
A Large Scale Ranker-Based System

for Search Query Spelling Correction

Jianfeng Gao

Microsoft Research

Redmond, WA, USA
jfgao@microsoft.com

Xiaolong Li

Microsoft Corporation

Redmond, WA, USA
xiaolong.li@microsoft.com

Daniel Micol

Microsoft Corporation

Munich, Germany
danielmi@microsoft.com

Chris Quirk

Microsoft Research

Redmond, WA, USA
chrisq@microsoft.com

Xu Sun

Dept. of Mathematical Informatics

University of Tokyo, Tokyo, Japan
xusun@mist.i.u-tokyo.ac.jp

Abstract

This paper makes three significant extensions to a

noisy channel speller designed for standard writ-

ten text to target the challenging domain of search

queries. First, the noisy channel model is sub-

sumed by a more general ranker, which allows a

variety of features to be easily incorporated. Se-

cond, a distributed infrastructure is proposed for

training and applying Web scale n-gram language

models. Third, a new phrase-based error model is

presented. This model places a probability dis-

tribution over transformations between mul-

ti-word phrases, and is estimated using large

amounts of query-correction pairs derived from

search logs. Experiments show that each of these

extensions leads to significant improvements over

the state-of-the-art baseline methods.

1 Introduction

Search queries present a particular challenge for

traditional spelling correction methods. New

search queries emerge constantly. As a result,

many queries contain valid search terms, such as

proper nouns and names, which are not well

established in the language. Therefore, recent

research has focused on the use of Web corpora

and search logs, rather than human-compiled

lexicons, to infer knowledge about spellings and

word usages in search queries (e.g., Whitelaw et

al., 2009; Cucerzan and Brill, 2004).

The spelling correction problem is typically

formulated under the framework of the noisy

channel model. Given an input query
 , we want to find the best spelling correc-

tion among all candidate corrections:

 (1)

Applying Bayes' Rule, we have

 (2)

where the error model models the trans-

formation probability from C to Q, and the lan-

guage model (LM) models the likelihood

that C is a correctly spelled query.

This paper extends a noisy channel speller de-

signed for regular text to search queries in three

ways: using a ranker (Section 3), using Web scale

LMs (Section 4), and using phrase-based error

models (Section 5).

First of all, we propose a ranker-based speller

that covers the noisy channel model as a special

case. Given an input query, the system first gen-

erates a short list of candidate corrections using

the noisy channel model. Then a feature vector is

computed for each query and candidate correction

pair. Finally, a ranker maps the feature vector to a

real-valued score, indicating the likelihood that

this candidate is a desirable correction. We will

demonstrate that ranking provides a flexible

modeling framework for incorporating a wide

variety of features that would be difficult to model

under the noisy channel framework.

Second, we explore the use of Web scale LMs

for query spelling correction. While traditional

LM research mainly focuses on how to make the

model “smarter” (e.g., how to better estimate the

probability of an unseen word (Chen and Good-

man, 1999); and how to model the grammatical

structure of language (e.g., Charniak, 2001)),

recent studies show that significant improvements

can be achieved using “stupid” n-gram models

trained on very large corpora (e.g., Brants et al.,

2007). We adopt the latter strategy in this study.

We present a distributed infrastructure to effi-

ciently train and apply Web scale n-gram LMs. In

addition, we observe that search queries are

composed in a language style different from that

of regular text. We thus train different LMs using

different text streams associated with Web cor-

pora and search logs.

Third, we propose a phrase-based error model

that captures the probability of transforming one

multi-term phrase into another multi-term phrase.

Compared to traditional error models that account

for transformation probabilities between single

characters or substrings (e.g., Kernighan et al.,

1990; Brill and Moore, 2000), the phrase-based

error model is more effective in that it captures

inter-term dependencies crucial for correcting

real-word errors, prevalent in search queries. We

also present a novel method of extracting large

amounts of query-correction pairs from search

logs. These pairs, implicitly judged by millions of

users, are used for training the error models.

Experiments show that each of the extensions

leads to significant improvements over its base-

line methods that were state-of-the-art until this

work, and that the combined method yields a

system which outperforms the noisy channel

speller by a large margin: a 6.3% increase in

accuracy on a human-labeled query set.

2 Related Work

Prior research on spelling correction for regular

text can be roughly grouped into two categories:

correcting non-word errors and real-word errors.

The former focuses on the development of error

models based on different edit distance functions

(e.g., Kucich, 1992; Kernighan et al., 1990; Brill

and Moore, 2000; Toutanova and Moore, 2002).

Brill and Moore’s substring-based error model,

considered to be state-of-the-art among these

models, acts as the baseline against which we

compare our models. On the other hand, real-

word spelling correction tries to detect incorrect

usages of a valid word based on its context, such

as "peace" and "piece" in the context "a _ of cake".

N-gram LMs and naïve Bayes classifiers are

commonly used models (e.g., Golding and Roth,

1996; Mangu and Brill, 1997; Church et al.,

2007).

While almost all of the spellers mentioned

above are based on a pre-defined dictionary

(generally either a lexicon against which the edit

distance is computed, or a set of real-word con-

fusion pairs), recent research on query spelling

correction focuses on exploiting noisy Web cor-

pora and query logs to infer knowledge about

misspellings and word usage in search queries

(e.g., Cucerzan and Brill 2004; Ahmad and Kon-

drak, 2005; Li et al., 2006; Whitelaw et al., 2009).

Like those spellers designed for regular text, most

of these query spelling systems are also based on

the noisy channel framework.

3 A Ranker-Based Speller

The noisy channel model of Equation (2) does not

have the flexibility to incorporate a wide variety

of features useful for spelling correction, such as

whether the candidate correction appears as a title

in a Wikipedia document. We thus generalize the

speller to a ranker-based system. Let f be a feature

vector extracted from a query and candidate cor-

rection pair (Q, C). The ranker maps f to a real

value y that indicates the likelihood that C is a

desired correction. For example, a linear ranker

maps f to y with a learned weight vector w such as

 , where w is optimized for accuracy on

human-labeled pairs. Since the logarithms

of the LM and error model probabilities can be

included as features, the ranker covers the noisy

channel model as a special case.

For the sake of efficiency and flexibility, our

speller system operates in two distinct stages:

candidate generation and re-ranking.

In candidate generation, an input query is first

tokenized into a sequence of terms. For each term

q, we consult a lexicon to identify a list of spelling

suggestions c whose edit distance from q is lower

than some threshold. Our lexicon contains around

430,000 high frequency query unigram and bi-

grams collected from 1 year of query logs. These

generated suggestions are stored in a lattice.

We then use a decoder to identify the 20-best

candidates from the lattice according to Equation

(2), where the LM is a backoff bigram model

trained on 1 year of query logs, and the error

model is approximated by the weighted Le-

venshtein edit distance function as

 (3)

The decoder uses a standard two-pass algorithm.

The first pass uses the Viterbi algorithm to find

the best C according to the model of Equations (2)

and (3). The second pass uses the A-star algo-

rithm to find the 20-best corrections, using the

Viterbi scores computed at each state in the first

pass as heuristics.

The core component in the second stage is a

ranker, which re-ranks the 20-best candidate

corrections using a set of features extracted from

 . If the top C after re-ranking is different

from Q, C is proposed as the correction. We use

96 features in this study. In addition to the two

features derived from the noisy channel model,

the rest of the features can be grouped into the

following 5 categories.

1. Surface-form similarity features, which

check whether C and Q differ in certain patterns,

e.g., whether C is transformed from Q by adding

an apostrophe, or by adding a stop word at the

beginning or end of Q.

2. Phonetic-form similarity features, which

check whether the edit distance between the

metaphones (Philips, 1990) of a query term and

its correction candidate is below some thresholds.

3. Entity features, which check whether the

original query is likely to be a proper noun based

on an in-house named entity recognizer.

4. Dictionary features, which check whether

a query term or a candidate correction are in one

or more human-compiled dictionaries, such as the

extracted Wiki, MSDN, and ODP dictionaries.

5. Frequency features, which check whether

the frequency of a query term or a candidate

correction is above certain thresholds in different

datasets, such as query logs and Web documents.

4 Web Scale Language Models

An n-gram LM assigns a probability to a word

string
 according to

 ∏ (|

)

 ∏ (|
)

(4)

where the approximation is based on a Markov

assumption that each word depends only upon the

immediately preceding n-1 words. In a speller, the

log of n-gram LM probabilities of an original

query and its candidate corrections are used as

features in the ranker.

While recent research reports the benefits of

large LMs trained on Web corpora on a variety of

applications (e.g., Zhang et al., 2006; Brants et al.,

2007), it is also clear that search queries are

composed in a language style different from that

of the body or title of a Web document. Thus, in

this study we developed a set of large LMs from

different text streams of Web documents and

query logs. Below, we first describe the n-gram

LM collection used in this study, and then present

a distributed n-gram LM platform based on which

these LMs are built and served for the speller.

4.1 Web N-gram LM Collection

Table 1 summarizes the data sets and Web scale

n-gram LMs used in this study. The collection is

built from high quality English Web documents

containing trillions of tokens, served by a popular

commercial search engine. The collection con-

sists of several data sets built from different Web

sources, including the different text fields from

the Web documents (i.e., body, title, and anchor

texts) and search query logs. The raw texts ex-

tracted from these different sources were pre-

processed in the following manner: texts are

tokenized based on white-space and upper case

letters are converted to lower case. Numbers are

retained, and no stemming/inflection is per-

formed. The n-gram LMs are word-based backoff

models, where the n-gram probabilities are esti-

mated using Maximum Likelihood Estimation

with smoothing. Specifically, for a trigram model,

the smoothed probability is computed as

 (5)

{

 ()

where is the raw count of the n-gram in the

training corpus and is a normalization factor.

 is a discount function for smoothing. We

use modified absolute discounting as the discount

function (Gao et al., 2001), whose parameters can

be efficiently estimated and performance con-

verges to that of more elaborate state-of-the-art

techniques like Kneser-Ney smoothing in large

scale data (Nguyen et al., 2007).

4.2 Distributed N-gram LM Platform

The platform is developed on a distributed com-

puting system designed for storing and analyzing

massive data sets, running on large clusters con-

sisting of hundreds of commodity servers con-

nected via high-bandwidth network.

We use the SCOPE (Structured Computations

Optimized for Parallel Execution) programming

model (Chaiken et al., 2008) to train the Web

scale n-gram LMs shown in Table 1. The SCOPE

scripting language resembles SQL which many

programmers are familiar with. It also supports

C# expressions so that users can easily plug-in

customized C# classes. SCOPE supports writing a

program using a series of simple data transfor-

mations so that users can simply write a script to

process data in a serial manner without wonder-

ing how to achieve parallelism while the SCOPE

Dataset Body Anchor Title Query

Total tokens 1.3T 11.0B 257.2B 28.1B

Unigrams 1.2B 60.3M 150M 251.5M

Bigrams 11.7B 464.1M 1.1B 1.3B

Trigrams 60.0B 1.4B 3.1B 3.1B

4-grams 148.5B 2.3B 5.1B 4.6B

Size on disk# 12.8TB 183GB 395GB 393GB
N-gram entries as well as other model parameters are stored.

Table 1: Statistics of the Web n-gram LMs collection (count

cutoff = 0 for all models). These models will be accessible at

Microsoft (2010)

compiler and optimizer are responsible for trans-

lating the script into an efficient, parallel execu-

tion plan. We illustrate the usage of SCOPE for

building LMs using the following example of

counting 5-grams from the body text of English

Web pages. The flowchart is shown in Figure 1.

The program is written in SCOPE as a step-by-

step of computation, where a command takes the

output of the previous command as its input.

ParsedDoc=SELECT docId, TokenizedDoc

FROM @”/shares/…/EN_Body.txt”

USING DefaultTextExtractor;

NGram=PROCESS ParsedDoc

PRODUCE NGram, NGcount

USING NGramCountProcessor(-stream

TokenizedDoc -order 5 –bufferSize

20000000);

NGramCount=REDUCE NGram

ON NGram

PRODUCE NGram, NGcount

USING NGramCountReducer;

OUTPUT TO @”Body-5-gram-count.txt”;

The first SCOPE command is a SELECT

statement that extracts parsed Wed body text. The

second command uses a build-in Processor

(NGramCountProcessor) to map the parsed

documents into separate n-grams together with

their counts. It generates a local hash at each node

(i.e., a core in a multi-core server) to store the

(n-gram, count) pairs. The third command

(REDUCE) aggregates counts from different

nodes according to the key (n-gram string). The

final command (OUTPUT) writes out the result-

ing to a data file.

The smoothing method can be implemented

similarly by implementing the customized

smoothing Processor/Reducer. They can be im-

ported from the existing C# codes (e.g., devel-

oped for building LMs in a single machine) with

minor changes.

It is straightforward to apply the built LMs for

the ranker in the speller. The n-gram LM platform

provides a DLL for n-gram batch lookup. In the

server, an n-gram LM is stored in the form of

multiple lists of key-value pairs, where the key is

the hash of an n-gram string and the value is either

the n-gram probability or the backoff parameter.

In our test data, the average query length is 2.7

words. We consider 20 candidate corrections in

ranking, so the average number of n-grams re-

quested per query is 54. Assume that computing a

5-gram probability requests 9 key lookups (5

n-gram probabilities and 4 backoff parameters), it

requests around 500 key lookups per query. Our

results show that the platform can serve about 800

key lookups per millisecond. So the process of

calculating a 5-gram LM feature for a query takes

less than 1 millisecond.

5 Phrase-Based Error Models

The goal of an error model is to transform a cor-

rectly spelled query C into a misspelled query Q.

Rather than replacing single words in isolation,

the phrase-based error model replaces sequences

of words with sequences of words, thus incorpo-

rating contextual information. The training pro-

cedure closely follows Sun et al. (2010). For

instance, we might learn that “theme part” can be

replaced by “theme park” with relatively high

probability, even though “part” is not a mis-

spelled word. We use this generative story: first

the correctly spelled query C is broken into K

non-empty word sequences c1, …, ck, then each is

replaced with a new non-empty word sequence

q1, …, qk, finally these phrases are permuted and

concatenated to form the misspelled Q. Here, c

and q denote consecutive sequences of words.

To formalize this generative process, let S

denote the segmentation of C into K phrases c1…cK,

and let T denote the K replacement phrases

q1…qK – we refer to these (ci, qi) pairs as

bi-phrases. Finally, let M denote a permutation of

K elements representing the final reordering step.

Figure 2 demonstrates the generative procedure.

Next let us place a probability distribution over

rewrite pairs. Let B(C, Q) denote the set of S, T, M

triples that transform C into Q. If we assume a

uniform probability over segmentations, then the

phrase-based probability can be defined as:

Recursive

Reducer

Node 1 Node 2 Node N…...

…...

Output

Web Pages

Parsing

Counting

Local

Hash

Tokenize

Web Pages

Parsing

Counting

Local

Hash

Tokenize

Web Pages

Parsing

Counting

Local

Hash

Tokenize

Figure 1. Distributed 5-gram counting.

C: “disney theme park” correct query

S: [“disney”, “theme park”] segmentation

T: [“disnee”, “theme part”] translation

M: (1 2, 2 1) permutation

Q: “theme part disnee” misspelled query

Figure 2: Example demonstrating the generative procedure

behind the phrase-based error model.

 ∑

(6)

As is common practice in SMT, we use the

maximum approximation to the sum:

 (7)

5.1 Forced Alignments

Although we have defined a generative model for

transforming queries, our goal is not to propose

new queries, but rather to provide scores over

existing Q and C pairs that will act as features for

the ranker. Furthermore, the word-level align-

ments between Q and C can most often be iden-

tified with little ambiguity. Thus we restrict our

attention to those phrase transformations con-

sistent with a good word-level alignment.

Let J be the length of Q, L be the length of C,

and A = a1, …, aJ be a hidden variable repre-

senting the word alignment between them. Each ai

takes on a value ranging from 1 to L indicating its

corresponding word position in C, or 0 if the ith

word in Q is unaligned. The cost of assigning k to

ai is equal to the Levenshtein edit distance (Le-

venshtein, 1966) between the i
th
 word in Q and the

k
th
 word in C, and the cost of assigning 0 to ai is

equal to the length of the i
th
 word in Q. We can

determine the least cost alignment A* between Q

and C efficiently using the A-star algorithm.

When scoring a given candidate pair, we fur-

ther restrict our attention to those S, T, M triples

that are consistent with the word alignment,

which we denote as B(C, Q, A
*
). Here, con-

sistency requires that if two words are aligned in

A
*
, then they must appear in the same bi-phrase

(ci, qi). Once the word alignment is fixed, the final

permutation is uniquely determined, so we can

safely discard that factor. Thus we have:

 (8)

For the sole remaining factor P(T|C, S), we

make the assumption that a segmented query T =

q1… qK is generated from left to right by trans-

forming each phrase c1…cK independently:

 ∏

 , (9)

where is a phrase transformation

probability, the estimation of which will be de-

scribed in Section 5.2.

To find the maximum probability assignment

efficiently, we use a dynamic programming ap-

proach, similar to the monotone decoding algo-

rithm described in Och (2002).

5.2 Training the Error Model

Given a set of (Q, C) pairs as training data, we

follow a method commonly used in SMT (Koehn

et al., 2003; Och and Ney, 2004) to extract bi-

phrases and estimate their replacement probabili-

ties. A detailed description is discussed in Sun et

al. (2010).

We now describe how (Q, C) pairs are gener-

ated automatically from massive query reformu-

lation sessions of a commercial Web browser.

A query reformulation session contains a list

of URLs that record user behaviors that relate to

the query reformulation functions, provided by a

Web search engine. For example, most commer-

cial search engines offer the "did you mean"

function, suggesting a possible alternate inter-

pretation or spelling of a user-issued query. Fig-

ure 3 shows a sample of the query reformulation

sessions that record the "did you mean" sessions

from three of the most popular search engines.

These sessions encode the same user behavior: A

user first queries for "harrypotter sheme part", and

Google:

http://www.google.com/search?

hl=en&source=hp&

q=harrypotter+sheme+park&aq=f&oq=&aqi=

http://www.google.com/search?

hl=en&ei=rnNAS8-oKsWe_AaB2eHlCA&

sa=X&oi=spell&resnum=0&ct=

result&cd=1&ved=0CA4QBSgA&

q=harry+potter+theme+park&spell=1

Yahoo:

http://search.yahoo.com/search;

_ylt=A0geu6ywckBL_XIBSDtXNyoA?

p=harrypotter+sheme+park&

fr2=sb-top&fr=yfp-t-701&sao=1

http://search.yahoo.com/search?

ei=UTF-8&fr=yfp-t-701&

p=harry+potter+theme+park

&SpellState=n-2672070758_q-tsI55N6srhZa.

qORA0MuawAAAA%40%40&fr2=sp-top

Bing:

http://www.bing.com/search?

q=harrypotter+sheme+park&form=QBRE&qs=n

http://www.bing.com/search?

q=harry+potter+theme+park&FORM=SSRE

Figure 3. A sample of query reformulation sessions from

three popular search engines. These sessions show that a user

first issues the query "harrypotter sheme park", and then

clicks on the resulting spell suggestion "harry potter theme

park".

then clicks on the resulting spelling suggestion

"harry potter theme park". In our experiments, we

"reverse-engineer" the parameters from the URLs

of these sessions, and deduce how each search

engine encodes both a query and the fact that a

user arrived at a URL by clicking on the spelling

suggestion of the query – an important indication

that the spelling suggestion is desired. In this

study, from 1 year of query reformulation ses-

sions, we extracted about 120 million (Q, C)

pairs. We found the data set very clean because all

these spelling corrections are actually clicked, and

thus judged implicitly, by many users.

In addition to the "did you mean" functionali-

ty, recently some search engines have introduced

two new spelling suggestion functions. One is the

"auto-correction" function, where the search

engine is confident enough to automatically apply

the spelling correction to the query and execute it

to produce search results for the user. The other is

the "split pane" result page, where one half por-

tion of the search results are produced using the

original query, while the other half, usually visu-

ally separate portion of results are produced using

the auto-corrected query.

In neither of these functions does the user ever

receive an opportunity to approve or disapprove

of the correction. Since our extraction approach

focuses on user-approved spelling suggestions,

we ignore the query reformulation sessions re-

cording either of the two functions. Although by

doing so we could miss some basic, obvious

spelling corrections, our experiments show that

the negative impact on error model training is

negligible. One possible reason is that our base-

line system, which does not use any error model

learned from the session data, is already able to

correct these basic, obvious spelling mistakes.

Thus, including these data for training is unlikely

to bring any further improvement.

We found that the error models trained using

the data directly extracted from the query refor-

mulation sessions suffer from the problem of

underestimating the self-transformation probabil-

ity of a query P(Q2=Q1|Q1), because we only

included in the training data the pairs where the

query is different from the correction. To deal

with this problem, we augmented the training data

by including correctly spelled queries, i.e., the

pairs (Q1, Q2) where Q1 = Q2. First, we extracted a

set of queries from the sessions where no spell

suggestion is presented or clicked on. Second, we

removed from the set those queries that were

recognized as being auto-corrected by a search

engine. We do so by running a sanity check of the

queries against our baseline noisy channel speller,

which will be described in Section 6. If the system

thought an input query was misspelled, we as-

sumed it was an obvious misspelling, and re-

moved it. The remaining queries were assumed to

be correctly spelled and were added to the training

data.

6 Experiments

We perform the evaluation using a manually

annotated data set containing 24,172 queries

sampled from one year’s worth of query logs from

a commercial search engine. The spelling of each

query is manually judged and corrected by four

independent annotators. The average length of

queries in the data sets is 2.7 words. We divided

the data set into non-overlapped training and test

data sets. The training data contain 8,515

pairs, among which 1,743 queries are misspelled

(i.e.). The test data contain 15,657

pairs, among which 2,960 queries are misspelled.

The speller systems we developed in this study

are evaluated using the following three metrics.

 Accuracy: The number of correct outputs

generated by the system divided by the total

number of queries in the test set.

 Precision: The number of correct spelling

corrections for misspelled queries generated

by the system divided by the total number of

corrections generated by the system.

 Recall: The number of correct spelling cor-

rections for misspelled queries generated by

the system divided by the total number of

misspelled queries in the test set.

We also perform a significance test, a t-test

with a significance level of 0.05. A significant

difference is read as significant at the 95% level.

In our experiments, all the speller systems are

ranker-based. Unless otherwise stated, the ranker

is a two-layer neural net with 5 hidden nodes. The

free parameters of the neural net are trained to

optimize accuracy on the training data using the

back propagation algorithm (Burges et al., 2005),

running for 500 iterations with a very small

learning rate (0.1) to avoid overfitting. We did not

adjust the neural net structure (e.g., the number of

hidden nodes) or any training parameters for

different speller systems. Neither did we try to

seek the best tradeoff between precision and

recall.

6.1 System Results

Table 1 summarizes the main results of different

spelling systems. Row 1 is the baseline speller

where the noisy channel model of Equations (2)

and (3) is used. The error model is based on the

weighted edit distance function and the LM is a

backoff bigram model trained on 1 year of query

logs, with count cutoff 30. Row 2 is the speller

using a linear ranker to incorporate all ranking

features described in Section 3. The weights of

the linear ranker are optimized using the Aver-

aged Perceptron algorithm (Freund and Schapire,

1999). Row 3 is the speller where a nonlinear

ranker (i.e., 2-layer neural net) is trained atop the

features. Rows 4, 5 and 6 are systems that incor-

porate the additional features derived from the

phrase-based error model (PBEM) described in

Section 5 and the four Web scale LMs (WLMs)

listed in Table 1.

The results show that (1) the ranker is a very

flexible modeling framework where a variety of

fine-grained features can be easily incorporated,

and a ranker-based speller outperforms signifi-

cantly (p < 0.01) the traditional system based on

the noisy channel model (Row 2 vs. Row 1); (2)

the speller accuracy can be further improved by

using more sophisticated rankers and learning

algorithms (Row 3 vs. Row 2); (3) both WLMs

and PBEM bring significant improvements (Rows

4 and 5 vs. Row 3); and (4) interestingly, the gains

from WLMs and PBEM are additive and the

combined leads to a significantly better speller

(Row 6 vs. Rows 4 and 5) than that of using either

of them individually.

In what follows, we investigate in detail how

the WLMs and PBEM trained on massive Web

content and search logs improve the accuracy of

the speller system. We will compare our models

with the state-of-the-art models proposed previ-

ously. From now on, the system listed in Row 3 of

Table 1 will be used as baseline.

6.2 Language Models

The quality of n-gram LMs depends on the order

of the model, the size of the training data, and

more importantly how well the training data

match the test data. Figure 4 illustrates the per-

plexity results of the four LMs trained on different

data sources tested on a random sample of

733,147 queries from the search engine’s May

2009 query log. The results suggest several con-

clusions. First, higher order LMs in general pro-

duce lower perplexities, especially when moving

beyond unigram models. Second, as expected, the

query LMs are most predictive for the test queries,

though they are from independent query log

snapshots. Third, it is interesting to notice that

although the body LMs are trained on much larger

amounts of data than the title and anchor LMs, the

former lead to much higher perplexity values,

indicating that both title and anchor texts are

quantitatively much more similar to queries than

body texts.

Table 2 summarizes the spelling results using

different LMs. For comparison, we also built a

4-gram LM using the Google 1T web 5-gram

corpus (Brants and Franz, 2006). This model is

referred to as the G1T model, and is trained using

the “stupid backoff” smoothing method (Brants et

al., 2007). Due to the high count cutoff applied by

the Google corpus (i.e., n-grams must appear at

least 40 times to be included in the corpus), we

found the G1T model results to a higher OOV rate

(i.e., 6.5%) on our test data than that of the 4 Web

scale LMs (i.e., less than 1%).

The results in Table 2 are more or less con-

sistent with the perplexity results: the query LM is

the best performer; there is no significant differ-

ence among the body, title and anchor LMs

though the body LM is trained on a much larger

amount of data; and all the 4 Web scale LMs

outperform the G1T model substantially due to

the significantly lower OOV rates.

6.3 Error Models

This section compares the phrase-based error

model (PBEM) described in Section 5, with one

of the state-of-the-art error models, proposed by

Brill and Moore (2000), henceforth referred to as

System Accuracy Precision Recall

1 Noisy channel 85.3 72.1 35.9

2 Linear ranker 88.0 74.0 42.8

3 Nonlinear ranker 89.0 74.1 49.6

4 3 + PBEM 90.7 78.7 58.2

5 3 + WLMs 90.4 75.1 58.7

6 3 + PBEM + WLMs 91.6 79.1 63.9

Table 1. Summary of spelling correction results.

Figure 4. Perplexity results on test queries, using

n-gram LMs with different orders, derived from dif-

ferent data sources.

the B&M model. B&M is a substring error model.

It estimates as

∏

 (10)

where R is a partitioning of correction term c into

adjacent substrings, and T is a partitioning of

query term q, such that |T|=|R|. The partitions are

thus in one-to-one alignment. To train the B&M

model, we extracted 1 billion term-correction

pairs from the set of 120 million que-

ry-correction pairs , derived from the

search logs as described in Section 5.2.

Table 3 summarizes the comparison results.

Rows 1 and 2 are our baseline ranker-based

speller systems with and without the error model

(EM) feature. The error model is of Equation (3),

and is based on weighted edit distance, where the

weights are learned on a small set of manually

annotated term-correction pairs (which is not used

in this study). Rows 3 and 4 are two versions of

the B&M model using different maximum sub-

string lengths, specified by L. Setting L=1 reduces

B&M to the weighted edit distance model in Row

2. Rows 5 and 6 are PBEMs with different

maximum phrase lengths. PBEM in Row 5 where

L=1 is equivalent to a word-based error model.

The results show the benefits of capturing context

information in error models. In particular, the

significant improvements resulting from PBEM

demonstrate that the dependencies between words

are far more effective than that between charac-

ters (within a word) for spelling correction. This

is largely due to the fact that there are many re-

al-word spelling errors in search queries. We also

notice that PBEM is a more powerful and so-

phisticated model than B&M (e.g. PBEM con

of word pairs Accuracy Precision Recall

1 Baseline w/o EM 88.55 71.95 46.97

2 1M 89.15 73.71 50.74

3 10M 89.22 74.11 50.92

4 100M 89.20 73.60 51.06

5 1B 89.21 73.72 50.99

Table 4. The performance of B&M error model (L=3) as a

function of the size of training data (# of word pairs).

of (Q, C) pairs Accuracy Precision Recall

1 Baseline w/o EM 88.55 71.95 46.97

2 5M 89.59 77.01 52.34

3 15M 90.23 77.87 56.67

4 45M 90.45 78.56 57.02

5 120M 90.70 78.49 58.12

Table 5. The performance of PBEM (L=3) as a function of

the size of training data (# of (Q, C) pairs).

tains several magnitudes more model parameters

than B&M), and can benefit more from increas-

ingly larger training data extracted from search

logs. As shown in Tables 4 and 5, whilst the

performance of B&M saturates quickly with the

increase of training data, the performance of

PBEM does not appear to have peaked in our

study – further improvements are likely given a

larger data set.

7 Conclusions and Future Work

This paper explores the use of massive Web

corpora and search logs for improving a ranker-

based search query speller. We show significant

improvements over a noisy channel speller using

fine-grained features, Web scale LMs, and a

phrase-based error model that captures intern-

word dependencies. There are several techniques

we are exploring to make further improvements.

First, since a query speller is developed for im-

proving the Web search results, it is natural to use

features from search results (e.g., the frequency of

a query term in the snippets of the retrieved

documents) in ranking, as studied in Chen et al.

(2007). The challenge is efficiency. Second, in

addition to query reformulation sessions, we are

exploring other search logs from which we might

extract more pairs for error model training.

One promising data source is clickthrough data

(e.g., Agichtein et al, 2006; Gao et al., 2009). For

instance, we might try to learn a transformation

from the title or anchor text of a document to the

query that led to a click on that document. Finally,

the phrase-based error model is inspired by

phrase-based SMT systems. We are introducing

more SMT techniques such as alignment and

translation rule exaction. In a broad sense,

spelling correction can be viewed as a monolin-

gual MT problem where we translate bad English

queries into good ones.

System Accuracy Precision Recall

1 Baseline 89.0 74.1 49.6

2 1+ query 4-gram 90.1 75.6 56.3

3 1 + body 4-gram 89.9 75.7 54.4

4 1 + title 4-gram 89.8 75.4 54.7

5 1 + anchor 4-gram 89.9 75.1 55.6

6 1 + G1T 4-gram 89.4 75.1 51.5

Table 2. Spelling correction results using different LMs

trained on different data sources.

System Accuracy Precision Recall

1 Baseline w/o EM 88.6 72.0 47.0

2 Baseline 89.0 74.1 49.6

3 1 + B&M, L=1 89.0 73.3 50.1

4 1 + B&M, L=3 89.2 73.7 51.0

5 1 + PBEM, L=1 90.1 76.7 55.6

6 1 + PBEM, L=3 90.7 78.5 58.1

Table 3. Spelling correction results using different error

models.

Acknowledgments

The authors would like to thank Andreas Bode,

Mei Li, Chenyu Yan and Kuansan Wang for the

very helpful discussions and collaboration. The

work was done when Xu Sun was visiting Mi-

crosoft Research Redmond.

References

Agichtein, E., Brill, E. and Dumais, S. 2006. Improv-

ing web search ranking by incorporating user be-

havior information. In SIGIR, pp. 19-26.

Ahmad, F., and Kondrak, G. 2005. Learning a spelling

error model from search query logs. In HLT-EMNLP,

pp 955-962.

Brants, T., and Franz, A. 2006. Web 1T 5-gram corpus

version 1.1. Technical report, Google Research.

Brants, T., Popat, A. C., Xu, P., Och, F. J., and Dean, J.

2007. Large language models in machine translation.

In EMNLP-CoNLL, pp. 858 - 867.

Brill, E., and Moore, R. C. 2000. An improved error

model for noisy channel spelling correction. In ACL,

pp. 286-293.

Burges, C., Shaked, T., Renshaw, E., Lazier, A.,

Deeds, M., Hamilton, and Hullender, G. 2005.

Learning to rank using gradient descent. In ICML,

pp. 89-96.

 Chaiken, R., Jenkins, B., Larson, P., Ramsey, B.,

Shakib, D., Weaver, S., and Zhou, J. 2008. SCOPE:

easy and efficient parallel processing f massive data

sets. In Proceedings of the VLDB Endowment, pp.

1265-1276.

Charniak, E. 2001. Immediate-head parsing for lan-

guage models. In ACL/EACL, pp. 124-131.

Chen, S. F., and Goodman, J. 1999. An empirical study

of smoothing techniques for language modeling.

Computer Speech and Language, 13(10):359-394.

Chen, Q., Li, M., and Zhou, M. 2007. Improving query

spelling correction using web search results. In

EMNLP-CoNLL, pp. 181-189.

Church, K., Hard, T., and Gao, J. 2007. Compressing

trigram language models with Golomb coding. In

EMNLP-CoNLL, pp. 199-207.

Cucerzan, S., and Brill, E. 2004. Spelling correction as

an iterative process that exploits the collective

knowledge of web users. In EMNLP, pp. 293-300.

Freund, Y. and Schapire, R. E. 1999. Large margin

classification using the perceptron algorithm. In

Machine Learning, 37(3): 277-296.

Gao, J., Goodman, J., and Miao, J. 2001. The use of

clustering techniques for language modeling

-application to Asian languages. Computational

Linguistics and Chinese Language Processing,

6(1):27–60, 2001.

Gao, J., Yuan, W., Li, X., Deng, K., and Nie, J-Y.

2009. Smoothing clickthrough data for web search

ranking. In SIGIR.

Golding, A. R., and Roth, D. 1996. Applying winnow

to context-sensitive spelling correction. In ICML, pp.

182-190.

Joachims, T. 2002. Optimizing search engines using

clickthrough data. In SIGKDD, pp. 133-142.

Kernighan, M. D., Church, K. W., and Gale, W. A.

1990. A spelling correction program based on a

noisy channel model. In COLING, pp. 205-210.

Koehn, P., Och, F., and Marcu, D. 2003. Statistical

phrase-based translation. In HLT/NAACL, pp.

127-133.

Kucich, K. 1992. Techniques for automatically

correcting words in text. ACM Computing Surveys,

24(4):377-439.

Levenshtein, V. I. 1966. Binary codes capable of

correcting deletions, insertions and reversals. Soviet

Physics Doklady, 10(8):707-710.

Li, M., Zhu, M., Zhang, Y., and Zhou, M. 2006. Ex-

ploring distributional similarity based models for

query spelling correction. In ACL, pp. 1025-1032.

Mangu, L., and Brill, E. 1997. Automatic rule acqui-

sition for spelling correction. In ICML, pp. 187-194.

Microsoft Microsoft web n-gram services. 2010.

http://research.microsoft.com/web-ngram

Nguyen, P., Gao, J., and Mahajan, M. 2007. MSRLM:

a scalable language modeling toolkit. Technical re-

port TR-2007-144, Microsoft Research.

Och, F. 2002. Statistical machine translation: from

single-word models to alignment templates. PhD

thesis, RWTH Aachen.

Och, F., and Ney, H. 2004. The alignment template

approach to statistical machine translation.

Computational Linguistics, 30(4): 417-449.

Philips, L. 1990. Hanging on the metaphone. Com-

puter Language Magazine, 7(12):38-44.

Sun, X., Gao, J., Micol, D., and Quirk, C. 2010.

Learning phrase-based spelling error models from

clickthrough data. In ACL.

Toutanova, K., and Moore, R. 2002. Pronunciation

modeling for improved spelling correction. In ACL,

pp. 144-151.

Whitelaw, C., Hutchinson, B., Chung, G. Y., and Ellis,

G. 2009. Using the web for language independent

spellchecking and autocorrection. In EMNLP, pp.

890-899.

Zhang, Y., Hildebrand, Al. S., and Vogel, S. 2006.

Distributed language modeling for n-best list

re-ranking. In EMNLP, pp. 216-233.

