
Code Generation for the Beehive ISA

Thomas L. Rodeheffer
Microsoft Research, Silicon Valley

August 12, 2010

Developing computer architecture research platforms is
difficult because it requires both the hardware platform
and the software toolchain. In this paper, we describe
the code-generation task of the software toolchain for the
Beehive platform. Beehive is a many-core computer com-
posed of simple 32-bit RISC connected using a token ring
to a memory controller and Ethernet controller. We dis-
cuss the ISA, ABI, and idiosyncracies of the RISC core
and its impact and the compiler. We also discuss the dif-
ferences in porting GCC and LLVM and their resulting
performance on small benchmarks in terms of code size
and execution time.

1 Introduction
Beehive [18] is an experimental many-core computer im-
plemented on a single FPGA. The system includes a num-
ber of RISC cores, each with a data cache and an instruc-
tion cache. The cores are connected to each other and to
main memory using a token ring interconnect. A high-
speed I/O channel is provided by an additional station on
the ring that implements a 1 Gb/s Ethernet controller.

The Beehive design was initially implemented on the
BEE3 (Berkeley Emulation Engine, version 3) [2]. The
BEE3 implementation supports 8GB of main memory and
the RISC cores run at 125 MHz.

Since the BEE3 is an expensive piece of hardware,
a second version of the design, with a different mem-
ory controller, was implemented on the Xilinx ML509
(XUPv5) development board [20]. This version supports
2GB of main memory and the RISC cores run at 100
MHz. Figure 1 shows a system diagram.

The Beehive is intended to enable experiments in hard-
ware architecture, especially in the memory system and in

inter-processor coordination. This of course requires writ-
ing code to see how such experiments pan out. To write
any significant amount of code, a compiler is absolutely
necessary.

Although the Beehive system has many interesting ar-
chitectural features, in this paper we focus on the Beehive
instruction set architecture (ISA), which we take to in-
clude the CPU core and its load and store operations on
its data cache. Assuming that the ISA remains invariant,
we can reuse the same compiler for all experiments. So it
is of interest to learn how to generate code for the Beehive
ISA.

The remainder of this paper is organized as follows.
Section 2 describes the Beehive ISA. Section 3 describes
ways in which the Beehive ISA is perhaps surprisingly
deficient and what software accomodations are neces-
sary. Section 4 discusses the structure of modern target-
independent compilers and what they need in order to
generate code for a new target. Section 5 presents a com-
parative case study of retargeting to the Beehive two mod-
ern compilers, GCC and LLVM. Finally, Section 6 con-
cludes.

2 The Beehive ISA
The Beehive ISA is in many respects a fairly conventional
RISC architecture, with a 32-bit datapath, a register file
containing 32 registers, and a three-operand instruction
format. There are ways of performing arithmetic, access-
ing memory, affecting control flow, and assembling arbi-
trary constants. Figure 2 shows a schematic diagram of
the core components that implement the Beehive ISA.

For simplicity, almost all Beehive instructions have the
same format, which is illustrated in Figure 3. Details

1

Figure 1: Beehive system diagram (ML509 implementation).

ADD A + B SUB A - B
AND A & B ANDN A &˜B
OR A | B ORN A |˜B

XOR A ˆ B XORN A ˆ˜B

Table 1: Beehive ALU functions.

about instruction formats and encodings may be found in
the Beehive hardware documentation [18]. These details
are of essential importance when generating binary code,
but are irrelevant for understanding the problems of code
generation, so we omit discussion of them.

2.1 Arithmetic

Most Beehive instructions read two registers, ra and rb,
from the register file, combine the values with an ALU
function, and then write the result back to a third register,
rw. The eight simple ALU functions available are listed in
Table 1. The Beehive ALU can add, subtract, and perform
a number of bitwise logical operations.

A barrel shifter lies on the main datapath following the
ALU. An instruction may select no shift or it may spec-
ify that the output of the ALU be shifted by any constant
amount before being written back to the register file. The
four types of shift available are listed in Table 2. In the
circular right shift, bits shifted out from the least signifi-
cant bit (lsb) re-enter at the most significant bit (msb). A
circular rotate left shift of n bits can be accomplished by
specifying a circular right shift of (32− n) mod 32.

LSL shift left
LSR logical shift right (zero fill)
ASR arithmetic shift right (sign fill)
ROR circular rotate right

Table 2: Beehive shift types.

An instruction may specify a small positive integer con-
stant in place of its second register input, rb. As op-
posed to architectures such as MIPS [8], in which the con-
stant is sign-extended for arithmetic operations and zero-
extended for logical operations, in Beehive, the constant
is always zero-extended. This turns out not to be a lim-
itation on Beehive. Because the Beehive ALU functions
come in positive-negative or positive-complement pairs, it
is always possible to select an alternate ALU function to
achieve the effect of a negative or complement constant.

For an instruction that specifies a shift, the constant is
limited to the range [0, . . . , 27−1]. If the instruction spec-
ifies no shift, the shift count field is exploited to increase
the available constant range to [0, . . . , 212 − 1].

To make it convenient to load a constant into a register,
register 0 in the register file is hardwired to always read
as zero. This also makes it possible to discard a computed
result without writing it into an otherwise useful register
in the register file.

2

Figure 2: Core components that implement the Beehive ISA.

03

Op

45

Resv

68

Function

9

C
on

st

1016

Rb

1721

Count

2226

Rw

2731

Ra

Figure 3: Beehive instruction format

3

2.2 Memory

In conventional RISC architectures, a memory read speci-
fies both the address in memory to be read and the register
into which the returned data is to be placed. Similarly, a
memory write specifies the source of the data (a register),
and the memory location into which the data is to be writ-
ten.

Things are different in Beehive. The Beehive decou-
ples address calculation from source or destination selec-
tion. To issue a read, an instruction sends the output of the
ALU to the address queue as a read request. A non-empty
address queue causes the read to occur, and the resulting
data is placed in the read queue. The output of the read
queue may be extracted by selecting ra = 29. We write
this as RQ. If the data has not yet returned from the data
cache, the processor stalls.

Writes are handled similarly. An instruction sends the
output of the ALU to the address queue as a write request.
Separately, the data to be written is sent to the write queue
by selecting rw = 31. We write this as WQ.

The Beehive core has only one address queue and its
data cache manager handles requests strictly in order.
Hence the program establishes the exact sequence of op-
erations and it can relate data on the read and write queues
to the corresponding requests on the address queue.

It is convenient to describe sending read and write
requests to the address queue as sending to AQR and
AQW, respectively. Since it is not expected that shift-
ing would be particularly useful as the last step in ad-
dress computation, the instruction specifies these actions
using variants of no shift and the available constant range
is [0, . . . , 212 − 1]. Like ordinary arithmetic instructions,
the result of the ALU is written to register rw in the reg-
ister file. If the result of the address calculation is not
otherwise needed, it can be discarded by specifying rw
= 0. Specifying rw = ra can be used to implement pre-
increment or pre-decrement addressing modes.

Figure 4 shows an example of an instruction sequence
on Beehive using queued memory access. This three-
instruction sequence reads a word from a stack frame lo-
cation, adds to it the contents of a register, and writes the
result back to a second stack frame location.1 The results

1For a memory write operation, the Beehive ISA permits the instruc-
tion that sends the write address to AQW and the instruction that sends
the write data to WQ to appear in either order. For simplicity of expo-

AQR := sp + 12
WQ := RQ + r3
AQW := sp + 20

Figure 4: Beehive instruction sequence showing queued
memory access.

of the address computation instructions are not needed
back in the register file, so they are written to register 0,
which throws them away. This detail is omitted from the
example.

The idea of queued memory access first appeared in this
form in the design of the WM architecture family [19].
This architecture was unfortunately never implemented.

2.3 Control flow
To affect control flow, the Beehive has an unconditional
jump, conditional jumps, and a jump-and-link. Collec-
tively these are all jumps and they all work the same way.

To perform a jump, the Beehive instruction specifies a
variant of no shift that sends the output of the ALU to the
program counter. A hardware stall is necessary to nullify
the effect of decoding the next instruction in sequence,
but this is invisible to the programmer. Since jump target
addresses are unlikely to be of any other use, jumps do
not send the ALU result anywhere other than to the pro-
gram counter and the rw field is exploited to increase the
available constant range to [0, . . . , 216 − 1].2

The program counter may be read by selecting ra = 31.
We write this as PC. This reads the instruction address of
the currently executing instruction. To accomplish a rela-
tive branch an instruction can add or subtract a small pos-
itive integer constant from the current program counter.
The other ALU functions are not likely to be useful in
this context.

In addition to unconditional jumps, the Beehive pro-
vides conditional jumps based on based on the three con-

sition in this example we show the write data being sent to WQ first.
However, in general it is better to send the write address to AQW first,
because (1) this provides an instruction to help fill the latency of fetch-
ing the read data from the data cache and (2) at the end of the sequence
the condition codes reflect the value written to memory.

2The alert reader may wonder where the fifth bit of rw went. It went
to augment the ISA with special purpose debugging instructions. For the
gory details, consult the hardware manual.

4

zero ALU/Shifter result was zero
minus ALU/Shifter result msb was one
carry carry out from ADD or SUB

Table 3: Beehive condition codes.

JZ jump if zero JNZ jump if not zero
JM jump if minus JNM jump if not minus
JC jump if carry JNC jump if not carry

Table 4: Beehive conditional jumps.

dition codes listed in Table 3. The condition codes reflect
the result of the ALU/Shifter from the previous instruc-
tion. The carry is undefined for ALU functions other than
ADD or SUB. The condition codes are left unchanged by
jump instructions and by the load-link-immediate instruc-
tion discussed later. All other instructions set the condi-
tion codes.

Beehive conditional jumps test the true or false value of
any single condition code. Table 4 lists the six conditional
jumps. Execution is based on the result of the previous
instruction that set the condition codes. Generally this is
the immediately previous instruction, but it need not be,
if the intervening instructions were exclusively jumps or
load-link-immediates.

The final kind of jump is the jump-and-link, commonly
known as “call”, which is intended for calling a subrou-
tine. In addition to sending the ALU output to the pro-
gram counter, the jump-and-link instruction sends the in-
cremented former program counter to the link register.
This is the return address for the subroutine.

The link register can be read by selecting ra = 30. The
link register can be loaded directly from the output of the
ALU/Shifter by selecting rw = 30. Finally, the link regis-
ter can be loaded via the load-link-immediate instruction,
as described next. For clarity, we write accesses to the
link register as LINK.

2.4 Arbitrary constants

The load-link-immediate instruction is intended to help
load an arbitrary constant. This instruction does nothing
else except load the link register with a constant value.
The high order 28 bits of the constant value can be speci-
fied arbitrarily. The low order 4 bits of the constant value

WQ := A
WQ := B
AQW := 6 // start multiplier
LO := RQ // low product word
HI := RQ // high product word

Figure 5: Beehive instruction sequence to compute A ∗B
as signed integers, with 64-bit result.

are zero. Basically, what the load-link-immediate instruc-
tion does is send itself to the link register.

Using the load-link-immediate instruction a Beehive
program can load an arbitrary 32-bit constant into a reg-
ister in two instructions, the first a load-link-immediate
and the second an OR of the LINK with the low order 4
bits as a constant. Since the second instruction could also
send the result to AQR or AQW, an arbitrary address of
a memory operation can be specified in two instructions.
Likewise, a program can jump or call to an arbitrary ad-
dress in two instructions. Since the load-link-immediate
does not affect the condition codes, conditional jumps can
also operate in this way.

2.5 Multiplier coprocessor
The Beehive has a number of coprocessors that are ac-
cessed through the memory queues using reserved ad-
dresses. From the point of view of the instruction set
architecture, the most interesting coprocessor is a 32-bit
multiplier.

The multiplier is used as follows. First, two words are
sent to the write queue. These are the two signed 32-bit
integers to be multiplied. Then, a special address write
value is sent to the address queue. Finally, the 64-bit prod-
uct is obtained by reading two words from the read queue.
The low order product word comes out first. If necessary,
the processor will stall until the product words are avail-
able. Figure 5 shows a code sequence.

If only a 32-bit result is desired, the high product word
must still be read from RQ but it can be discarded by writ-
ing into register zero. The low order word of the product
is the same regardless of whether A and B are considered
as signed or unsigned integers.

There is a five cycle delay between the time the special
address write value is sent to the address queue and the

5

WQ := A
WQ := B
AQW := 6 // start multiplier
AH := A ASR 31 // compute AH
AF := AH & B // -AH * B
BH := B ASR 31 // compute BH
BF := BH & A // -BH * A
F := AF + BF // fixup
LO := RQ // low product word
HI := RQ + F // high product word

Figure 6: Beehive instruction sequence to compute A ∗B
as unsigned integers, with 64-bit result.

first product word can be read from the read queue without
stalling. These five cycles can be exploited to compute
the required adjustment to the high order product word to
convert the multiplier’s signed multiply into an unsigned
multiply.

Let PH be the high order word of the product of A and
B considered as unsigned integers. Since the multiplier
interprets the arguments A and B as signed integers, it
sign-extends A and B into high-order words AH and BH
respectively, and for its high order result word it computes

PH + AH ∗B + BH ∗A mod 232

The Beehive can compute AH in one instruction using
an arithmetic shift right of A by 31 bits. Because AH is
either 0 or 232 − 1, it turns out that

−AH ∗B = AH&B mod 232

Hence computing −AH ∗ B takes one more instruction.
A similar two instruction sequence suffices to compute
−BH ∗ A. The fifth instruction adds the two values to
produce the required fixup. The fixup can be applied to
the high order product word as it is read from the read
queue. Figure 6 shows the entire code sequence.

3 ISA handicaps
The Beehive ISA is missing a lot of things one normally
finds in a computer architecture. Most glaringly, the Bee-
hive has no support for interrupts. This is a result of a

strong desire to keep the Beehive design small and sim-
ple, so that it can be understood and modified easily and
so that many cores can be implemented on a single FPGA.

Arranging to handle interrupts would add a lot of com-
plexity to the design, especially considering the queued
memory access. With many cores available, dedicating
one core to handle real-time events is an acceptable over-
head.

Skipping over the lack of floating point and other ad-
vanced functions, such as integer divide, the Beehive ISA
also has numerous deficiencies in regards to small things
that would be useful in application code sequences. We
call these deficiencies handicaps.

For example, the Beehive ISA has no datapath access to
the condition codes. To get a data value from a condition
code, a Beehive program must perform a conditional jump
to select between instructions that assume one value or the
other.

For another example, the Beehive ISA has no provi-
sion to subtract from a constant other than zero. (Zero
can be specified using ra = 0.) This is in contrast to the
ARM [14], which has a reverse subtract instruction for ex-
actly this purpose. To subtract from a constant other than
zero, a Beehive program must first load the constant into
a register.

Those handicaps are fairly minor. Table 5 lists some
significant handicaps in the Beehive ISA and the best ac-
comodation for working around them. We discuss these
significant handicaps in the following subsections.

3.1 No signed integer comparison

In common with all modern architectures, the Beehive
ISA uses two’s complement arithmetic, in which a neg-
ative integer n in the range [−231, . . . ,−1] is represented
as the 32-bit unsigned value 232 + n. Addition is per-
formed on these unsigned values modulo 232 and the 32-
bit result is a correct representation of the sum modulo
232.

As illustrated in Figure 7, subtracting A − B is per-
formed by complementing B, which computes 232 − 1−
B, and then adding that with A + 1. The additional 1 is
a “carry in” that is easily handled by the logic circuitry
that performs addition. In common with most architec-
tures, the Beehive ISA actually computes a 33-bit result

6

Handicap Accomodation

No signed integer comparison Value space rotation (3 instructions extra)

No multiword add/sub support Code sequence for 64-bit (4 instructions)
Subword arithmetic in the general case (8 instructions per word)

Aligned word memory access only Code sequence (11 instructions for byte store in the worst case)

No programmable shift count Code table (5 instructions)

Table 5: Significant Beehive ISA handicaps and their accomodation.

Figure 7: Two’s complement subtraction on the Beehive.

232 +A−B. The low order 32 bits are the true difference
modulo 232 and the high order bit is called the “carry”.3

Now, suppose you have two 32-bit integers A and B
you want to compare. Equality testing is easy: subtract

3Some architectures invert the sense of the carry bit in subtraction,
which is equivalent, as long as you know what is happening. We describe
the way the Beehive does it.

and see if the result is zero. The Beehive ISA has a con-
ditional jump on ALU result zero that does exactly what
you want.

Order testing is more difficult. All you really need is
a way to test for A < B. The other order tests can be
reduced to A < B by swapping the arguments, inverting
the sense of the test, or both.

Seeing that the Beehive ISA has a conditional jump on
ALU result minus (msb = 1), you might think that you
could test for A < B by computing A − B and seeing if
the result is minus. This seems reasonable, and in fact the
Xerox PARC BCPL compiler [1] used exactly this method
to compute A < B. However, (and the Xerox PARC im-
plementers knew this) it is not correct. The problem is
overflow. If the true result of A − B is outside the range
of representable values, you will get the wrong answer.
Another way to look at it is to fix a choice for B and con-
sider what you get by computing A − B for all possible
values of A. Clearly half of the computed values will be
minus (msb = 1) but it cannot be possible that A < B is
true half of the time no matter what the choice was for B.

Examining Figure 7, notice that the 33-bit result of
computing A−B on the Beehive is 232 +A−B. Hence,
if A and B are considered as unsigned integers, the result
of the comparison A < B can be determined on the Bee-
hive by computing A−B and testing that the carry is not
set. Figure 8 shows the code sequence. This is is a correct
method for comparing unsigned integers.

Comparing signed integers is more difficult. The prob-
lem is that negative signed integers (msb = 1) look like big
unsigned integers. In fact, the carry, minus, and zero con-
dition codes you get from computing A − B are not suf-
ficient to determine correctly the result of the comparison

7

A - B
if not carry goto L

Figure 8: Beehive instruction sequence to compute A <
B as unsigned integers.

T := 1 LSL 31
C := A XOR T
D := B XOR T
C - D
if not carry goto L

Figure 9: Beehive instruction sequence to compute A <
B as signed integers using value space rotation.

A < B when A and B are considered as signed integers.
The best approach on the Beehive is to map the signed

integers A and B to corresponding unsigned integers C
and D whose unsigned comparison C < D gives the cor-
rect result for the signed comparison A < B. The map-
ping that works is to add 231 to both A and B. In terms of
the bit representations, what this does is flip the msb. We
call this approach value space rotation.4

Implementing value space rotation on the Beehive costs
three instructions in addition to the subtract and condi-
tional jump instructions needed to evaluate the unsigned
comparison. Figure 9 shows an example code sequence.
A, B, T, C, and D are all assumed to be registers. If there
are several signed integer comparisons nearby, an intel-
ligent compiler could save an instruction by reusing the
constant in T.

3.2 No multiword add/sub support
Although 32-bit integers are common in modern ma-
chines, in some cases 32 bits is just not enough. Applica-
tions dealing with time often need to express more than 32
bits of precision. Some compilers lay out data structures
using bit indexes, and this creates problems even on a ma-
chine with a 32-bit address space when the data structure
happens to be extremely large. And given the capacity of
disks, a data file can easily be larger than 232 bytes. So

4The author thanks Jean-Philippe Martin for a revealing discussion
about the benefit of value space rotation.

Figure 10: How to perform multiword addition.

it is important to consider how to support arithmetic on
quantities larger than a single 32-bit word.

On a simple architecture such as the Beehive, it is not
surprising to find floating point operations and even inte-
ger division performed by library routines. But one would
hope that addition and subtraction would be fairly effi-
cient. As discussed in Section 3.1, subtraction is easy if
you have addition, so we will focus on performing multi-
word addition.

Multiword addition requires forwarding any carry from
the addition of a lower order word into the addition of the
next higher order word. Figure 10 illustrates this process.
Many machines have an “add-with-carry” instruction that
does precisely this operation.

Lacking an “add-with-carry” instruction, computing
An + Bn + Cn−1 requires two additions, either of which
may result in a carry, depending on the input values.
Knuth solved this problem in MIX using a “sticky” over-

8

// inputs: A B carry
if carry goto L1 // carry in...
SUM := A + B // only add
goto E // done...

L1: P := A + B // first add
if carry goto L2 // had carry...
SUM := P + 1 // second add
goto E // done...

L2: SUM := P + 1 // second add
0 - 0 // set carry

E:
// outputs: SUM carry

Figure 11: Add-with-carry using conditional jumps.

flow indicator [9]. But the Beehive ISA does not have a
sticky overflow indicator.

There are two approaches to solving this problem on
the Beehive: using conditional jumps or using subword
arithmetic.

In the conditional jump approach, each add operation
is followed by a conditional jump whose purpose is to
extract the result of the carry for that add. Then the pro-
gram proceeds in different ways depending on whether
there was a carry or not. Some optimizations are possi-
ble, because if there is no incoming carry, only one add is
necessary, and if the first add has a carry, then the second
one cannot. The Beehive code sequence to implement an
add-with-carry operation is shown in Figure 11. If several
of these code sequences appear in succession, as would be
the case in performing multiword addition, there are addi-
tional opportunities for optimizing the conditional jumps
between code sequences.

In the subword arithmetic approach, the Beehive hard-
ware carry bit is ignored and the algorithmic carry is
maintained as a value in a register. This approach is also
suitable for coding in a higher-level language where con-
cepts such as hardware carry bits are not available. The
basic idea is that if the sum of A and B is compared bit-
for-bit against the xor of A and B, wherever the bits are
different there must have been a carry into that bit posi-
tion. This observation can be exploited to compute the
carry out by summing the msb of A, the msb of B, and
the carry into the msb. The Beehive’s post-ALU shifter is
exceptionally useful in this regard. The resulting Beehive

// inputs: A B C
P := A + B
SUM := P + C // sum
X := A ˆ B // xor
CH := (SUM ˆ X) LSR 31 // msb cin
AH := A LSR 31 // msb A
BH := B LSR 31 // msb B
PH := AH + BH
C := (PH + CH) LSR 1 // carry out

// outputs: SUM C

Figure 12: Add-with-carry using subword arithmetic.

// inputs: A0 B0 A1 B1
SUM1 := A1 + B1 // high first
SUM0 := A0 + B0 // low second
if not carry goto E // done...
SUM1 := SUM1 + 1 // fixup high

E:
// outputs: SUM0 SUM1

Figure 13: Beehive 64-bit addition.

code sequence looks like the example shown in Figure 12.
If several of these code sequences appear in succession, as
would be the case in performing multiword addition, there
are minor opportunities for optimizing the first and last
sequences because of the constant carry input and dead
carry output.

Computing “add-with-carry” is necessary for the gen-
eral case of multiword addition, but if all we want is 64-bit
addition, the Beehive has a reasonably efficient code se-
quence. The trick is to add the high order word first. Then,
if there is a carry when adding the low order word, the
high order result word can be adjusted. Figure 13 shows
the resulting code sequence. A similar four-instruction
sequence works for 64-bit subtraction.

3.3 Aligned word memory access only
Most modern instruction set architectures are byte-
addressed, meaning that data addresses issued by the pro-
gram increment by 1 for each successive “byte” in mem-
ory. Of course, this leaves open the question of what is
a “byte”. For example, GCC assumes a byte-addressed

9

machine, but with some effort you can alter its idea of a
byte from 8 bits to 16 bits. However, typically a byte is
identified with an octet, which is defined as an 8-bit quan-
tity. Many low-level C programs, for example, assume
that bytes (and characters) are 8-bit quantities. The inter-
mediate language MSIL, although largely machine inde-
pendent, assumes an octet-addressed machine.

In this paper, we identify a byte with an octet. Since
byte-addressing is often assumed, we have to figure out
how to implement it on the Beehive.

It turns out that the Beehive data cache manager deals
exclusively in 32-bit words. The Beehive CPU can re-
quest that a word be fetched or stored by sending an ad-
dress as a read or write request to the address queue.

To make it appear as though the Beehive has byte-
addressing, the bits in the address are relabeled as they go
through the address queue. The low order two bits (which
the Beehive CPU could imagine discriminated between
bytes 0, 1, 2, and 3 of a 32-bit data word) are rotated to
the most significant position in the address and then the
address is treated as a word address in memory.5

Therefore, if a Beehive program only fetches and stores
words from addresses that are aligned on word bound-
aries, it can pretend that the Beehive memory system is
byte addressed. Since many existing architectures forbid
or strongly discourage accessing unaligned words, this is
not a novel restriction. Compilers are used to aligning
data structures on word boundaries.

Of course, we still have to implement some way for a
Beehive program to read and write bytes and halfwords.
This is the problem of subword memory access. The ac-
comodation is to use a code sequence. Reading can be
accomplished by fetching the relevant word and rotating
and masking as necessary to extract the subword. Writing
can be accomplished by a fetch-modify-store sequence.
These code sequences are unfortunately fairly expensive.
Figure 14 illustrates the code sequence needed to store a
byte. Execution of 11 instructions is needed in the worst
case. Some improvement in code size is possible by rele-
gating most of the code sequence to a library routine.

5This relabeling does not occur on instruction addresses. Instruction
addresses are word addresses. Since relative jump instructions compute
the target address by adding or subtracting a constant from the current
program counter, this permits them to have the maximum possible range.
As a consequence, although data addresses and instruction addresses
refer to the same memory, they have different representations.

// inputs: A D
AQR := A & ˜3 // start fetch
AQW := A & ˜3 // start store
T := (A & 3) LSL 3 // byte index * 8
T := T + 1 // adjust
goto PC + T // indexed jump

B0: ... // case for byte 0

B1: M := 255 // case for byte 1
D := (D & M) LSL 8 // [1] mask data
M := M LSL 8 // [2] position
TMP := RQ & ˜M // [3] fetch word
WQ := TMP | D // [4] store word
goto E // [5] done
nop // [6] pad
nop // [7] pad

B2: ... // case for byte 2

B3: ... // case for byte 3

E:

Figure 14: Beehive byte store.

// inputs: D C
C := C & 31 // mask count
if zero goto E // done...

L: D := D LSL 1 // shift one bit
C := C - 1 // decrement
if not zero goto L // repeat..

E:
// outputs: D

Figure 15: Shift via iterative loop.

3.4 No programmable shift count

Although a Beehive instruction can shift the output of the
ALU by any constant amount, there is no provision for a
programmable shift count. Hence, we need to make up
this decifiency with a code sequence.

The simplest approach is to use an iterative loop, as
shown in Figure 15. An average execution of 50 instruc-
tions is required. This approach is simple, but slow, and it
fails to exploit the Beehive’s barrel shifter.

10

// inputs: D C
T := (C & 31) LSL 1 // count * 2
LINK := CODETABLE // library rtn
call LINK + T // indexed call
// outputs: D

// in library
CODETABLE: // must be 16 word aligned

D := D LSL 0 // [0] case for shift 0
goto LINK // [1] return
...
D := D LSL n // [0] case for shift n
goto LINK // [1] return
...
D := D LSL 31 // [0] case for shift 31
goto LINK // [1] return

Figure 16: Shift via code table.

A much better approach is to perform an indexed jump
on the shift count to an instruction that executes a shift
of the desired amount. On the Beehive, this can be im-
plemented efficiently as an indexed call to an out-of-line
code table of short subroutines. Figure 16 illustrates the
resulting Beehive code. As opposed to 50 instructions
for the iterative loop solution, the codetable approach re-
quires executing just 5 instructions.

4 Steps to code generation
Before generating code for the Beehive, many decisions
have to be made concerning memory layout, register us-
age, and calling conventions. Collectively, these deci-
sions are called the application binary interface (ABI).
The ABI describes how programs will execute on the Bee-
hive. Table 6 summarizes the decisions that we made for
the Beehive.

Once the ABI has been designed, a suitable compiler
can be found and retargeted to emit Beehive code. Fig-
ure 17 illustrates the typical structure of a modern, target-
independent compiler. The parser converts source code to
an internal form, many stages of analysis and transforma-
tion are applied, target instruction patterns are matched
and preliminary code generated assuming an unlimited

Memory layout
Stack direction grows down, (sp) occupied
Stack alignment word
Big/little endian little endian
Multiword integer little word first

Register usage
Stack pointer reg 28
Reserved regs regs 24..27, 29, 30, 31

Calling sequence
Caller saved regs regs 11..23
Parameters regs 3..10, as fit, then on stack
If varargs all parameters on stack
Parameter order lower reg or stack addr first
Where is sp on entry at lowest addr stack parameter
Where is return addr in the LINK register
Return value regs 1..2, if fits, else via sret ptr
Sret ptr, if needed reg 1

Table 6: Beehive application binary interface (ABI).

number of virtual target registers, instructions are sched-
uled to optimized pipeline delays, registers are allocated
to map virtual registers to physical registers, and finally
the resulting target code is emitted. Characteristics of the
target inform all of the activities, especially instruction
recognition. This is just a general outline; specific com-
pilers differ considerably in detail.

The target-specific components are generally com-
posed of a declarative part and an imperative part. The
declarative part contains memory layout definitions, reg-
ister definitions, instruction definitions, and pipeline def-
initions. It is generally written in a compiler-specific de-
scriptive language that the compiler build process incor-
porates into tables and other data structures used by the
compiler. The imperative part is written in the compiler’s
implementation language and generally deals with func-
tion prolog and epilog sequences, the calling convention,
memory address patterns, custom matching, and custom
transformations. Often snippets of imperative code are
present in the declarative part.

When creating target-specific components for the Bee-
hive ISA, we discovered a serious interaction between the
Beehive and the compiler’s register allocator. Recall that

11

Figure 17: Modern compiler structure.

the register allocator’s job is to map the unlimited virtual
registers onto the target’s physical registers. During this
process, the register allocator may need to spill registers
to stack locations, reload registers from stack locations,
and copy one register to another. The register allocator
assumes it can insert instructions to do this between any
two instructions without otherwise altering the CPU state.

Unfortunately, this is not possible on the Beehive. All
data movement instructions on the Beehive affect the con-
dition codes. So inserting data movement between an
instruction that sets the condition codes and the condi-
tional jump that depends on them produces the wrong re-
sult. And trying to insert a register spill or restore into
the middle of a queued memory access sequence will be
disasterous.

The solution is to redefine the ISA as seen by the com-
piler to hide details of condition codes and memory ac-
cess. Basically, we make the compiler deal largely in
macro instructions which we later expand into individual
Beehive instructions.

For memory access, we pretend that the Beehive has
three-operand ALU instructions that take a register or
memory location as the destination operand, a register or
memory location as the first source operand, and a regis-
ter or immediate value as the second source operand. A
memory operand expands to a prefix instruction that sends
the address to AQR or AQW, as appropriate, and the final
instruction uses RQ or WQ as the corresponding regis-

ter. This makes the Beehive look like a very conventional
CISC architecture.

For the condition codes, we pretend that the Beehive
has a combined subtract-and-conditional-jump instruction
that takes two operands and a jump target. All of the in-
teger comparisons can be reduced to this macro. Signed
integer order comparisons of course need value space ro-
tation first.

Once we have implemented macros, it becomes con-
venient to exploit the feature to extend the Beehive in-
struction set in other ways. We also added macros to im-
plement subword memory accesses, programmed shifts,
double-word (64-bit) add and subtract, jump tables (the
result of compiling a switch statement), and add-with-
carry using a reserved register to hold the carry.

5 Case study
We retargeted two modern compilers to generate code for
the Beehive: GCC 4.3.3 and LLVM 2.7. Both compilers
have publically available source code, incorporate modern
optimization technology, and are desiged for retargeting.

5.1 Overview
GCC [3] has been developed through more than 20 years
of improvements, rewrites, and redesigns. The target
part is fairly modular and many working examples exist.
The documentation, especially about writing a target port,
is extensive and even includes a monograph [13] and a
book [15], although these materials refer to old versions
of the compiler. GCC grew up in the days of CISC ma-
chines and has very flexible instruction operand patterns.
GCC is written in C with many macros.

LLVM [11, 10] was designed as a platform for compiler
optimization. The entire compiler is modular and passes
can be added as desired. There are some working target
examples. The documentation is unfortunately somewhat
sparse, dealing mainly at the level of how to get started
and omitting all discussion of why things are the way they
are. LLVM is aimed at RISC machines and is somewhat
clumsy dealing with a CISC architecture, requiring a sep-
arate instruction pattern for each combination of operand
forms. LLVM is written in C++ with many interfaces,
templates, and extensive use of std:: classes.

12

5.2 Build process

Although they were developed on linux machines, both
GCC and LLVM can be built on Windows, under
MinGW [12]. Windows of course uses a different line
termination convention than linux. After much sweat,
we discovered that the GCC target module has one file
(target.opt) that must not contain carriage returns,
or else an awk script used in the GCC build process blows
up. Otherwise the line termination sequence was immate-
rial.

GCC 4.3.3 requires the GMP and MPFR libraries in
order to build. Eventually we found acceptable copies of
these libraries. [4, 5].

LLVM 2.7 uses a customized GCC front end for the
parser. We used a pre-built copy of the customized GCC
front end and did not try to build it. We did not try to use
Clang parser which the LLVM project is currently devel-
oping.

Both GCC and LLVM use a configuration script to tai-
lor the build process to your environment. Among other
things, this script compiles lots of little test programs to
see what works in your environment. Fortunately, you
only have to run this once, each time you change your
configuration options.

In GCC, many target options are specified in a target
header file that gets included everywhere. Any change
to this file, or any addition or subtraction of instruction
patterns, results in a complete recompile and global build.
Also, making a mistake in one of the macro definitions
can cause a compilation error to come out of seemingly
anywhere, and it takes a while to track the problem back
to the macro definition.

In LLVM, the target is implemented by creating a set of
subclasses and registering them with the main compiler.
Any change to the target requires only recompiling the
target module and relinking the compiler.

It should be noted that the GCC build process also
builds the runtime library libgcc needed by code gener-
ated for the target. This library is assumed by the LLVM
compiler.

Table 7 lists the elapsed times it took to configure and
build debugging versions of GCC and LLVM on our ma-
chine. The debugging versions contain more code and
symbols than release versions and hence take longer to
compile and link, but when experimenting with the com-

GCC 4.3.3 LLVM 2.7
config 33m 5m

global build 70m 72m
target build - 3m

Elapsed times on a 2.8 GHz Intel R© Pentium R© 4 with 2
GB memory.

Table 7: Comparison of build times.

pilers we wanted all the debugging help we could get. The
most time-consumimg phase of the GCC build process is
the global rebuild time, which is triggered, for example,
whenever making any change to the target header file.

5.3 Writing the target module

The recommended procedure for creating a new target
module in both GCC and LLVM is to start with an ex-
isting target and edit. GCC has many options in the target
header file that customize GCC to a specific target. In
LLVM, on the other hand, target-specific code is respon-
sible for much low-level customization.

For example, GCC examines instruction patters to de-
termine how to spill, restore, and copy registers. GCC can
automatically resolve stack slot references into address
arithmetic. GCC can construct call and return sequences
based on target options and target-specific code that as-
signs locations for parameters. And GCC can recognize
many common addressing modes. All of these tasks must
be accomplished by target-specific code in LLVM.

Both GCC and LLVM assume a basic repertoire of
single-word integer operations and have a set of backup
plans to deal with missing operations and unsupported
data types. The compilers can substitute some operations
for others or call a library routine. For example, bitwise
double-word integer operations can be assembled as par-
allel single-word operations.

For the Beehive, we defined instruction patterns for
single-word integer operations corresponding to the Bee-
hive ALU functions. Both GCC and LLCM were happy
to call library routines for integer multiply and divide.

Since the Beehive has a reasonably efficient code se-
quence for double-word integer addition and subtraction,
we also defined instruction patterns for those operations.

13

Actually, for GCC all we needed was an instruction pat-
tern. For LLVM, we needed a target lowering customiza-
tion that was easy to implement, but there was absolutely
no documentation telling how to do so.

It turned out that LLVM has a backup plan for double-
precision integer addition that uses two single-precision
add-with-carry operations. This would be fine if the Bee-
hive had an add-with-carry instruction, but of course it
does not. So we had to implement an add-with-carry
macro for the Beehive for LLVM. Since we cannot expose
the hardware carry bit without the possibility of the regis-
ter allocator getting in the middle and inserting a register
copy, we used the subword method and employed one of
the reserved registers to hold the algorithmic carry.

Even after we implemented custom lowering of double-
precision integer addition we found a case in which
LLVM would still employ its backup plan involving add-
with-carry. This case is a double-precision shift left by
1 bit position. LLVM transforms this into a double-
precision integer add with self, which arguably would be
better assuming the machine had double-precision oper-
ations. Unfortunately, this transformation happens after
LLVM has finished considering custom lowerings.

Since subword access on the Beehive requires elabo-
rate code sequences, we initially configured the address
modes in the GCC target definition so that the only ac-
ceptable mode for bytes and halfwords was for the address
to be in a register. This would make it easier to write the
code sequences, since they would not have to consider
offset, indexed, pre-increment, and pre-decrement modes.
Unfortunately, we discovered that GCC assumes that the
address modes for byte accesses are at least as general
as for any other mode. In some cases, to test for the le-
gality of an address transformation, GCC pretends that a
transformed memory address formula is in byte mode and
then asks the target module if the formula is acceptable.
If byte addresses do not accept complicated modes, the
original transformation will be rejected, resulting in poor
code quality. So for GCC, we had to make our subword
memory access code sequences deal with all of the Bee-
hive address modes. This was not a problem with LLVM,
because the instruction patterns for loading and storing
each data type are completely independent.

Since we wanted to exploit the barrel shifter on the
Beehive, we originally just defined instruction patterns for
shifting by constant amounts and figured that the compil-

ers would use their backup plans (i.e., calling a library
routine) to deal with programmed shift amounts. This
eventually revealed a bug in GCC. When compiling a
switch statement, GCC has a large repertoire of methods
at its disposal. One method is as follows. If the set of
case labels is compact and several labels refer to the same
branch, you can represent the labels as a bit mask and in-
terrogate by shifting according to the switch value. GCC
checks to see that the target has a shift instruction, and if
so proceeds to elaborate this method. Well, the Beehive
has a shift, but only for constant amounts. When GCC
called its instruction recognizer to materialize the neces-
sary shift instruction, nothing suitable could be found, and
back came a null pointer. There was no check for this and
the eventual result was a compiler memory smash.6 So we
had also to define an instruction pattern for programmed
shifts. We made this pattern emit a macro.

Since the Beehive can support pre-increment and pre-
decrement addressing modes, we originally included this
in the GCC target definition. Eventually, we came across
an example where GCC was pushing the address of a local
variable onto the stack as an argument to a function call,
and as a result of frame pointer elimination the macro in-
struction it emitted was:

*--sp := sp + offset

This instruction contains both a pre-decrement reference
to the stack pointer (to accomplish the push) and a naked
reference to the stack pointer (to compute the address of
the local variable).7 In the internal representation used by
GCC, the semantics of this instruction should be that the
pre-decrement applies after the value of the stack pointer
is used in the addition. This is what the frame pointer
elimination is expecting.

However, and the GCC documentation is very explicit
on this point, it is not permitted to use a pre-decrement
reference and a naked reference to the same register in a
single instruction. The reason is that targets implement
this differently, and the easiest thing was just to rule it
out, rather than try to get all targets to follow the GCC
semantics. In fact, after the Beehive macro expansion,
the pre-decrement will apply before the value of the stack
pointer is used in the addition.

6Richard Black provided this compiler test case.
7Richard Black provided this compiler test case as well.

14

To fix this, we removed pre-increment and pre-
decrement addressing modes from the GCC target defi-
nition. This mainly affects the construction of call frames
and GCC has alternate strategies using offset addressing.
The result was that execution times increased by about
one percent, which indicates that pre-increment and pre-
decrement addressing modes are not really all that useful
anyway. Since we had had this experience with GCC,
when we came to LLVM we never defined these address-
ing modes in the first place.

5.4 Getting it to work
Both GCC and LLVM feature a frequent use of asserts
to verify that the internals of the compiler are working as
expected, and these asserts multiply when you compile a
debug version. GCC has some command line flags that
control extra printout, for example, of the instruction pat-
terns matched. LLVM has a structure in which debugging
output can be turned on invidually via the command line
for each module. Or you can turn on debugging output
globally and be awash in information. LLVM also fea-
tures graphical output of its main data structure at several
stages of code generation, which is useful in seeing what
is happening.

Both GCC and LLVM expect that you will debug them
using GDB or a similar debugger. GCC includes routines
to print instances of its important data structures. LLVM
includes instance methods for printing its important data
structures.

We first implemented and debugged the GCC-based
compiler, which took about 4 months. Then we imple-
mented and debugged the LLVM-based compiler, which
took about 1 month. The experience of retargeting the
GCC compiler certainly helped with the LLVM effort.
However, we also omitted a few features from the LLVM
target.

We did not implement memory operands as part of
ALU instructions in LLVM, due to how tedious it is to
deal with flexible operand formats in LLVM. Instead,
LLVM treats the Beehive in this respect as a RISC ma-
chine, moving data between memory and registers in
instructions separate from the instructions that compute
with data. We also did not implement custom lowering
for jump tables. All of these are implemented in the GCC
version of the compiler.

lines of code
GCC 4.3.3 LLVM 2.7

Beehive Beehive

declarative files 2143 2115
header files 1315 1233
source files 7865 7932

total 11323 11280

Table 8: Size of target modules.

Perm A tightly recursive permutation program.
Towers The canonical Towers of Hanoi problem.
Queens The 8-queens chess problem solved 50 times.
Intmm Two 2-D integer matrices multiplied together.
Puzzle A compute bound program.
Quick An array sorted using quicksort.
Bubble An array sorted using bubblesort.

Table 9: Selected programs in the Stanford Small Bench-
mark Suite.

Table 8 shows the number of lines of target-specific
code for each compiler. Declarative files include machine
instruction patterns and other definitions. They are written
in a compiler-specific language that is preprocessed into
code and tables that are compiled into the target module.

5.5 Emitted code quality
To evaluate the relative code quality between the GCC-
based Beehive compiler and the LLVM-based Beehive
compiler, we compiled and ran seven programs from the
Stanford Small Benchmark Suite [7]. This suite is writ-
ten in C and was assembled as a way of evaluating the
early RISC machines. It is not really suited for modern
advanced architectures and programming practices, but it
can serve as a quick and easy yardstick for a simple ar-
chitecture such as Beehive. Since the Beehive lacks float-
ing point support, we omitted programs that use floating
point. Table 9 lists a brief description of the seven pro-
grams we selected.

We compiled each program using the default com-
piler settings for optimization level 2 (-O2). At this set-
ting, both compilers will omit frame pointers and perform

15

code size (bytes) LLVM 2.7
GCC 4.3.3 LLVM 2.7 normalized

Program Beehive Beehive (GCC=1)

Perm 504 692 1.37
Towers 1140 1420 1.25
Queens 956 1112 1.16
Intmm 452 728 1.61
Puzzle 2412 2532 1.05
Quick 924 1324 1.43

Bubble 536 648 1.21

Table 10: Emitted code size.

some automatic inlining of called procedures.
Table 10 shows the code size in bytes generated for

each test program by each compiler. Library routines are
not included. Clearly, the test programs are all quite small
and easily fit in the Beehive CPU’s 4KB instruction cache.
On average, the code produced by the LLVM compiler
is about 20% larger than the code produced by the GCC
compiler. This is largely explained by the fact that the
LLVM compiler never combines memory accesses with
ALU operations, whereas the GCC compiler does this fre-
quently.

We ran the programs under an instruction-level simu-
lator that gives accurate cycle counts for instruction ex-
ecution. The simulator also makes a rough guess at the
time required for flush and fill operations between the
caches and main memory. (These operations use the to-
ken ring and take about 40 cycles in the ML509 Beehive
system design, assuming no contention.) We ran each
program three times, getting nearly identical cycle counts
each time. The results are listed in Table 11.

We then ran the programs on an ML509 implementa-
tion of Beehive. We ran each program three times and
took the average cycle count. The results are listed in Ta-
ble 12. The actual execution times are reasonably close to
the simulated execution times, showing that the simulator
is fairly accurate, at least for single core programs.

Figure 18 shows a graph comparing the actual execu-
tion times for each program normalized to 1 for the GCC-
based compiler.

It can be seen that, with a couple of notable exceptions,
the code produced by the LLVM-based compiler performs

cycle count LLVM 2.7
GCC 4.3.3 LLVM 2.7 normalized

Program Beehive Beehive (GCC=1)

Perm 3596920 4047024 1.13
Towers 3398692 3324415 0.98
Queens 2028381 2043573 1.01
Intmm 4415054 5141907 1.16
Puzzle 18307420 17355448 0.95
Quick 3965216 2520901 0.64

Bubble 3382892 2870698 0.85

Table 11: Simulated execution time. Average of three
consecutive runs.

cycle count LLVM 2.7
GCC 4.3.3 LLVM 2.7 normalized

Program Beehive Beehive (GCC=1)

Perm 3640509 4047207 1.11
Towers 3464232 3325360 0.96
Queens 2036062 2153759 1.06
Intmm 4578507 5334151 1.17
Puzzle 18217788 18021134 0.99
Quick 3986108 2421114 0.61

Bubble 3633443 2872363 0.79

Table 12: Actual execution time. Average of three con-
secutive runs.

more or less the same as the code produced by the GCC-
based compiler. This result was unexpected, since the
LLVM-based compiler does not take any advantage of the
CISC nature of the Beehive instruction set which enables
combining a memory fetch and store with an ALU oper-
ation. The GCC-based compiler, on the other hand, ex-
ploits these operations frequently.

Next we examine the outliers to see why one compiler
or the other performed better.

5.5.1 Inspection of Intmm

The worst case for LLVM was Intmm. Intmm is a pro-
gram that multiplies two 40-by-40 integer matrices. Fig-
ure 19 shows the code of the inner loop. For clarity, dec-
larations are included and constant identifiers have been

16

Figure 18: Comparison of actual execution time.

int ∗result;
int a[41][41], b[41][41], row, column;

∗result = 0;
for(int i = 1; i <= 40; i++)
∗result = ∗result + a[row][i] ∗ b[i][column];

Figure 19: Inner loop of Intmm.

replaced with their constant values.

Computing the address of an element in a two-
dimensional matrix requires multiplying the row and col-
umn indexes by the row and column strides. In a loop
like this, which takes successive elements from the same
row or same column, the multiplications can be strength-
reduced to incremental additions.

It turns out that the LLVM-based compiler failed to
strength-reduce the subscript calculation for matrix b, thus
causing the LLVM-based code to perform two multiplica-
tions in the inner loop, rather than just one. Since integer
multiplication on the Beehive is relatively expensive, the
additional multiplication accounts for the difference in ex-
ecution time. The GCC-based compiler strength-reduced
all the subscript calculations.

for (int i = 1; i <= 5000; i++) {
seed = (seed ∗ 1309 + 13849) & 65535;
sortlist[i] = seed − (seed/100000)∗100000 − 50000;
}

Figure 20: Inner loop of Quick init phase.

5.5.2 Inspection of Quick and Bubble

GCC considerably underperformed LLVM on Quick and
Bubble. Quick is a program that initializes a 5000-
element vector with random integers and then sorts it
recursively using a version of the quicksort algorithm.
It turned out that the GCC-generated code performed
only about 1% slower than the LLVM-generated code in
the sorting phase. Almost the entire difference in per-
formance was due to the initialization phase, at which
the GCC-generated code was five times slower than the
LLVM-generated code.

Figure 20 shows the code of the initialization phase in-
ner loop. For clarity, constant identifiers have been re-
placed with their constant values. The original source
code uses a hand-coded linear congruence random num-
ber generator function, but both GCC and LLVM inline
this function so, for clarity, it has been inlined in the fig-
ure as well.

The interesting part of the code is the expression

seed − (seed/100000)∗100000

The original source code would appear to be a little con-
fused about what it is doing. Observe that seed must be a
positive integer in the range [0 . . . 216 − 1], as established
by the previous statement. So we can conclude that the
result of seed/100000 will always be zero and thus most of
this expression is pointless.

The GCC-based compiler transforms the expression
into computing the remainder, seed % 100000, which is
clever. Unfortunately, the Beehive does not have any
hardware support for computing remainder and so a slow
library call is needed.

The LLVM-based compiler transforms the division into
a reciprocal multiplication, using the Beehive’s hard-
ware multiplier with a magic constant, which is very
clever [6]. Then a second multiplication scales the quo-
tient by 100000 and the result is subtracted from seed.

17

LLVM wins because the Beehive’s hardware multiplier
is about ten times faster than the software division loop
called by GCC to calculate the remainder. But it seems
like an accidental win.

Bubble has the same initialization phase and the same
analysis explains the performance difference in that pro-
gram as well.

6 Conclusions
This paper has described the Beehive ISA, how to gener-
ate code for it, and the results of retargeting two modern
compilers, GCC and LLVM. Although the Beehive has a
primitive instruction set, the instructions it does have can
be effectively exploited by modern compilers through the
use of instruction macros to hide some of the very rough
edges.

The number of target-specific lines written for GCC
and for LLVM were approximately the same. It was
perhaps easier to retarget LLVM than GCC, in spite of
more examples and more documentation being available
for GCC. However, we omitted trying to express ALU
memory operands in the LLVM effort. Surprisingly, this
omission does not seem to have impacted performance of
the emitted code.

Future machine architecture designs would benefit
from considering how to support signed integer compari-
son and add-with-carry. In a machine that uses condition
codes, it would also help to have support for address cal-
culation and data movement that did not affect the condi-
tion codes.

A very slight extension to the Beehive ISA would be
sufficient to support signed integer comparison and add-
with-carry. Add-with-carry requires adding this specific
instruction. For signed integer comparison, there are two
approaches: (1) adding a fourth condition code to note
signed overflow along with a pair of conditional jumps
or (2) adding a value-space-rotation version of subtract.
The first approach is typical of many architectures such
as the ARM [14]. The second approach is more unusual
but might be easy enough if an add-with-carry instruction
is being added at the same time.

Using macros to conceal the details of condition codes
and memory accesses was necessary enable the target-
independent register allocators of GCC and LLVM to

work with the Beehive ISA. However, using these macros
has the disadvantage of producing redundant tests and
poorly-scheduled address calculations. A peephole op-
timizer ought to be able to improve these code sequences.

In future work, the GCC-based compiler and the
LLVM-based compiler could be compared on larger pro-
grams, such as those in the SPEC CPU benchmarks [16,
17]. The LLVM compiler could be improved to express
ALU memory operands. And the effects of various peep-
hole optimizations could be investigated.

Acknowledgements

Chuck Thacker designed and implemented the Beehive
system and answered many questions on the exact def-
inition of the Beehive instruction set architecture. An-
drew Birrell and Richard Black employed the GCC com-
piler for real programs and thereby discovered test cases
of many compiler bugs. John Davis provided a copy of
the Stanford Small Benchmark suite and suggested sev-
eral improvements in this paper. Finally, thanks to the
many designers and implementers of GCC and LLVM
who labored for years to produce these retargetable com-
piler systems.

References

[1] J. E. Curry et al. BCPL reference manual. Computer
Sciences Laboratory, Xerox Palo Alto Research
Center, Sept. 1979. A copy can be found at http:
//www.fh-jena.de/˜kleine/history/
languages/xerox-parc-bcpldoc.pdf.

[2] J. D. Davis, C. P. Thacker, , and C. Chang. BEE3:
Revitalizing computer architecture research. Techni-
cal Report MSR-TR-2009-45, Microsoft Research,
Apr. 2009.

[3] Free Software Foundation. GCC, the GNU compiler
collection. http://gcc.gnu.org/.

[4] Free Software Foundation. The GNU MP bignum
library version 4.3.1. ftp://ftp.gnu.org/
gnu/gmp/gmp-4.3.1.tar.gz.

18

[5] Free Software Foundation. The GNU MPFR ver-
sion 2.4.1. http://www.mpfr.org/mpfr-2.
4.1/.

[6] T. Granlund and P. L. Montgomery. Division by
invariant integers using multiplication. SIGPLAN
Not., 29(6):61–72, 1994.

[7] J. Hennessy and P. Nye. Stanford small bench-
mark suite, 1989. Unpublished. The author ob-
tained a copy from John D. Davis. A copy can
be found in the archives of the Stanford Hydra
project at http://www-hydra.stanford.
edu/fast/FAST_SW_Archive.zip.

[8] G. Kane. MIPS RISC Architecture. Prentice Hall,
1989.

[9] D. E. Knuth. The Art of Computer Programming:
Seminumerical Algorithms, volume 2. Addison-
Wesley, 1969.

[10] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis & transfor-
mation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar. 2004.

[11] llvm.org. The LLVM compiler infrastructure. Uni-
versity of Illinois at Urbana-Champaign. http:
//llvm.org/.

[12] mingw.org. MinGW: Minimalist GNU for Win-
dows. http://www.mingw.org/.

[13] H.-P. Nilsson. Porting GCC for dunces, 2000.
ftp://ftp.axis.se/pub/users/hp/
pgccfd/pgccfd.pdf.

[14] D. Seal. ARM Architecture Reference Manual.
Addison-Wesley, 2001.

[15] R. Stallman. Using and Porting the GNU Compiler
Collection (GCC). Free Software Foundation, Aug.
2000.

[16] Standard Performance Evaluation Corporation.
SPEC CPU2000. http://www.spec.org/
cpu2000/.

[17] Standard Performance Evaluation Corporation.
SPEC CPU2006. http://www.spec.org/
cpu2006/.

[18] C. Thacker. Beehive: A many-core computer for
FPGAs, Jan. 2010. Unpublished.

[19] W. A. Wulf. The WM computer architectures princi-
ples of operation. Technical Report TR-90-02, Com-
puter Science Department, University of Virginia,
Jan. 1990.

[20] Xilinx, Inc. XUPV5-LX110T development
system. http://www.xilinx.com/univ/
xupv5-lx110t.htm.

19

