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Abstract

We analyze and improve low rank representation (LRR), the state-of-the-art algo-
rithm for subspace segmentation of data. We prove that for the noiseless case, the op-
timization model of LRR has a unique solution, which is the shape interaction matrix
(SIM) of the data matrix. So in essence LRR is equivalent to factorization methods. We
also prove that the minimum value of the optimization model of LRR is equal to the
rank of the data matrix. For the noisy case, we show that LRR can be approximated as
a factorization method that combines noise removal by column sparse robust PCA. We
further propose an improved version of LRR, called Robust Shape Interaction (RSI),
which uses the corrected data as the dictionary instead of the noisy data. RSI is more
robust than LRR when the corruption in data is heavy. Experiments on both synthetic
and real data testify to the improved robustness of RSI.

1 Introduction

In many computer vision and machine learning problems, one often assumes that the data
is drawn from a union of multiple linear subspaces. Thus subspace segmentation of such
data has been studied extensively. The existing methods for subspace segmentation can be
roughly divided into four groups: statistical learning based methods ([1, 2]), factorization
based methods ([3, 4, 5]), algebra based methods [6], and sparsity based methods (e.g., SSC
[7] and LRR [8]).
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LRR [8] is a recently proposed method and is reported to have excellent performance on
both synthetic and benchmark data sets. For the noiseless case, LRR takes the data itself as
a dictionary and seeks the representation matrix with the lowest rank. LRR can also handle
noisy data by adding a (2,1)-norm term to the objective function in order to make the noise
column sparse. The experimental results show that it is both robust and accurate.

However, the motivation to utilize low rank criterion in LRR remains vague. In [8], the
authors only proved that for noiseless case, the convex optimization model of LRR admits a
block diagonal solution, which is the representation they seek. As the nuclear norm! is not
strongly convex, it is unclear whether such a solution is unique and what it actually is. If the
uniqueness is not guaranteed, we may be at risk of finding a non-block-diagonal solution. In
this case the clustering information will not be revealed. In the case of noisy data, the authors
simply added a (2,1)-norm term to the objective function without providing sufficient insight

to why such treatment can work well.

Our Contributions

In this paper, we present detailed analysis of LRR. We find that although LRR was catego-
rized by the authors of [8] as a sparsity based method, it is actually closely related to the

factorization methods. Our main contributions are:

1. We prove that in the noiseless case, LRR has a unique solution, which is exactly the
shape interaction matrix of the data matrix. Consequently, the minimum objective

function value is the rank of the data matrix.

2. For the noisy case, we show that LRR can be roughly regarded as first applying a
column sparse robust PCA [9] to remove noise, and then performing segmentation on

the corrected data.

3. We propose a modified model, called Robust Shape Interaction (RSI) due to its depen-

dence on the shape interaction matrix, as an improvement of LRR. Our experiments

'The nuclear norm of a matrix is the sum of the singular values of the matrix. It is the convex envelope of
the rank function on the unit matrix 2-norm ball and is often used as an approximation of rank.
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show that RSI is more robust and has better performance than LRR.

The remainder of this paper is organized as follows. Section 2 reviews the related state-of-
the-art methods. Section 3 studies the relationship between LRR and factorization methods.
Then Section 4 introduces RSI as an improvement of LRR. The simulation results on syn-

thetic and real data are shown in Section 5. Finally, Section 6 concludes the paper.

2 Review of LRR and Factorization Methods
2.1 Basic Subspace Segmentation Problem

Let X = [z1, 2, ..., z,] be a collection of m dimensional data vectors drawn from a union of
linear subspaces {S;}*_,, where the dimension of S; is r;. The task of subspace segmentation
(or clustering) is to cluster the vectors in X according to those subspaces.

For notational simplicity, we may assume X = [Xi, Xy, ..., X}, where X; consists of
the vectors in §;. For LRR and factorization methods, it is assumed that the subspaces are
independent?.

Denote d; as the number of vectors in X;. Then there must be at least one block diagonal

matrix Z = diag{Z, Zs, ..., Zy,} satisfying
X=XZ, (D

where the size of the ¢-th block Z; is d; x d;. Equation (1) actually has an infinite amount
of solutions. Any solution is called a representation matrix. Note that the block diagonal
structure of 7 directly induces segmentation of the data (each block corresponds to a cluster).

So the clustering task is equivalent to finding a block diagonal representation matrix Z.

2If Va € span{S1, Sa, ..., Sk}, the decomposition o = Zle «;, where a; € S;, is unique, then we say
that the subspaces S1, Ss, ..., Sk are independent.



2.2 Subspace Segmentation by Low-rank Representation

As the solution to (1) is not unique, LRR [8] seeks the lowest rank representation matrix.

When the data is noiseless, LRR solves the following optimization problem:
win | Z||., st X =XZ, )

where || - ||, denotes the nuclear norm. It was proved in [8] that the solution set of (2) includes
at least a block diagonal representation matrix Z° that can be used for clustering.

When the data is noisy, the optimization model of LRR is formulated as:
win | Z]l. + A|Ellay. st X = XZ 4B, 3)

where || Elloq = >0, />0, (E7) is the (2,1)-norm. Minimizing the (2,1)-norm of noise
is to meet the assumption that the corruptions are “sample specific” [8], i.e., some data
vectors are corrupted and the others are clean. Since in this case, the solution Z* to (3) may
not be block diagonal, it is recognized as an affinity matrix instead and spectral clustering
methods are applied to | Z*| 4 |(Z*)'| to obtain a block diagonal matrix, where ' denotes the

matrix or vector transpose and |A| denotes a matrix whose entries are the absolute values of

A.

2.3 Factorization Methods and Shape Interaction Matrix

Factorization based methods build a similarity matrix by factorizing the data matrix and then
applying spectral clustering to the similarity matrix for clustering. This similarity matrix,
which is called the shape interaction matrix (SIM) [3] in computer vision, is defined as
SIM(X) =V, V!, where X = U,.S, V! is the skinny singular value decomposition (SVD) of

X and r is the rank of X. When the data is noiseless, we have [3]:

Theorem 2.1 (Costeira and Kanade) Under the assumption that the subspaces are indepen-
dent and the data X is clean, SIM (X) is a block diagonal matrix that has exactly k blocks.

Moreover, the i-th block on its diagonal is of size d; X d;.



We can further have:
Theorem 2.2 The rank of the i-th diagonal block of SIM (X) is ;.

Proof: We partition V, as V! = [V}, V,, ..., V], ], where the number of columns in V; is
d;. Then V,;V/!; is the i-th diagonal block of SIM(X) and X; = U,S,V/,. We can also
have V; = S5.'U/ X;. So rank(V}/;) = rank(X;) = r;. The theorem is proved by using the
relationship rank(V; ;V;) = rank(V};).

O

Theorem 2.1 is the theoretical foundation of why SIM can serve as the similarity matrix
for subspace segmentation. When the data contains noise, the SIM of the data matrix can
still be computed. Although in this case the SIM may not be block diagonal, it can be made

block diagonal, e.g., by applying spectral clustering methods.

3 Relationship between LRR and Factorization Methods

Though LRR was proposed as a sparsity based method, we show in this section that it is

equivalent to the factorization methods. This is revealed by the following theorem:

Theorem 3.1 The shape interaction matrix SIM (X)) is the unique solution to the optimiza-

tion problem (2) and the minimum objective function value is rank(X).

Proof: Let [U,, S,,V,] and [U,, S, V,] be the full SVD of X and Z, respectively. Denote
M =V]V,and N = V]U,. They are both orthogonal matrices. Then X = X 7 is equivalent
to

SeM = S,NS.. 4)

M,

Suppose X is of rank r and M and N are partitioned as M = ( Y

)andN:

N, ) . .

( N " ), respectively, where M, means that it consists of r rows of M, etc. Then (4)
n—r

reduces to

M, = N,.S.. (5)
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Now consider (2). Since

(6)

NS, M = ( NS, M; N.S.M,_, )

Ny S.M! Ny_,S. M’ _,

by Lemma 3.1 in [8], we have
HN,«SZM;H* < ||NSZM/H* - | Nn—rSzM/v,—r“*‘

As |N.S,M!||. = ||M,M!|. = r, where (5) is applied, and | NS, M'||. = [|S.|l« = || Z]|+

the above inequality reduces to
r < Zll« = INp—r S My, [l < N2 (7)

Noticing ||SIM(X)|. = rand X = X - SIM(X), we conclude that the optimal Z must
satisfy || Z||« = r, i.e., the minimum objective function value is rank(X), and STM(X) is
one of the optimal solutions.

Next, we prove that STM (X) is the unique solution to (2). Suppose that 7, is a solution
to (2). First, by (5) N,.S,, M, _, = M, M, _, = 0. Note that here and in the sequel, N, and
M, depend on z,. Second, since || Z||. = r, from (7) we have N,,_,.S, ;M _,. = 0. Thus
(6) reduces to

(8)

NSAT_(_M@ﬂﬂ o>
z0 - 9

Ny S, M 0
which implies the rank of Z; must be r, i.e., S,, has only r nonzero entries on its diagonal.
We then further partition M, and N, as M, = [M,. ., M, ,_,| and N, = [N,.,., N, ,,_,], respec-
tively, where M, ,. consists of r columns of M,, etc., and write S,, = diag{z1, 29, ..., 2,0, ..., 0},
where z; > 23 > ... > 2, > 0. Then by comparing both sides of (5) we have M, ,,_, = 0.
So M, , is an orthogonal matrix and M, = N, diag{z1, 22, ..., 2 }. We further denote M[ .

and N as the last columns of M, and N,.,, respectively. Then M, = zTN;; , and thus we

have
M7 |2 1
2y = = > 1, )
INZ Al Nl
where || - [|2 denotes the 2-norm of a vector. The last inequality holds because N7, is part

of a column of the orthogonal matrix /NV. Since z, is the smallest nonzero singular value
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of Zy and || Zy||« = r, (9) implies that all the nonzero singular values of Z, must be 1. So
we conclude that M, , = N,,, S,, = diag{/,,0,,_,} and hence both M and N are block

diagonal. Finally,

Zo = Ve S Uly = (VaN) S (Ve M) = Vo (N Sz, M)V

20~ 20

=V, diag{I;,0,_,}V} = V;V/ = SIM(X).

OJ

As the uniqueness of the solution to LRR is guaranteed, we can always use LRR to cluster
clean data. Moreover, that the solution is SIM (X) can help us to understand the noisy LRR
model (3).

Understanding the Noisy LRR Model

Now consider the noisy case. It was not completely clear why solving (3) is effective in
removing the column sparse noise. Note that LRR uses the noisy data X itself as the dictio-
nary instead of the clean data D, which is not quite reasonable when the noise is heavy or
the percentage of outliers is relatively large. If we use the clean data as the dictionary, the

noisy LRR model (3) would change to:
%%||Z|!*+A||E|I2,1, st. D=DZ, X =D+ E. (10)
By Theorem 3.1 it is straightforward to see that (10) is equivalent to
11131%1 rank(D) + A||El|21, st. X =D+ E, (11)

and Z = SIM (D). Model (11) is very similar to the robust PCA model [9]. It would
decompose the data into two parts: one is of low rank and the other is column sparse. So
we call problem (11) column sparse robust PCA (CSRPCA). Denote S = 692“:182-. Then
the noise in the data can be decomposed into parts: £ = F, + E+, where each column of
E, belongs to space S and each column of E is orthogonal to S. As rank minimization
methods are to remove noise outside the span of the clean data, CSRPCA is effective in

removing E but is unable to remove E,. However in many real problems, the dimension
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of § (i.e., the rank r of clean data) is much smaller than the dimension of data. So with high
probability, || E|| is much smaller than || EZ ||, where || - || » denotes the Frobenius norm.
Consequently, CSRPCA is able to remove most of the noise.

So we can see that the LRR model for noisy data is an approximation of (10). Solving
(10) is equivalent to first applying CSRPCA to remove the noise that is orthogonal to the
space spanned by the clean data, then computing the SIM to build the affinity matrix. Since
the noise level is greatly reduced, spectral clustering methods on such an affinity matrix can
be very effective to segment the data into subspaces. This explains why LRR can have good

performance on noisy data.

4 RSI: an Improved Version of LRR

That X itself can be used as the dictionary is based on the assumption that the percentage
of outliers is small and the noise level is low. When this is not true, a more reasonable
formulation is (10), or equivalently (11). Following the convention, we may replace the
rank function in (11) with the nuclear norm, giving rise to the following convex optimization
problem:

min | Dl + A Ellz1, st. X =D+E. (12)

Similar to robust PCA [9], the above problem can be solved by the inexact augmented La-

grange Multiplier algorithm [10], which is based on the following Lagrangian function:

L(D,E,Y) = |ID|ls + Al Ell21 + (Y, X = D — E)
+5[1X = D — El%,

where Y is the Lagrange multiplier, 1 is a positive penalty parameter, and (A, B) = tr(A’'B)
is the inner product of matrices.

When the “clean” data D is obtained, its representation matrix can be obtained as Z =
SIM (D). As D still contains noise Es, Z may not be a block diagonal matrix. Like LRR
and SSC [7], spectral clustering is also applied to |Z| to reveal the subspace clustering in-
formation. Note that as STM (D) is symmetric, we do not have to use |Z| + |Z’'| as the

affinity matrix. We call this method Robust Shape Interaction (RSI). The pseudo-code for
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Algorithm 1 Robust Shape Interaction
Input: data matrix X, parameter A > 0.
Initialize : Ey, Yy, pio > 0, fimax > o, p > 1, € > 0.
while | X — Dy — Ei||oo > €do
1. Update D by solving Dy, = argngn L(D, Ey,Y)) = arg m[i)n | Dl + & X — D —

By, — . Yil3:

(U,S, V) =svd(X — E}, — u;'Ys), Dy =U6 +[S]VT.

T

2. Update E by solving Fyy; = arg min L(Dyi1, E)Yy) = arg min ME 21 + & X —

Di1 — E — Vi3

Suppose the i-th column of X — Dy, — u,;lYk is g;, then the ¢-th column of Ej.; is
qi

Ot (laill2) 7=

lgill2”
3. Update Y by Yk+1 = Yk + ,uk(X — Dk+1 — Ek+1).

4. Update ju by: p1p1 = min(ppig, fmax)-

S. k<« k+1.

end while.

Compute Z = SIM(D).

Perform spectral clustering on | Z|.

Output : The subspace clusters indicated by the blocks of processed |Z|.

RSI is presented in Algorithm 1, where O, (z) = max(|x| — ¢,0) sgn(x) is the thresholding
operator. Readers are encouraged to refer to [10] and [8] for the deduction of the formulae
in Algorithm 1.

Although SRI does not make a big change to LRR, as CSRPCA removes most of the
noise and SRI uses relatively clean data as the dictionary, RSI is more robust than LRR,

particularly when the data is heavily corrupted.

S Experimental Results
Clustering Synthetic Data

We first compare the robustness of LRR and RSI on synthetic data. We construct 5 indepen-
dent subspaces, each having a dimension of 4, and sample 20 data vectors with dimension
100 from each subspace. For each data point p, small Gaussian noise of variance 0.1 * ||p||-

is added. Moreover, we randomly choose a certain percentage of points as outliers. For



each outlier point p,, ;- We add large Gaussian noise of variance ||poussier||2 to it. Then we
test LRR and RSI on this corrupted data. The parameters are chosen as \,zrr = 0.12 and
Arsr = 0.6, respectively, which are both the optimal for achieving the highest segmentation
accuracy. For each percentage of outliers, we repeat the experiment 20 times and record the
average accuracy and standard deviation. As shown in Figure 1, RSI has better performance
than LRR when the percentage of outliers increases and its performance is very stable. In
this experiment, the maximum standard deviation of RSI is 0.0403 and the average standard

deviation is 0.0306. Thus RSI is more robust than LRR on this synthetic data.
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Figure 1: Segmentation accuracy of LRR and RSI. The parameters are set as A\pgr = 0.12
and \ggs; = 0.6, respectively.

Clustering Real Data

We then test the Hopkins155 motion database [11] in this experiment. The database contains
156 video sequences and each of them is a clustering task. For each sequence, there are
39 ~ 550 data vectors belonging to two or three motions, each motion corresponding to a
subspace. We first repeat the same experiment, including the preprocessing, as done in LRR
([8], Section 4.2) and then compare it with RSI. The results are shown in Table 1. Note that
after preprocessing, the data only contains slight corruptions. So both RSI and LRR perform
well. Evaluated by the average performance, RSI outperforms LRR on this slightly corrupted
dataset.

We finally test with the Extended Yale Database B [12], which consists of 640 frontal
face images of 10 subjects (there are 38 subjects in the whole database and we use the first

10 subjects for our experiment). Each subject contains about 64 images. The corruptions

10



METHOD | MEAN | MEDIAN | STD
LRR 43673 | 04717 7.4540
RSI 28501 |0 7.5858

Table 1: Segmentation error rate (%) on the Hopkinl55 database. The parameters are se-

lected as A\ grr = 2.4 and Agg; = 0.24, respectively.

&
‘.m
e, e

Figure 2: Two examples of using LRR and RSI to correct corruptions in face images in
the Extended Yale Database B. The parameters are set as Apgg = 0.05 and Agg; = 0.6,
respectively. The first row shows two original faces in the database. The second and third
rows show the denoising result by LRR and RSI, respectively. For each face, the corrected
images are displayed on the left, and the noise images are displayed on the right.

in this database is heavy as more than half of the face images contain shadows or specular
lights. As did in LRR, we resize the images into 48 x 42 pixels and use the raw pixel values
to form data vectors of dimension 2016. The parameters are chosen as A\ zrr = 0.05 and
Arsr = 0.6 for LRR and RSI, respectively, which are both optimal for achieving the lowest
segmentation error, based on our reimplemented code. The clustering accuracies of LRR
and RSI are 55.31% and 58.13%, respectively. So RSI also performs better than LRR on this
heavily corrupted dataset.

Both LRR and RSI can be used to remove noise. Figure 2 shows two examples. From the

figure, it is clear that RSI is able to remove noise as well as LRR.
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Conclusions

We have analyzed LRR and revealed its close relationship with the factorization methods.

In particular, we prove that when the data is clean, the LRR problem has a unique solution,

which is exactly the shape interaction matrix of the data matrix, and the minimum objective

function value is the rank of the data matrix. We further propose the Robust Shape Interaction

method, which first removes the noise by column sparse robust PCA, and then computes the

SIM of the corrected data for subspace segmentation. RSI is verified by experiments to be

more robust than LRR.

References

[1]

Y. Ma, H. Derksen, W. Hong, and J. Wright, “Segmentation of multivariate mixed data
via lossy data coding and compression,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, pp. 1546-1562, 2007.

A. Yang, S. Rao, and Y. Ma, “Robust statistical estimation and segmentation of multiple
subspaces,” in Computer Vision and Pattern Recognition Workshop on 25 Years on

RANSAC, 2006, pp. 99-107.

J. Costeira and T. Kanade, “A multibody factorization method for independently mov-
ing objects,” International Journal of Computer Vision, vol. 29, no. 3, pp. 159-179,

1998.

A. Gruber and Y. Weiss, “Multibody factorization with uncertainty and missing data
using the EM algorithm,” in IEEE Conference on Computer Vision and Pattern Recog-

nition, vol. 1, 2004, pp. 707-714.

R. Vidal, R. Tron, and R. Hartley, “Multiframe motion segmentation with missing
data using powerfactorization and GPCA,” International Journal of Computer Vision,

vol. 79, no. 1, pp. 85-105, 2008.

12



[6]

[9]

[10]

[11]

[12]

Y. Ma, A. Yang, H. Derksen, and R. Fossum, “Estimation of subspace arrangements
with applications in modeling and segmenting mixed data,” SIAM Review, vol. 50,

no. 3, pp. 413458, 2008.

E. Elhamifar and R. Vidal, “Sparse subspace clustering,” in IEEE Conference on Com-
puter Vision and Pattern Recognition, vol. 2, 2009, pp. 2790-2797.

G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by low-rank representation,”

in International Conference of Machine Learning, 2010.

J. Wright, A. Ganesh, S. Rao, and Y. Ma, “Robust principal component analysis: Exact
recovery of corrupted low-rank matrices via convex optimization,” submitted to Journal

of the ACM, 2009.

Z. Lin, M. Chen, L. Wu, and Y. Ma, “The augmented Lagrange multiplier method for
exact recovery of corrupted low-rank matrix,” submitted to Mathematical Program-

ming, 2009.

R. Tron and R. Vidal, “A benchmark for the comparison of 3-D motion segmentation

algorithms,” in IEEE Conference on Computer Vision and Pattern Recognition, 2007,

pp. 1-8.

K. Lee, J. Ho, and D. Kriegman, “Acquiring linear subspaces for face recognition under
variable lighting,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

pp. 684-698, 2005.

13



