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ABSTRACT1 
Web documents are typically associated with many text streams, 
including the body, the title and the URL that are determined by 
the authors, and the anchor text or search queries used by others to 
refer to the documents. Through a systematic large scale analysis  
on their cross entropy, we show that these text streams appear to 
be composed in different language styles, and hence warrant re-
spective language models to properly describe their properties. 
We propose a language modeling approach to Web document 
retrieval in which each document is characterized by a mixture 
model with components corresponding to the various text streams 
associated with the document. Immediate issues for such a mix-
ture model arise as all the text streams are not always present for 
the documents, and they do not share the same lexicon, making it 
challenging to properly combine the statistics from the mixture 
components. To address these issues, we introduce an “open-
vocabulary” smoothing technique so that all the component lan-
guage models have the same cardinality and their scores can simp-
ly be linearly combined. To ensure that the approach can cope 
with Web scale applications, the model training algorithm is de-
signed to require no labeled data and can be fully automated with 
few heuristics and no empirical parameter tunings. The evaluation 
on Web document ranking tasks shows that the component lan-
guage models indeed have varying degrees of capabilities as pre-
dicted by the cross-entropy analysis, and the combined mixture 
model outperforms the state-of-the-art BM25F based system. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval 

General Terms 
Theory, Experimentation. 

Keywords 
Information Retrieval, Mixture Language Models, Smoothing, 
Parameter Estimation, Probabilistic Relevance Model. 
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1. INTRODUCTION 
Inspired by the success in speech recognition, Ponte and Croft 
[23] introduced the language modeling (LM) techniques to infor-
mation retrieval (IR) that have since become an important re-
search area. The motivation is very simple: just as we would like a 
speech recognition system to transcribe speech into the most like-
ly uttered texts, we would like an IR system to retrieve documents 
that have high probabilities of meeting the information needs 
encoded in the query. Over a decade of studies on this topic, it has 
been now widely understood that LM is a principled realization of 
the statistical approach envisioned by Maron and Kuhns at the 
dawn of IR [19], and that its underlying statistical framework 
provides mathematically sound explanations to why many proven 
heuristics, such as TF/IDF weightings and document length nor-
malization, have been working so well [1][6][9][18][31].  As is in 
the case of speech recognition, LM for IR can be formulated as a 
Bayesian risk minimization problem [16], for which the optimal 
performance can be achieved by following the maximum a post-
eriori decision rule that was first shown in [7] and reiterated for 
IR by Zhai and Lafferty [33]. Specifically, given a query Q, a 
minimum risk retrieval system should rank the document D based 
on product of the likelihood of the query under the document 
language model, PD(Q),  and the prior of the document P(D): 

)()(),( DPQPQDs D                                      (1) 

An enthusing question still in the center of the LM for IR research 
is what the document language model is and how it could be ob-
tained [6][18][31]. While it is intuitive to use the text body to train 
the document language model as in the majority of the work 
[18][31], it has been widely recognized that queries are often 
composed in a different language style than the document body, 
and a poor query likelihood can thus occur for relevant documents 
because of the style mismatch. To this end, Miller et al. [21] has 
proposed a hidden Markov model in which an additional latent 
stage is included to model the query generation process. Lafferty 
et al. have argued for an explicit model of the query language 
itself [16], and proposed the machine translation techniques to 
bridge the gap between the body and the query [1]. Jin et al. [14], 
for example, used the title and the body of a document as the tar-
get and the source languages, respectively, and demonstrated that 
the “translated” title LM can be a viable choice as the PD for IR. 
The two-stage LM by Zhai and Lafferty [33] proposed yet another 
idea of using smoothing techniques. There, the document LM is 
first created by smoothing the document body with a body back-
ground model, which is then followed by a second stage of 
smoothing ideally with a query background model. 

In practice, documents often have more fields than just the title 
and the body. This is particularly true in the Web environment 
where, in addition to the textual contents created by the document 
authors, Web documents are also annotated with inbound anchor 
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text by other document authors, as well as the user queries leading 
to clicks on the documents. Traditional IR has viewed the mul-
tiple-field document retrieval as a structured document retrieval 
problem, and some established retrieval models, such as BM25, 
have been generalized to multi-field document retrieval [26]. A 
straightforward generalization for LM is to view the document as 
being described by multiple text streams. As shown in Sec. 2, a 
quantitative analysis on the documents indexed by a commercial 
Web search engine does confirm that all these text streams seem 
to be written in their own language styles and have varying de-
grees of mismatch with the query, justifying the idea to model 
their linguistic characteristics separately. Empirical studies on 
applying the LMs for different task domains have also confirmed 
that mixing textual sources with different language styles can 
significantly degrade the quality of LMs (e.g., [2]). 

When a probability space is divided into disjoint partitions, the 
probability of an event can be evaluated as the sum of the condi-
tional probability of the event occurring in each partition, 
weighted by the prior of that partition. Apply this principle to the 
document modeling and let Di denote the ith stream of D and PDi 

the corresponding component LM for the stream, we have 

 
i

DD
i

DiD iii
PwPDDPP )|(                     (2) 

Such a mixture distribution has been widely used for LM in 
speech and language processing [11] as well as in IR (e.g., [22]). 
However, beneath the simple linear interpolation form of (2) lies 
the serious question of the conditions under which the component 
LMs can be combined properly. Since the foundation of mixture 
modeling is derived from the probability space partitioning, all the 
mixture components should therefore be modeling the same un-
derlying probability space. It is widely known [11] that LMs hav-
ing different sets of vocabulary should be viewed as modeling 
different domains and therefore their scores cannot be directly 
compared, let alone combined into a mixture distribution. When 
applying LM for IR, for example, it is critical to ensure that all 
document LMs have the same vocabulary so that the document 
LMs do not selectively treat different portion of the query as out 
of vocabulary (OOV) terms. The common approach to smooth the 
document LMs with a shared background model effectively 
makes all documents use the same vocabulary of the background 
model. Still, running into OOVs is quite common. For IR using 
non-mixture LM, encountering OOVs in a query is not a severe 
problem because the impact in computing the ranking scores (1) is 
the same for all the documents. This is not true for mixture LM 
described by (2) since OOVs of one mixture component are not 
necessarily OOVs for others, making how to properly compute the 
combined probability of the query a critical question. 

To address this problem, we in this work undertake a so-called 
“open-vocabulary” LM approach that is prevalent in the language 
processing community (e.g., [11]) but has not been extensively 
studied for IR. At the core of the open-vocabulary LM is a for-
midable challenge to assess the probability mass for OOVs. LMs 
that can yield non-trivial probabilities for OOVs can be viewed as 
modeling a language with infinite vocabulary. All open-
vocabulary LMs thus at least have the same cardinality for their 
vocabulary, and their probabilistic scores are on a more solid 
ground to be comparable and combined. As surveyed in Sec. 3, 
the open vocabulary LM is far from a solved research problem 
because it inevitably requires one to “guess” the unseen. All the 
techniques proposed in the past five decades have all involved 
some kinds of heuristics or parameter tunings that make it chal-
lenging to deploy the model outside of research labs. This is be-

cause the application domains usually have different environmen-
tal conditions that are either not expected by the heuristics or are 
incongruent to the properties of the tuning data. The scale of the 
Web typically amplifies the difficulty of these issues, as demon-
strated in the machine learning results reported in [28] that show 
the retrieval performance can be highly volatile depending on how 
the parameters in BM25F are acquired. 

In this paper, we propose an information theoretically motivated 
method towards open vocabulary LMs. The emphasis here is to 
obtain an analytically tractable and fully automated system that 
alleviates the problems arising from heuristic parameter tunings. 
Typically, such an approach can only yield “statistically optimal” 
outcome and cannot guarantee the performance be better than 
fine-tuned systems in all cases. We apply this spirit to both the 
smoothing of the mixture component LM PDi and the estimation 
of the mixture weights in (2). In Sec. 4, we present the detailed 
mathematical derivation that shows how the smoothing parame-
ters can be obtained by computing how N-gram is predicted by 
(N-1)-gram. In particular, the OOV probability mass, which is 
equivalent to unigram discount, can therefore be estimated by 
inspecting how the unigram is predicted by the zero-gram. In Sec. 
5 we describe the methods to compute mixture coefficients, and in 
Sec. 6 we describe the experimental results. 

The contributions of the paper are as follows: First, we provide a 
large scale quantitative analysis to verify how the query language 
is different in style from document body. We confirm and gene-
ralize the prevalent informal observations that, on the Web scale, 
various fields associated with the documents do have significantly 
different properties. From a modeling perspective, the analytical 
outcomes suggest these text sources are better modeled separately. 
Based on the analysis, we propose a mixture LM approach to IR. 
The mixture model has to address two immediate and formidable 
challenges. First, it requires an open-vocabulary LM that has no 
known solution without heuristics until this work. We propose a 
mathematically tractable close form solution to realize open-
vocabulary LMs. Secondly, the mixture model increases the num-
ber of parameters, and we show IR results are very sensitive to 
tuning. We show that our proposed analytical method can achieve 
high quality performance without empirical tuning. 

2. WEB LANGUAGE STYLE ANALYSIS 
The observations that the query language is different in styles 
from document body and may be closer to titles are intuitive. To 
formalize the analysis, we conduct a large scale analysis on a June 
2009 snapshot of the Web documents in the EN-US market. We 
examine the language usages in the document text body, the title, 
the anchor text, as well as the queries against a commercial search 
engine at the same time. To quantify the language usages in these 
streams, we first build a statistical N-gram LM for each of them 
and study the complexity of the language using information theo-
retic measurements such as entropy or cross-entropy. The LMs 
used in this section, with the exception of query LMs, are all pub-
licly accessible through [20]. Formally, the cross-entropy between 
model PA and PB is 


t

BABA tPtPPPH )(log)()||(  

Since the logarithmic function is convex, it can be easily shown 
that the cross entropy is smallest when the two models are iden-
tical. The cross entropy function can therefore be viewed as a 
measurement that quantifies how different the two models are. 
The entropy of a model PA, H (PA) = H (PA || PA). To avoid the 
confusion on the base of the logarithm, we further convert the 
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entropy into the corresponding linear scale perplexity measure-
ment, namely, 

)||()||( BA PPH
BA ePPPPL   

Previously, it has been estimated that the trigram perplexity of 
general English has an upper bound of 247 words per position 
based on a 1 million word corpus of American English of varying 
topics and genres [2]. 

In contrast, in the Web snapshot the vocabulary size is at least 1.2 
billion for the document body, and 60 million, 150 million, and 
252 million for the title, anchor text and the user query streams, 
respectively. As our main objective is to investigate how these 
language sources can be used to model user queries, we study the 
cross-entropy between the query LM to others, the results of 
which are shown in Figure 1. 

 

As can be seen, when the LM grows more powerful with increas-
ing order, the query language perplexity keeps dropping, from 
1754 for unigram down to 180 for trigram and 168 for 4-gram. It 
thus appears that the query language falls within the previously 
estimated upper bound for perplexity, 247, for general English. 

The cross-stream perplexities give hints on the efficacy of using 
various streams to model the query language. The document body 
has shown consistently the largest mismatch with the queries, 
while anchor text seems the best choice among the three to model 
the queries with powerful enough LM (i.e., N > 1). We note that, 
starting at bigram, both title and anchor text models have a small-
er perplexity than the unigram model of query itself. The study 
lends some support to the hypothesis that document title is a better 
source than the body to build a LM for IR. 

Up to trigram, the heightened modeling power with an increasing 
order uniformly improves the perplexities of all streams for que-
ries, although this increased capability can also enhance the style 
mismatch that eventually leads to the perplexity increase at higher 
order. For the document body and title, the payoff of using more 
powerful LMs seems to taper off at bigram, whereas trigram may 
still be worthwhile for the anchor text. 

As are in many applications of LMs, the perplexity measure is not 
the ultimate metric for applications, in other words, models with 
lower perplexities do not necessarily lead to a better performance. 
However, the perplexity analysis is still informative in that higher 
perplexity models can seldom outperform the lower perplexity 
ones. 

3. CURRENT STATE OF OPEN  
VOCABULARY LANGUAGE MODEL 
For any unigram LM PC with vocabulary V, the probabilities of all 
the in-vocabulary and OOV tokens sum up to 1. An open-
vocabulary LM is a model that reserves non-zero probability mass 
for OOVs:  

0)(1)(  
 Vt

C
Vt

C tPtPpUnk  

When an open vocabulary model is used to evaluate a text corpus 
and encounter additional k distinct OOV tokens, the maximum 
entropy principle [13] is often applied to evenly distribute pUnk 
among these newly discovered OOVs, i.e., PC(t) = pUnk / k for 

.Vt The key question is how much mass one should take away 
from V and assign it for pUnk. The “discount” strategy, as is often 
called, remains an unsolved research problem since Shannon in-
vented N-gram as part of the information theory. 

Since its publication in 1953, the Good-Turing formula is still a 
widely used or served as the foundation for many discounting 
strategies [11]. It states that, if there are nr tokens that appear ex-
actly r times in a corpus, then for the purpose of calculating prob-
ability we should “pretend” these tokens appear r* times where 

r

r

n

n
rr 1)1(*   

Accordingly, the probability of encountering such a token is given 
by 

||

**
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P
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where | T | denotes the total number of tokens in the corpus. By 
applying the Good-Turing formula for r = 0, we have the total 
probability mass that should be reserved for all the unseen tokens 
is 

||||

*0 10

T

n

T

n
pUnk 


  

Namely, the probability mass for the unseen is equal to that of the 
single occurrence tokens. Obviously, how good this discounting 
strategy is depends heavily on how accurate the Good-Turing 
formula characterizes the statistical properties of the application in 
question. Although the Good-Turing has been shown to be useful 
and superior to many other heuristics for a wide range of applica-
tions, the formula is still seen as enigmatic and finding an intuitive 
explanation to its underlying heuristics remains an active research 
question [23]. 

4. COMPONENT MODEL SMOOTHING 
USING CALM 
In this paper, we adopt a more analytically tractable approach to 
open-vocabulary discount. The key element in our method is a 
model adaptation algorithm called CALM first proposed by Wang 
and Li [29]. A close examination of the original presentation re-
veals that the adaptation framework in CALM can be explained in 
an alternative manner using the widely known vector space para-
digm. As the original CALM was developed for N-gram, we try to 
keep the discussion in this section general even though we only 
report experimental data for unigram (N = 1) in this paper. 

Figure 1: Cross-stream perplexities against queries for 
various streams and N-gram (N=1, 2, 3, 4) 
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4.1 Adaptation as Vector Interpolation 
First, we note that a LM can be thought of as a vector from an 
underlying functional space in which all the admissible language 
models for a given lexicon V form a simplex of the space, namely,

}1)(],1,0[:{   Vv
vPVP . For example, any LM for a 

trivial binary lexicon can be represented by a point within the line 
segment enclosed by (1, 0) and (0, 1) on a two dimensional Eucli-
dean space as illustrated in Figure 2. Let PB denote the back-
ground LM and PO the statistics of a set of newly observed data 
we would like to adapt the background LM to, respectively. The 
goal of adaptation is to find a target ,TP ,PPP BT  such 

that PT and PO are reasonably close and ΔP, the modification on 
the background LM, is minimized. Because the resultant model PT 
has to reside on the simplex, one cannot simply use the Euclidean 
norm to compute distances and determine the adapted LM without 
constraints. However, it can be easily verified that such a con-
straint can be met if we choose the adjustment vector ΔP along 
the direction of the difference vector of BO PP  , namely, 

)( BOO PPP   where αO is the adaptation coefficient. Natural-

ly, we want to pick a non-negative αO so as to point the adjust-
ment towards the right direction, and to choose αO < 1 so as to 
avoid overshoot.  

 
Putting it together, we have  

BOOOBOOBT PPPPPP )1()(                    (3) 

LM adaptation can therefore be achieved by linear interpolation, 
assuming the same mathematical form as smoothing.  

A significant contribution of CALM is to derive how the adapta-
tion coefficient can be calculated mathematically when the under-
lying LM is based on N-gram assuming a multinomial distribu-
tion. Following the work of [29], O1  can be interpreted as the 

prior probability of PB being the correct model and whose closed 
form formulation can be obtained using Stirling’s approximation. 
In the Appendix we show that the adaptation coefficient for a 
given set of observations O can be computed as 

)||(
/)(
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)1log( BO
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       (4) 

where LO and n(t) denote the document length and the term fre-
quency of the term t, respectively. In short, the adaptation coeffi-
cient has a closed form relationship to the Kullback-Leibler (KL) 
divergence between the background model and the ML estimation 
of the LM of the document PO(t) = n(t) / LO. It can be verified 

that, if PB(t) agrees with n(t) / LO for all terms, the adaptation 
coefficient αO is 0 indeed. The more the background model disa-
grees with the observation, the more negative the right hand side 
of (4) will become, which leads αO to approach 1. 

4.2 Open Vocabulary LM through N-gram 
Discount 
The CALM interpolation formula of (3) indicates that in the target 
LM PT, only αO portion of the probability comes from the obser-
vation. In other words, the observation is “discounted” because a 
probability mass of O1 in the target LM is set aside for sources 

external to the observation. One can therefore use (4) to compute 
the discount factor of an N-gram by choosing the corresponding 
(N-1)-gram as the background. For N > 1, (4) coincides with the 
formulation of the well-known Stolcke heuristics [27] that has 
been widely used in the N-gram LM pruning: N-grams that can be 
reasonably predicted by (N-1)-gram can be pruned out of the 
model. For the purpose of this work, we further extend the idea 
down to N = 1, where the observation PO and the background PB 
are the unigram and zero-gram LMs, respectively. Conventional-
ly, the zero-gram LM refers to the least informative LM that treats 
every token as OOV, namely, its probability mass is exclusively 
allocated for OOV. Given an observation with a vocabulary size 
|VO|, a zero-gram LM would just equally distribute its probability 
mass equally among the vocabulary, leading (4) into 

||log)(
/)(

||/1
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)1log( OO

O

O

O
O VPH

Ltn
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tn
      (5) 

As in Sec. 2, H(PO) here denotes the (empirical) entropy of the 
observation LM PO. We can further convert (5) from the loga-
rithmic into the linear scale and express the discount factor in 
terms of perplexity and vocabulary size: 

||/)(1 OOO VPPPLpUnk                    (6) 

The interpretation of this outcome is quite intuitive. As well un-
derstood, perplexity is the expected number of alternatives when a 
language model is used to generate a token each time. The ratio of 
the perplexity to the vocabulary size characterizes how equivocal 
the language model is. The result of (6) suggests that the higher 
the ratio, the less certain the language model is and hence the 
larger the discount should be. At the extreme case when the per-
plexity equals the vocabulary size, the language model is basically 
generating tokens in the random pattern as the zero-gram, and 
hence the discount factor becomes 1. 

4.3 Open Vocabulary Component LM 
In this paper, we compose the smoothed stream component LM 
PDi with (3), using an open-vocabulary LM trained from the 
stream collection as the background model. To be more specific, 
we first for each document D and each stream i create a closed-
vocabulary maximum likelihood model as the observation PO,Di. 
The vocabulary for the stream VO,Ci and the closed-vocabulary 
stream collection model is thus obtained as 


D

DOCO ii
PDPP ,, )(  

The discount factor is computed with (6) and is used to attenuate 
the in-vocabulary probability as  

iiii COCOCOCT VttPtP ,,,, ),()(   

The PT,Ci is the open-vocabulary stream collection model. Finally, 
the stream collection model is used as the background to obtain 
the smoothed document stream model through linear interpolation 

(0, 1) 

(1, 0) 

Λ 

PO 

PB 

PT 

ΔP 

Figure 2: A 2-dimesional illustration of model adaptation 
in the probability space 
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iiiii CTDDODD PPP ,, )1(                        (7) 

Here, the smoothing with the stream collection model ensures 
each document LM has the same number of mixture components 
even though the document does not have some stream observa-
tions. This smoothing alleviates the dilemma that some streams 
are sporadic and sparse for many Web documents. 

Although the interpolation coefficient αDi in (7) can in practice be 
kept as a free parameter to be empirically tuned (e.g., [32]), a 
major objective of this work is to explore alternatives that are 
tuning-free and thus more desirable when an IR system leaves a 
lab environment. In addition to the methods described in the next 
section, we note that the interpolation coefficient in (7) can also 
be computed using (4) in a document dependent yet query inde-
pendent fashion. Several observations can be made from this ap-
proach.  First, the adaptation coefficient of (4) is document de-
pendent as desired. Unlike the Dirichlet smoothing used in [32] 
that can also yield document dependent estimation of αDi, CALM 
achieves this without having to make a strong assumption that the 
family of the prior distributions is conjugate to the multinomial 
distribution. The estimation is fully automatable in that it does not 
leave us with a free parameter that can vary and has to be empiri-
cally determined from applications to applications. CALM can 
therefore be implemented at the index time not only in a batch 
mode but also in an online fashion that model adaptation takes 
place as soon as the document enters the collection (e.g. crawled 
from the Web). Secondly, since CALM uses a linear interpolation 
method, the “IDF effect” pointed out by Zhai and Lafferty [32] to 
explain why LM performs well for IR as the traditional TF/IDF 
approach also applies to CALM. Third, we note that the computa-
tion of (4) is light weight. Its complexity grows only linearly with 
the unique terms in the observation.  

5. MIXTURE LANGUAGE MODEL 
The mixture weights for the component LMs play a central role in 
the multi-style LM approach. As is in the previous section, we 
note that we can apply CALM adaptation formula to compute the 
weights of the multi-component mixture (2) by first re-arranging 
the distribution as two-component mixture: 





0

00 ')1(
0

i
DiDD i

PwwPwP                    (8) 

As (4) can be applied to obtain w0, the process can be recursively 
repeated to obtain other coefficients. Since the goal of the docu-
ment LM is to evaluate queries, one would like the model to be 
close to the query language. Accordingly, it seems appropriate to 
choose the query stream as D0 in (8) so that the CALM formula 
functions as adapting other mixture components to the query. This 
method leads to document-dependent mixture weights, leaves no 
parameter to tune, and is enticing in terms of engineering Web 
scale IR because the mixture coefficients can be pre-computed 
when the documents are being indexed. 

The query independent nature of the mixture weights, however, is 
not as intellectually satisfying as the query dependent ones. While 
the perplexity studies suggest the average closeness of web docu-
ment streams to the queries, we observe that the styles of individ-
ual queries vary dramatically: As some queries can benefit from 
large weights on the anchor text or the user query streams, it is not 
the case for others, especially those whose target documents are 
new and yet to be widely linked to or sought after with search 
engines. Indeed, our pilot studies suggest that query dependent 
weights outperform query independent ones and thus the latter 
results are omitted in this paper. 

The query dependent portion of the ranking function is the query 
likelihood  in (2). The objective of choosing the optimal 
mixture weights is to maximize this likelihood. As shown in (7), 
each mixture component itself is a two-component mixture that 
has parameters to be determined. We can obtain the re-estimation 
formula under Expectation Maximization (EM) algorithm as 

1
| | ∑

 (9) 

and 

1
| |

,
 (10) 

 

6. WEB SEARCH EXPERIMENTS 
To assess the effectiveness of the proposed tuning-free methods 
for the web document retrieval, we conduct the experiments on 
the same query set generating the Web test collection previously 
described by Svore and Burges [28]. The collection consists of 
11,845 distinct queries and a retrieval base of more than 1.2 mil-
lion documents with 5-scale relevance judgments that can be used 
to compute NDCG as the metric for the retrieval function. The 
data set has the following five streams associated with each web 
document: document text body (B), title (T), URL (U), anchor 
text (A), and the user queries (C) that have one or more clicks on 
the document recorded in the search engine logs. The percentages 
of documents with non-empty streams are as shown in Table 1. 

Table 1: Portions of documents in the test collection with non-
empty text body (B), title (T), URL (U), anchor text (A), and 

user queries (C) 

B T U A C 

81.46% 74.21% 74.21% 75.79% 37.76% 

 

Documents that contain only graphic contents, for example, will 
be regarded as having empty text body. Since the user query 
stream is sparsely populated, we exclude it from the study in this 
paper. 

The test collection, having been studied by multiple institutions, 
comes with a few well-established retrieval results.  In the follow-
ing, we report two pertinent experimental data as baselines for 
comparison. The first is based on Okapi BM25 [25] and its multi-
field extension [26] (referred to as BM25F below), both of which 
parameters are taken from the published results in [28]. We note 
that neither set of the Okapi experiment takes into account the 
document prior, which we have found to be critical in downplay-
ing the roles of undesirable contents such as spam. Similar obser-
vations on the importance of document prior have been made for 
other applications [15]. As such, we adopt the machine learning 
technique described in [28] and train a neural network ranker 
based system that uses NDCG@10 as the objective function to 
combine BM25/F with the document prior, and its results are 
reported based on leave-one-out cross validation on the test col-
lection below. The results, shown in the “mean% (standard devia-
tion %)” format, are labeled as “Oracle 1” since the machine 
learning is conducted on the test collection with all the relevance 
judgments. 

There is no reason to believe the results reported here cannot be 
reproduced elsewhere, such as the recent TREC Web Track data 
set [4], provided that the document prior can be computed with 
methods that effectively confront the prevalent spamming activi-
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ties on the Web. Specifically, the test collection used in this paper 
includes a technique described in [30] that identifies spammers 
based on the HTTP redirection patterns. We have found such 
crawling time features critical and can augment other link graph 
analysis and content based methods and lead to an effective prior 
estimation that makes the IR metrics more meaningful. 

6.1 Single Style LM 
We first conduct a series of single style LM experiments to under-
stand the merits of the adaptive LM (Sec. 4) against the well-
known Dirichlet smoothing based LM. To be precise, the single 
style LM here means that the document is represented by a single 
stream. 

The rationale for the experimental design is as follows. Aside 
from the open-vocabulary, which does not play a role for single 
style LM in the IR tasks, the “tuning-free” method uses the same 
form, i.e., linear interpolation, to smooth the LM. The novelty 
here is in the manner of how the interpolation coefficients, which 
can be interpreted as the prior of the distributions to be interpo-
lated (Sec. 4.1), are chosen. The Dirichlet approach makes the 
assumption of conjugate prior, which is only contingent upon the 
distribution family of the LM and not on the empirical observa-
tions. Accordingly, the Dirichlet smoothing leaves a free parame-
ter that has to be empirically tuned based on the application data. 
In contrast, the adaptive LM makes no assumption on the distribu-
tion family of the prior. Rather, it capitalizes on the data observed 
in the document to derive an analytical yet data-driven estimate of 
the prior, thereby achieving the objective of no free parameters. 

Table 2: NDCG for single stream retrieval experiments 

  NDCG@1  NDCG@3 NDCG@10  

Baseline: 
BM25 

B 26.72 30.19 37.77 

T 26.46 29.64 36.24 

U 29.77 31.68 37.40 

A 33.59 35.90 41.78 

CALM B 28.74 32.02 39.09 

T 33.95 36.33 42.19 

U 36.81 38.06 43.19 

A 35.42 37.50 43.03 

EM B 28.87 32.23 39.30 

T 33.85 36.41 42.52 

U 36.80 38.03 43.09 

A 36.13 38.44 44.20 

Oracle 1: 

BM25 + 

P(D) w/ML 

B 27.87 (0.58) 30.98 (0.55) 38.48 (0.40) 

T 30.45 (0.18) 33.59 (0.21) 40.44 (0.28) 

U 34.66 (0.14) 35.98 (0.08) 41.99 (0.18) 

A 37.37 (0.25) 38.76 (0.30) 44.14 (0.36) 

Oracle 2: 

Grid-search 

Dirichlet 

Smoothing 

B 29.37 (0.18) 32.47 (0.11) 39.43 (0.17) 

T 32.05 (0.58) 34.84 (0.54) 41.38 (0.41) 

U 33.67 (0.96) 35.54 (0.71) 41.46 (0.46) 

A 37.62 (0.46) 39.26 (0.30) 44.56 (0.16) 

 

Table 2 shows the experimental results with an emphasis to un-
derstand the parameter tuning effects. The experimental condition 
labeled “CALM” implements (7) for smoothing, whereas the ex-
periments labeled “EM” utilize the EM algorithm to find the in-
terpolation coefficient that maximizes the query likelihood for 

each individual query. As previously described, CALM is an ap-
proach where all the parameters can be computed at the document 
index time, while EM has to be carried out in retrieval time. Even 
though parameters maximizing query likelihood do not necessari-
ly improve NDCG scores, it appears to be the case between the 
CALM and the EM cases. We note that, even though the CALM 
method does not further utilize query specific information for 
smoothing, its performance has already come close to the “EM” 
method. Both LM approaches record higher NDCG scores than 
the baseline (all results are statistically significant based on t-test 
with significance level of 0.05), and come to the high-end perfor-
mance of the Oracle 1 that utilizes more data to train the parame-
ters. The closeness to the Oracle 1 result is surprisingly encourag-
ing because all the LM methods optimize only the indirect meas-
ures of query likelihood, whereas in all Oracle 1 cases NDCG@10 
is directly optimized on the test collection. 

To further understand the parameter tuning, we run a grid search 
on the free parameter in Dirichlet smoothing (from 50 to 500 with 
a step size 50) and tabulate the corresponding retrieval results in 
Table 2 labeled as “Oracle 2” in the “mean% (standard devia-
tion%)” format. The results confirm that the choices of free para-
meters can introduce significant variances in NDCG, and that the 
EM method can produce reasonable results without tuning. 

In all cases, the retrieval experiments lend support to the analysis 
in Sec. 2 that streams other than the text body tend to be a better 
choice for IR tasks, and their relative efficacy seems to track the 
perplexity prediction well. For example, anchor text is consistent-
ly outperforms the title and the body streams across all experi-
mental conditions. 

6.2 Multi-Style LM 
Table 3 summarizes that experiments that test to what extent mul-
tiple streams can be combined to improve retrieval performance. 
The “CALM + EM” condition uses the interpolation coefficients 
for individual streams determined at the index time in the same 
manner as described in Sec. 6.1, and uses the EM algorithm to 
compute the mixture weights at the retrieval time when the query 
is received. In comparison, the “Joint EM” condition uses the EM 
algorithm to jointly determine the mixture weights and the inter-
polation coefficients for all the stream at the retrieval time in the 
manner described in (10) of Sec. 5. As is in the case for the single 
style LM, the total retrieval time approach “Joint EM” seems to 
offer consistent better performance than the partially index time 
method CALM+EM. Both LM methods produce reasonable per-
formance, even though they do not utilize any judgment data and 
only are indirectly optimized for query likelihood rather directly 
on NDCG. Regardless the modeling techniques, all experimental 
conditions consistently show that better retrieval performance can 
be achieved when more streams are included in the retrieval mod-
el. 

The motivation behind the emphasis on “tuning free” is based on 
our empirical observation that many retrieval methods typically 
yield dramatically unstable performance, the root cause of which 
can be traced to their sensitivity to the free parameters in the mod-
els. As mixture models increase the number of model parameters, 
the robustness issue is inevitably exacerbated. We demonstrate the 
sensitivity issues by including an experimental condition “Oracle 
0” in which we retrain the neural net on the test collection to ob-
tain the optimal BM25F parameters. As can be seen, the NDCG 
metrics change dramatically from the baseline where the BM25F 
parameters were trained on a separate dataset that is created using 
the same pooling methodology and judgments guidelines but with 
the collection harvested from the Web 2 months earlier. More 
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troublingly, such a dramatic swing in performance metric cannot 
be discovered through cross validation, as the standard deviations 
in both Oracle 0 and Oracle 1 appear small. Our investigation 
confirms that single style stream experiments do not exhibit such 
a big gap in BM25 performance. This leads to our working hypo-
thesis that the combinations of multiple text streams introduce the 
new performance robustness challenges, a topic that warrants 
more research in the future. 

Table 3: NDCG for mixture LM for retrieval 

  NDCG@1  NDCG@3 NDCG@10  

Baseline: 
BM25F 

BT 26.36 32.29 39.36 

BTU 32.15 35.12 42.23 

BTUA 36.02 38.34 45.05 

CALM + 

EM 

BT 33.90 36.42 42.77 

BTU 34.90 37.69 44.16 

BTUA 36.46 39.39 45.77 

Joint EM BT 33.92 36.57 42.86 

BTU 35.11 37.82 44.29 

BTUA 36.98 39.71 46.04 

Oracle 0: 

BM25F ML 
retuned  

BT 30.27 (0.13) 33.48 (0.10) 40.75 (0.16) 

BTU 34.85 (0.62) 37.07 (0.49) 43.67 (0.42) 

BTUA 43.84 (0.17) 43.47 (0.05) 48.21 (0.13) 

Oracle 1: 

BM25F + 

P(D)  

BT 33.01 (0.11) 35.91 (0.30) 42.74 (0.37) 

BTU 34.85 (0.62) 37.07 (0.49) 44.82 (1.03) 

BTUA 45.21 (0.28) 44.51 (0.36) 48.92 (0.52) 

 

7. SUMMARY 
The key question of using LM for IR is how to create a LM for 
each document that best models the queries used to retrieve the 
document. Studying the textual resources with the documents, we 
first present convincing and quantitative evidence that different 
language styles are used for composing the document body, title, 
anchor text, and queries. As such, these different styles are better 
separately modeled and then combined to form the document 
language model.  

The immediate question is how LMs with different vocabulary 
sets can be combined in a principled way. Previous attempts to 
this so-called open-vocabulary LM problem resorts to heuristics 
many of which are hard to verify. The most famous and widely 
used, the Good-Turing formula, is recognized as enigmatic and 
unintuitive. We propose an alternative based on rigorous mathe-
matical derivations with few assumptions. The same mathematical 
framework, based on LM adaptation, also suggests that once the 
open-vocabulary issue is resolved the model combination can be 
achieved by simple linear interpolation. Such a simple form al-
lows us to employ the EM algorithm to dynamically compute the 
query-document matching scores without tuning free parameters. 
Our experiments show that the proposed approach can produce 
retrieval performance close to the high-end oracle results. 

8. ACKNOWLEDGMENT 
The authors would like to thank Chris Thrasher, Paul Hsu, Eve-
lyne Viegas, Fritz Behr, and Zijian Zheng for the collaboration. 

9. APPENDIX 
The linear interpolation of (3) indicates the adapted distribution PT 
is a mixture of the ML estimation of the observation data PO and 

the background model PB. Note that the probability of an event E 
is the mixture sum of the event taking place under various condi-
tions Ci weighted by the respective priors P (Ci): 


i

ii CPCEPEP )()|()(  

We can view the mixture coefficient in (1) as the prior probability 
of the respective mixture component being the “real” distribution 
in describing the probabilistic events whose statistical property is 
characterized by PT. In the case of adaptation, the probability of 
the background being the real distribution can be estimated by 
computing how effective the background model predicts the ob-
servation where token t occurs n(t) times among a total of LO to-
kens, namely,  
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With the assumption that the background model PB being a multi-
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Equivalently, 
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The factorial terms in the above equation can be approximated by 
the well-known Stirling formula 
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Accordingly, we have 
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Note that the mixture weight is the per-token probability whereas 
PB (O) above is evaluated over a total of LO tokens. With the sta-
tistical independent assumptions of the tokens in the LM, we have 
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L
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which leads to (4). 
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