausible generative model for the itemset frequencies that
has the following properties:

1. The probability of a transaction is high whenever the
transaction contains the itemset of interest.

2. Ordering of transaction frequencies is preserved under
the data likelihoods suggested by their corresponding
IGMs.

Note that our IGM model may not be the best genera-
tive model that fits the data, as we are only interested in
thresholding itemsets whose frequencies are not statistically
significant.

The main utility of the itemset-IGM associations of [7] is
a test of significance for frequent itemsets in the data based
on a likelihood ratio test involving IGMs. This is important
because we only want to use patterns that are ‘signficant’
in the sense that they could not have appeared with such
a frequency by random chance. We present the details of
the IGMs and this connection next. As mentioned earlier,
IGM Λα for itemset α is one under which the probability of
a transaction T is high whenever T contains α. An Itemset
Generating Model (or IGM) is specified by a pair, Λ = (α, θ),
where α ⊆ A is an N -itemset, referred to as the “pattern” of
Λ, and θ ∈ [0, 1] is referred to as the “pattern probability”
of Λ. The class of all IGMs, obtained by considering all
possible itemsets of size N (over A) and by considering all
possible pattern probability values θ ∈ [0, 1], is denoted by
I. The probability of generating a transaction T under the
IGM Λ is prescribed as follows:

P [T | Λ] = θzα(T)

(
1− θ

2N − 1

)1−zα(T)(
1

2M−N

)
(1)

where, zα(·) indicates set containment: zα(T) = 1, if α ⊆ T ,
and zα(T) = 0, otherwise; and M denotes the size of the
alphabet A. Observe that even for moderate values of θ
(namely, for θ > 1

2N
) the above probability distribution

peaks at transactions that contain α, and the distribution
is uniformly low everywhere else. The itemset-IGM associ-
ation is defined as follows:

Definition 1. [7] Consider an N-itemset, α =
(A1, . . . , AN) (α ∈ 2A). Let fα denote the frequency
of α in the given database, D, of K transactions. The
itemset α is associated with the IGM, Λα = (α, θα), with
θα = (fα

K
), if (fα

K
) > (1

2N
), and with θα = 0 otherwise.

In line 3, Algorithm 1, we associate each frequent itemset
with a corresponding IGM as per the above definition. This
itemset-IGM association has several interesting properties
[7]. First, the association under Definition 1 ensures that or-
dering with respect to frequencies among N -itemsets over A
is preserved as ordering with respect data likelihoods among
IGMs in I. Further, if the most frequent itemset is ‘frequent
enough’ then it is associated with an IGM which is a maxi-
mum likelihood estimate for the data, over the full class, I,
of IGMs. (We refer the reader to [7] for theoretical details
of the model and its properties).

Using the IGM-itemset association, it is possible to con-
struct a significance test based on the evidence of at least
one reasonable model (namely the IGM) over that of a uni-
form random source. This is the next step in our training
phase (line 4, Algorithm 1). For a given user-defined level ε
of the test, an itemset α of size N with frequency fα in a
data set of K transactions, is declared significant if fα > Γ
where Γ is given by

Γ =
K

2N
+

√(
K

2N

)(
1− 1

2N

)
Φ−1(1− ε) (2)

where, Φ−1(·) denotes inverse of the cumulative distribution
function (cdf) of the standard normal random variable. This
is a standard error characterization for the standard normal
random variable. For typical values of size ε of the test,
size K of the given transactions data set and size N of the
itemsets under consideration, the above expression tends to
be dominated by K

2N
, and so, in the absence of any other

information, we use this as the first threshold for significance
to try in our algorithm. If the eventual model obtained is
too weak (because of either too few or too many significant
itemsets) we can always go back to the significance testing
step and tune the set of significant episodes by selecting an
appropriate value of ε.

Note that while IGMs are useful to assess the statistical
significance of a given itemset, no single IGM can be used
as a reliable generative model for the whole data. This is
because, a typical data set, D = {T1, . . . , TK}, would con-
tain not one, but several, significant itemsets. Each of these
itemsets has an IGM associated with it as per Definition 1.
We suppose that a mixture of such IGMs, rather than any
single IGM, can be a good generative model for D. Similar
ideas were used in a the context of stream prediction using
frequent episodes in [8].

The final step in our training phase is the estimation of
a mixture of IGMs for each data set S+ and S− (lines 6, 7,
Algorithm 1). We can think of this step as a simple itera-
tive procedure that assigns weights to the signficant patterns

found in the data. Let Fs = {α1, . . . , αJ} denote a set of
significant itemsets in the data, D. Let Λαj denote the IGM
associated with αj for j = 1, . . . , J . Each sequence, Ti ∈ D,
is now assumed to be generated by a mixture of the IGMs,
Λαj , j = 1, . . . , J . Denoting the mixture of EGHs by Λ, and
assuming that the K transactions in D are independent, the
likelihood of D under the mixture model can be written as
follows:

P [D | Λ] =

K∏
i=1

P [Ti | Λ]

=

K∏
i=1

(
J∑
j=1

φjP [Ti | Λαj]

)
(3)

where φj , j = 1, . . . , J are the mixture coefficients of Λ (with

φj ∈ [0, 1] ∀j and
∑J
j=1 φj = 1). Each EGH, Λαj , is fully

characterized by the significant itemset, αj , and its cor-
responding pattern probability parameter, θαj (cf. Defini-
tion 1). Consequently, the only unknowns in the expression
for likelihood under the mixture model are the mixture coef-
ficients, φj , j = 1, . . . , J . We use the Expectation Maximiza-
tion (EM) algorithm [2], to estimate the mixture coefficients
of Λ from the data set, D. Any other reweighting technique
can also work equally well.

Let Φg = {φg1, . . . , φ
g
J} denote the current guess for the

mixture coefficients being estimated. At the start of the EM
procedure, φg is initialized uniformly, i.e. we set φgj = 1

J
∀j.

By regarding φgj as the prior probability corresponding to

the jth mixture component, Λαj , the posterior probability

for the lth mixture component, with respect to the ith trans-
action, Ti ∈ D, can be written using Bayes’ Rule:

P [l | Ti,Φg] =
φgl P [Ti | Λαl]∑J
j=1 φ

g
jP [Ti | Λαj]

(4)

After computing P [l | Ti,Φg] for l = 1, . . . , J and i =
1, . . . ,K, using the current guess, Φg, we obtain a revised
estimate, Φnew = {φnew1 , . . . , φnewJ }, for the mixture coef-
ficients, using the following update rule. For l = 1, . . . , J ,
compute:

φnewl =
1

K

K∑
i=1

P [l | Ti,Φg] (5)

The revised estimate, Φnew, is used as the ‘current guess’,
Φg, in the next iteration, and the procedure (namely, the
computation of Eq. (4) followed by that of Eq. (5)) is re-
peated until convergence. We use the above procedure to
estimate separate mixture models for S+ and S−. The re-
sulting generative models, Λ+ and Λ−, are the final outputs
of the training phase (line 8, Algorithm 1).

We now describe the ranking phase of our procedure. The
main steps in the ranking phase are listed in Algorithm 2.
Inputs to the ranking phase are the generative models Λ+

and Λ− obtained from the training phase and the set D of
test transactions that need to be prioritized. The first step
is to compute, for each test transaction T ∈ D, the like-
lihoods under the positive and negative generative models
(lines 1-3, Algorithm 2). Then we compute the correspond-
ing likelihood ratio (line 4, Algorithm 2). Finally, we sort
the test cases in decreasing order of likelihood ratios (line
5, Algorithm 2). This sorted list is the final output of our
ranking procedure (line 6, Algorithm 2).

Algorithm 2 Ranking algorithm

Input: SetD of test cases, learnt mixture models from train-
ing phase (Λ+ and Λ−)

Output: Prioritized list of test cases (D)
1: for each test case T ∈ D do
2: Compute likelihood P [T | Λ+] of T in Λ+ (based on

Eq. (1) for Λ+)
3: Compute likelihood P [T | Λ−] of T in Λ− (based on

Eq. (1) for Λ−)

4: Obtain the likelihood ratio for T :
P [T | Λ+]

P [T | Λ−]

5: Sort test cases in D in descending order of likelihood
ratios

6: Output sorted list D

Note that the final prioritized list bubbles transactions
that have likelihood high scores from the positive model and
lower scores from the negative model. Transactions which
are more similar to our annotated S− will appear in the
bottom of the list, and transactions that do not have distin-
guishing features will closer to the middle.

3.1 Output filtering and Analysis
After the ranking phase, we examine the Javascript files

corresponding to the top ranked transactions using our sig-
nature scanners. This output filtering step removes any
known vulnerabilities for consideration as potential ZDVs.
We observe that our method is useful in characterizing our
transactions as follows:

• After training, we can run our testing algorithm on
the training set itself, to validate if our learnt model
can recall all annotated transactions accurately. If any
annotated transactions are classified otherwise (e.g.,
S+ as S−), an expert can inspect them and check if
the samples are internally consistent. This is useful to
check the correctness of the training set.

• At the next level, after we run our prioritization and
classification algorithm on the test data, and run our
signature scanners and any other anti-malware pro-
tection on the top results, the remaining top results
can either be new ZDVs, or simply known signa-
tures/attacks that are not in our database yet, and
suggest update our anti-malware signature database.
Any ZDVs found will be extremely useful in any case.

Finally, as noted earlier, our results are sensitive to the
choice of findings exposed in our alphabet. A completely
new method of delivering a ZDV, which bears no statistical
similarities to any existing attack, will not be identified by
our method. However, we expect to periodically update our
set of findings, in response to trends observed in incident
reports and advisories.

4. EVALUATION
In this section we present results from applying our meth-

ods to sample IE attack data obtained from customer re-
ported incidents, submissions of malicious code and win-
dows error reports collected between July and November
2009. We present the characteristics of the data observed,
in Section 4.1, and describe our training and validation ex-
periences in Section 4.2. We presents results on detecting
ZDVs in our test data in Section 4.3 and follow it up with

Data Date All Malicious Benign Avg. size of
Set Range ’09 cases cases cases transactions

Train Jul-Oct 13543 839 12704 11
Test Aug-Nov 26932 453 26479 6

Table 4: Data characteristics

a discussion on the scope and limitations of our approach,
and a comment on adversial manipulation in Section 4.4.

4.1 Data Characteristics
The characteristics of the data used in our evaluation are

listed in Table 4. The Train Data consists of 13500 snippets
of Javascript code, which were filtered from a larger set of
samples collected between July and October 2009. Similarly,
the Test Data, which contains 26932 snippets of Javascript
code, was collected from August to November 2009. Note
that both data sets do not overlap, in the sense that, the
code snippets in the two sets are distinct. During the sample
collection phase, a custom Microsoft deobfuscator was used
to identify obfuscation attempts. Each dataset was filtered
based on a list of signatures of known cases. This gave us
the positive (malicious) and negative (benign) labels needed
for our evaluation. We extract the features for each snippet
based on the alphabet of Table 1, and construct appropriate
transactions of findings for each code snippet. The average
size of transactions (i.e. the average number of findings per
snippet) is also listed in Table 4.

The Test Data contains two snippets of Javascript that
correspond to two new exploit attempts of a previously un-
known Zero Day Vulnerability in Microsoft Internet Ex-
plorer – CVE-2009-3672. (See Section 2 for an exam-
ple code snippet). These attempts first surfaced on 29,
November 2009. Prior to this date, no signatures were
available for these attacks (i.e., our signature scanners la-
belled them as benign). The CVE description for the Zero
Day Vulnerability can be found at http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2009-3672 : Microsoft Inter-
net Explorer 6 and 7 does not properly handle objects in
memory that (1) were not properly initialized or (2) are
deleted, which allows remote attackers to execute arbitrary
code via vectors involving a call to the getElementsByTag-
Name method for the STYLE tag name, selection of the sin-
gle element in the returned list, and a change to the outer-
HTML property of this element, related to Cascading Style
Sheets (CSS) and mshtml.dll, aka ”HTML Object Memory
Corruption Vulnerability.” We show later in this section that
our method was successful in detecting both the new exploits
as attacks.

4.2 Training and validation
During the training phase, we used the Train Data

a;gorithm to learn the model. The maximum size of pat-
terns was fixed at 5 and the number of iterations for the
EM algorithm was fixed at 100. The first step in our evalua-
tion is to validate the stability of the classifier learnt. This is
a key step in the model-building phase since, based on just
the training data, we need to determine whether the training
data was sufficient for the choice of parameters used. Valida-
tion involves randomly splitting the training set into 2 parts
and using one part for learning the model, and the second
part for evaluating performance under the learnt model. We
expect that if the statistical estimation stabilizes, we should

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

50-50-a
50-50-b
50-50-c
75-25-a
75-25-b

Figure 3: Cross validation results: Precision v/s Re-
call plots obtained by varying the classifier threshold
for different splits of data into training and valida-
tion sets.

get comparable results on different instances of random split-
ting of training data.

In our validation experiments, we generate 3 instances of
random 2-way 50-50 splits and 2 instances of random 2-way
75-25 splits of the Train Data (These are referred to as 50-
50-a, 50-50-b, 50-50-c, 75-25-a, 75-25-b and 75-25-c in the
figures). In all the instances, the first parts (of size 50%
or 75%) were used to train the corresponding models and
the second parts (of size 50% or 25%) were used for valida-
tion. The cross-validation results are plotted in Fig. 3 in the
form of precision v/s recall graphs. The different points in
each curve correspond to the use of different thresholds on
the likelihood ratios computed in line 4, Algorithm 2. The
main observation is that the precision v/s recall behavior
for all the instances are very similar – 100% precision can
be achieved with a recall in the 65%-70% range. Then, as
the threshold is relaxed (reduced) the algorithm will report
more and more code snippets as malicious, thereby descreas-
ing the precision of the classifier decision. The interesting
region in the operating characteristics of Fig. 3 is at a pre-
cision of 90% and a recall of 70%, at the knee of operating
curve (inflexion point). Moving substantially away from this
knee would impact both precision and recall. Observe that
operating points which achieve high precision (even if at
the cost of some recall) are more important than those that
achieve high recall (at the cost of precision). A high pre-
cision ensures that security experts do not have too many
suspicious reports to analyze by-hand. Moreover, since be-
nign cases far exceed malicious cases, a high recall result
(at the cost of lower precision) is trivial and useless to the
security expert looking for new ZDV exploits. In view of
this, our result of 90% precision at 70% recall is very effec-
tive from the point-of-view of detecting new ZDV exploits.
The important empirical result here is that such operating
points were available (and identifiable) in all the instances
we tested.

Finally, we plot the operating characteristic of the classi-
fier using all of the Train Data in Fig. 4 – 100% of the data
was used to learn the model and the same data was used for
plotting the operating curve as well. The general behavior
is similar to the plots in Fig. 3 (with marginally better pre-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
re

ci
si

on

Recall

D C B

A

Operating Characteristics

Figure 4: Finding an operating point for the classi-
fier

Operating # Malicious # Known ZDV-I ZDV-II
Point Cases Issues based

Reported on Sigs

A 5991 (22%) 286 (1.0%)
√ √

B 624 (2.3%) 240 (0.8%)
√ √

C 614 (2.2%) 237 (0.8%)
√

×
D 560 (2.0%) 232 (0.8%)

√
×

Table 5: Results for detection of Zero Day Vulnera-
bilities in Test Data

cision since we are using all of the training data). We now
select some suitable operating points for our classifier – in
Fig. 4, these points are marked A, B, C and D. We basi-
cally pick 4 points in and around the ‘knee’ of the operating
curve. Each operating point corresponds to a threshold to
be used for the likelihood ratios during testing, In partic-
ular, the thresholds for operating point A was 1.59, for B
was 2.31, for C was 3.02 and for D was 3.74. In the next
subsection, we demonstrate the performance of our classifier
at these four points.

4.3 Detecting Zero Day Vulnerabilities
Table 5 shows the results obtained on the test data. The

first column mentions the operating point. The second col-
umn quotes the number of malicious cases reported for the
corresponding operating point. The third column quotes
the number of issues (amongst those reported) that were
regarded as known issues based on a list signatures. The
fourth and fifth columns indicate whether the algorithm de-
tected the two instances of the ZDV exploit in the Test
Data. As can be seen from the table, the first attack scenario
(ZDV-I) was detected at all the operating points, while the
second scenario (ZDV-II) was only detected at A and B (but
not at C or D). In all cases except operating point A, the
number of malicious cases reported is small (just around 2%
of 26932 cases). This demonstrates that while the method
does not report too many points as malicious, the ZDV cases
almost always remain at the top of the output list (within 1
and 2% at a reasonable operating point).

4.4 Discussion
In the absence of ground truth, i.e., since we do not know

if our test data has more ZDVs in it until it is disclosed, we
cannot claim to be complete. Nevertheless, every transac-
tion that has a high rank according to our algorithm, and
is not filtered out by our signature scanners has the poten-
tial to be a ZDV and is worth further investigation. The
robustness results from our cross-validation experiments, as
well as the discovery of a real ZDV in our data underline the
utility of our methods, and offer hope.

As we point out that our methods are sensitive to the
choice of the features in our alphabet, and in the mix of
features used for classification. The features we selected
in our training dataset, all occur frequently in the ZDVs
disclosed on the ZDI page. In general, our alphabet will
also need to be updated when new methods of delivering
attack payload are discovered, and we will need to retrain
our models periodically.

Finally we observe that our methods have robustness
built-in, evidenced by the discovery of two slightly differ-
ent attack payloads that contained our ZDV. An adversary
who uses a mix of obsfuscation techniques will have to work
very hard to evade complete detection.

5. RELATED WORK
In this section we present related research in the context of

data mining for security, and Javascript attack detection and
prevention. Machine learning and data mining techniques
have been applied to various security problems [11], includ-
ing anomaly detection, intrusion detection, attack graph
analysis, and analyzing audit trails for root kits, etc. A
comprehensive discussion of these techniques and their ap-
plications is beyond the scope of this paper. The techniques
we use in this paper, including frequent itemset mining [1]
and our generative models [7] were presented earlier, while
the learning component, with the expectation maximization,
was developed for this tool.

In terms of other related work, in Argos [14] the authors
present an x86 emulator for capturing and fingerprinting dis-
closed ZDVs, to provide accurate input to signature scan-
ners. The Zero Day Initiative [13] maintains a current list of
known ZDVs, which provides economic incentives to anyone
reporting a new ZDV.

Researchers have studied a variety of static and semi-static
techniques to address the misuse of Javascript language fea-
tures that are used to exploit client-side application vul-
nerabilities, as well as mount attacks against web applica-
tions. We highlight some recent research in this context. In
Blueprint [9], the authors propose an enhanced parser that
needs to be installed on both clients and servers, which uses
annotations to communicate an application developers in-
tention to a client browser, with regard to where dynamic
code can be downloaded. This effectively prevents unautho-
rized download, and an integrity checking function validates
input to prevent code downloads. However, this solution
requires changes to both servers and clients.

There are also techniques that only require changes on
the client browsers. In their work on staged information
flows [3], the authors present a combined static-dynamic
technique that checks downloaded code against specified
integrity and confidentiality requirements, and generates
residual checks that can be validated at runtime. Tech-

niques such as Gatekeeper [6] and [10] concentrate on smaller
safer subsets of Javascript, rewriting code or adding wrap-
pers, by analyzing malicious code on the victim machine. In
Nozzle [15], heapsprays in particular are identified using a
lightweight interpreter, and malicious and benign code are
classified by characterising valid and invalid opcodes. In [4],
the authors attach labels on sensitive information and iden-
tify malicious code that attempt to write, over-write or send
these objects over a network, in browser extension code.

While many of these techniques are very effective in prac-
tice, a barrier to their adoption is the need to change browser
or server code, or install new software on the clients. Our
work is complementary to these efforts, as we are looking for
the vulnerabilities that are being tested by the Javascript
payload, and as long as unpatched machines exist, the at-
tacks will continue. Further, Javascript is not the only ve-
hicle for delivering ZDVs, e.g., corrupt video or image files,
and Microsoft word macros can all carry attack payload, and
our technique can be adopted to look for findings in these
files.

6. CONCLUSIONS
Detecting Zero Day Vulnerabilities is a critical problem

that confronts security response teams on an everyday basis.
Malware writers are on the constant look-out for exploits of
new (previously unknown) vulnerabilities, exploits which are
designed to trick standard signature-based malware detec-
tion techniques. In this paper, we develop methods, which
have the potential for detecting the new vulnerabilities even
before they are successfully exploited in the field. Our meth-
ods are based on a rigorous statistical characterization of
previously known exploits. We use a combination of fre-
quent pattern mining techniques from data mining and gen-
erative model estimation techniques from machine learning
to develop a statistical filter for detecting malicious payload
intended to exploit a new vulnerability. Our results demon-
strate that our techniques are robust and are able to detect
high-value ZDVs in real-world data sets. Although this pa-
per primarily focusses on detecting ZDVs in Javascript pay-
load, we expect that our methods are equally applicable in
several other contexts including malicious audio and video
files, Microsoft Word and Excel macro viruses, etc.

7. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large
databases. In Proceedings of the ACM SIGMOD
Conference on Management of Data, pages 207–216,
May 1993.

[2] J. Bilmes. A gentle tutorial on the EM algorithm and
its application to parameter estimation for gaussian
mixture and hidden markov models. Technical Report
TR-97-021, International Computer Science Institute,
Berkeley, California, Apr. 1997.

[3] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner.
Staged information flow for javascript. In PLDI ’09:
Proceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation,
New York, NY, USA, 2009. ACM.

[4] M. Dhawan and V. Ganapathy. Analyzing information
flow in javascript-based browser extensions. In
ACSAC’09: Proceedings of the 25th Annual Computer

Security Applications Conference, pages 382–391,
Honolulu, Hawaii, USA, December 2009. IEEE
Computer Society Press, Los Alamitos, California,
USA. http://dx.doi.org/10.1109/ACSAC.2009.43.

[5] J. Franklin, V. Paxson, S. Savage, and A. Perrig. An
inquiry into the nature and causes of the wealth of
internet miscreants. In CCS ’07: Proceedings of the
14th ACM conference on Computer and
communications security, pages 375–388, New York,
NY, USA, 2007. ACM.

[6] S. Guarnieri and B. Livshits. Gatekeeper: Mostly
static enforcement of security and reliability policies
for javascript code. In Proceedings of the Usenix
Security Symposium, Aug. 2009.

[7] S. Laxman, P. Naldurg, R. Sripada, and
R. Venkatesan. Connections between mining frequent
itemsets and learning generative models. In
Proceedings of the Seventh IEEE International
Conference on Data Mining ICDM 2007, pages
571–576, Omaha, Oct. 2007.

[8] S. Laxman, V. Tankasali, and R. White. Stream
prediction using a generative model based on frequent
episodes in event sequences. In Proceedings of the 14th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’08),
pages 453–461, Las Vegas, Aug. 2008.

[9] M. T. Louw and V. N. Venkatakrishnan. Blueprint:
Robust prevention of cross-site scripting attacks for
existing browsers. In IEEE Symposium on Security
and Privacy, pages 331–346. IEEE Computer Society,
2009.

[10] S. Maffeis and A. Taly. Language-based isolation of
untrusted javascript. In CSF ’09: Proceedings of the
2009 22nd IEEE Computer Security Foundations
Symposium, pages 77–91, Washington, DC, USA,
2009. IEEE Computer Society.

[11] M. A. Maloof. Machine Learning and Data Mining for
Computer Security: Methods and Applications
(Advanced Information and Knowledge Processing).
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

[12] C. Miller. The legitimate vulnerability market: Inside
the secretive world of 0-day exploit sales. In In Sixth
Workshop on the Economics of Information Security,
2007.

[13] T. Point. The zero day initiative.

[14] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an
emulator for fingerprinting zero-day attacks for
advertised honeypots with automatic signature
generation. SIGOPS Oper. Syst. Rev., 40(4):15–27,
2006.

[15] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle:
A defense against heap-spraying code injection
attacks. In Proceedings of the Usenix Security
Symposium, Aug. 2009.

[16] SANS. The top cyber security risks 2009, Sept. 2009.

