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Abstract 

This paper makes three significant extensions to a 

noisy channel speller designed for standard writ-

ten text to target the challenging domain of search 

queries. First, the noisy channel model is sub-

sumed by a more general ranker, which allows a 

variety of features to be easily incorporated. Se-

cond, a distributed infrastructure is proposed for 

training and applying Web scale n-gram language 

models. Third, a new phrase-based error model is 

presented. This model places a probability dis-

tribution over transformations between mul-

ti-word phrases, and is estimated using large 

amounts of query-correction pairs derived from 

search logs. Experiments show that each of these 

extensions leads to significant improvements over 

the state-of-the-art baseline methods. 

1 Introduction 

Search queries present a particular challenge for 

traditional spelling correction methods. New 

search queries emerge constantly. As a result, 

many queries contain valid search terms, such as 

proper nouns and names, which are not well 

established in the language. Therefore, recent 

research has focused on the use of Web corpora 

and search logs, rather than human-compiled 

lexicons, to infer knowledge about spellings and 

word usages in search queries (e.g., Whitelaw et 

al., 2009; Cucerzan and Brill, 2004).  

The spelling correction problem is typically 

formulated under the framework of the noisy 

channel model. Given an input query   
       , we want to find the best spelling correc-

tion           among all candidate corrections: 

         
 

       (1) 

Applying Bayes' Rule, we have 

         
 

           (2) 

 

where the error model        models the trans-

formation probability from C to Q, and the lan-

guage model (LM)      models the likelihood 

that C is a correctly spelled query. 

This paper extends a noisy channel speller de-

signed for regular text to search queries in three 

ways: using a ranker (Section 3), using Web scale 

LMs (Section 4), and using phrase-based error 

models (Section 5). 

First of all, we propose a ranker-based speller 

that covers the noisy channel model as a special 

case. Given an input query, the system first gen-

erates a short list of candidate corrections using 

the noisy channel model. Then a feature vector is 

computed for each query and candidate correction 

pair. Finally, a ranker maps the feature vector to a 

real-valued score, indicating the likelihood that 

this candidate is a desirable correction. We will 

demonstrate that ranking provides a flexible 

modeling framework for incorporating a wide 

variety of features that would be difficult to model 

under the noisy channel framework. 

Second, we explore the use of Web scale LMs 

for query spelling correction. While traditional 

LM research mainly focuses on how to make the 

model “smarter” (e.g., how to better estimate the 

probability of an unseen word (Chen and Good-

man, 1999); and how to model the grammatical 

structure of language (e.g., Charniak, 2001)), 

recent studies show that significant improvements 

can be achieved using “stupid” n-gram models 

trained on very large corpora (e.g., Brants et al., 

2007). We adopt the latter strategy in this study. 

We present a distributed infrastructure to effi-

ciently train and apply Web scale n-gram LMs. In 

addition, we observe that search queries are 

composed in a language style different from that 

of regular text. We thus train different LMs using 

different text streams associated with Web cor-

pora and search logs. 



Third, we propose a phrase-based error model 

that captures the probability of transforming one 

multi-term phrase into another multi-term phrase. 

Compared to traditional error models that account 

for transformation probabilities between single 

characters or substrings (e.g., Kernighan et al., 

1990; Brill and Moore, 2000), the phrase-based 

error model is more effective in that it captures 

inter-term dependencies crucial for correcting 

real-word errors, prevalent in search queries. We 

also present a novel method of extracting large 

amounts of query-correction pairs from search 

logs. These pairs, implicitly judged by millions of 

users, are used for training the error models. 

Experiments show that each of the extensions 

leads to significant improvements over its base-

line methods that were state-of-the-art until this 

work, and that the combined method yields a 

system which outperforms the noisy channel 

speller by a large margin: a 6.3% increase in 

accuracy on a human-labeled query set. 

2 Related Work 

Prior research on spelling correction for regular 

text can be roughly grouped into two categories: 

correcting non-word errors and real-word errors. 

The former focuses on the development of error 

models based on different edit distance functions 

(e.g., Kucich, 1992; Kernighan et al., 1990; Brill 

and Moore, 2000; Toutanova and Moore, 2002). 

Brill and Moore’s substring-based error model, 

considered to be state-of-the-art among these 

models, acts as the baseline against which we 

compare our models. On the other hand, real- 

word spelling correction tries to detect incorrect 

usages of a valid word based on its context, such 

as "peace" and "piece" in the context "a _ of cake". 

N-gram LMs and naïve Bayes classifiers are 

commonly used models (e.g., Golding and Roth, 

1996; Mangu and Brill, 1997; Church et al., 

2007). 

While almost all of the spellers mentioned 

above are based on a pre-defined dictionary 

(generally either a lexicon against which the edit 

distance is computed, or a set of real-word con-

fusion pairs), recent research on query spelling 

correction focuses on exploiting noisy Web cor-

pora and query logs to infer knowledge about 

misspellings and word usage in search queries 

(e.g., Cucerzan and Brill 2004; Ahmad and Kon-

drak, 2005; Li et al., 2006; Whitelaw et al., 2009).  

Like those spellers designed for regular text, most 

of these query spelling systems are also based on 

the noisy channel framework. 

3 A Ranker-Based Speller 

The noisy channel model of Equation (2) does not 

have the flexibility to incorporate a wide variety 

of features useful for spelling correction, such as 

whether the candidate correction appears as a title 

in a Wikipedia document. We thus generalize the 

speller to a ranker-based system. Let f be a feature 

vector extracted from a query and candidate cor-

rection pair (Q, C). The ranker maps f to a real 

value y that indicates the likelihood that C is a 

desired correction. For example, a linear ranker 

maps f to y with a learned weight vector w such as 

     , where w is optimized for accuracy on 

human-labeled       pairs. Since the logarithms 

of the LM and error model probabilities can be 

included as features, the ranker covers the noisy 

channel model as a special case. 

For the sake of efficiency and flexibility, our 

speller system operates in two distinct stages: 

candidate generation and re-ranking. 

In candidate generation, an input query is first 

tokenized into a sequence of terms. For each term 

q, we consult a lexicon to identify a list of spelling 

suggestions c whose edit distance from q is lower 

than some threshold. Our lexicon contains around 

430,000 high frequency query unigram and bi-

grams collected from 1 year of query logs. These 

generated suggestions are stored in a lattice.  

We then use a decoder to identify the 20-best 

candidates from the lattice according to Equation 

(2), where the LM is a backoff bigram model 

trained on 1 year of query logs, and the error 

model is approximated by the weighted Le-

venshtein edit distance function as 

                         (3) 

The decoder uses a standard two-pass algorithm. 

The first pass uses the Viterbi algorithm to find 

the best C according to the model of Equations (2) 

and (3).  The second pass uses the A-star algo-

rithm to find the 20-best corrections, using the 

Viterbi scores computed at each state in the first 

pass as heuristics. 

The core component in the second stage is a 

ranker, which re-ranks the 20-best candidate 

corrections using a set of features extracted from 

     . If the top C after re-ranking is different 

from Q, C is proposed as the correction. We use 

96 features in this study. In addition to the two 

features derived from the noisy channel model, 

the rest of the features can be grouped into the 

following 5 categories. 

1. Surface-form similarity features, which 

check whether C and Q differ in certain patterns, 



e.g., whether C is transformed from Q by adding 

an apostrophe, or by adding a stop word at the 

beginning or end of Q. 

2. Phonetic-form similarity features, which 

check whether the edit distance between the 

metaphones (Philips, 1990) of a query term and 

its correction candidate is below some thresholds. 

3. Entity features, which check whether the 

original query is likely to be a proper noun based 

on an in-house named entity recognizer. 

4. Dictionary features, which check whether 

a query term or a candidate correction are in one 

or more human-compiled dictionaries, such as the 

extracted Wiki, MSDN, and ODP dictionaries. 

5. Frequency features, which check whether 

the frequency of a query term or a candidate 

correction is above certain thresholds in different 

datasets, such as query logs and Web documents. 

4 Web Scale Language Models 

An n-gram LM assigns a probability to a word 

string   
            according to  

    
   ∏ (  |  

   )

 

   

 ∏ (  |      
   )

 

   

 

(4) 

where the approximation is based on a Markov 

assumption that each word depends only upon the 

immediately preceding n-1 words. In a speller, the 

log of n-gram LM probabilities of an original 

query and its candidate corrections are used as 

features in the ranker.  

While recent research reports the benefits of 

large LMs trained on Web corpora on a variety of 

applications (e.g., Zhang et al., 2006; Brants et al., 

2007), it is also clear that search queries are 

composed in a language style different from that 

of the body or title of a Web document. Thus, in 

this study we developed a set of large LMs from 

different text streams of Web documents and 

query logs. Below, we first describe the n-gram 

LM collection used in this study, and then present 

a distributed n-gram LM platform based on which 

these LMs are built and served for the speller. 

4.1 Web N-gram LM Collection 

Table 1 summarizes the data sets and Web scale 

n-gram LMs used in this study. The collection is 

built from high quality English Web documents 

containing trillions of tokens, served by a popular 

commercial search engine. The collection con-

sists of several data sets built from different Web 

sources, including the different text fields from 

the Web documents (i.e., body, title, and anchor 

texts) and search query logs. The raw texts ex-

tracted from these different sources were pre- 

processed in the following manner: texts are 

tokenized based on white-space and upper case 

letters are converted to lower case. Numbers are 

retained, and no stemming/inflection is per-

formed. The n-gram LMs are word-based backoff 

models, where the n-gram probabilities are esti-

mated using Maximum Likelihood Estimation 

with smoothing. Specifically, for a trigram model, 

the smoothed probability is computed as 

                (5) 

{

               (             )

           
                   

                              

 

where      is the raw count of the n-gram in the 

training corpus and   is a normalization factor. 

     is a discount function for smoothing. We 

use modified absolute discounting as the discount 

function (Gao et al., 2001), whose parameters can 

be efficiently estimated and performance con-

verges to that of more elaborate state-of-the-art 

techniques like Kneser-Ney smoothing in large 

scale data (Nguyen et al., 2007). 

4.2 Distributed N-gram LM Platform 

The platform is developed on a distributed com-

puting system designed for storing and analyzing 

massive data sets, running on large clusters con-

sisting of hundreds of commodity servers con-

nected via high-bandwidth network.  

We use the SCOPE (Structured Computations 

Optimized for Parallel Execution) programming 

model (Chaiken et al., 2008) to train the Web 

scale n-gram LMs shown in Table 1. The SCOPE 

scripting language resembles SQL which many 

programmers are familiar with. It also supports 

C# expressions so that users can easily plug-in 

customized C# classes. SCOPE supports writing a 

program using a series of simple data transfor-

mations so that users can simply write a script to 

process data in a serial manner without wonder-

ing how to achieve parallelism while the SCOPE 

Dataset Body Anchor Title Query 

Total tokens 1.3T 11.0B 257.2B 28.1B 

Unigrams 1.2B 60.3M 150M 251.5M 

Bigrams 11.7B 464.1M 1.1B 1.3B 

Trigrams 60.0B 1.4B 3.1B 3.1B 

4-grams 148.5B 2.3B 5.1B 4.6B 

Size on disk# 12.8TB 183GB 395GB 393GB 
# N-gram entries as well as other model parameters are stored. 

Table 1: Statistics of the Web n-gram LMs collection (count 

cutoff = 0 for all models). These models will be accessible at 

Microsoft (2010) 



compiler and optimizer are responsible for trans-

lating the script into an efficient, parallel execu-

tion plan. We illustrate the usage of SCOPE for 

building LMs using the following example of 

counting 5-grams from the body text of English 

Web pages. The flowchart is shown in Figure 1.  

The program is written in SCOPE as a step-by- 

step of computation, where a command takes the 

output of the previous command as its input. 

ParsedDoc=SELECT docId, TokenizedDoc 

FROM @”/shares/…/EN_Body.txt” 

USING DefaultTextExtractor; 

NGram=PROCESS ParsedDoc 

PRODUCE NGram, NGcount 

USING NGramCountProcessor(-stream       

TokenizedDoc -order 5 –bufferSize 

20000000); 

NGramCount=REDUCE NGram 

ON NGram 

PRODUCE NGram, NGcount 

USING NGramCountReducer; 

 

OUTPUT TO @”Body-5-gram-count.txt”; 

The first SCOPE command is a SELECT 

statement that extracts parsed Wed body text. The 

second command uses a build-in Processor 

(NGramCountProcessor) to map the parsed 

documents into separate n-grams together with 

their counts. It generates a local hash at each node 

(i.e., a core in a multi-core server) to store the 

(n-gram, count) pairs. The third command 

(REDUCE) aggregates counts from different 

nodes according to the key (n-gram string). The 

final command (OUTPUT) writes out the result-

ing to a data file. 

The smoothing method can be implemented 

similarly by implementing the customized 

smoothing Processor/Reducer. They can be im-

ported from the existing C# codes (e.g., devel-

oped for building LMs in a single machine) with 

minor changes.  

It is straightforward to apply the built LMs for 

the ranker in the speller. The n-gram LM platform 

provides a DLL for n-gram batch lookup. In the 

server, an n-gram LM is stored in the form of 

multiple lists of key-value pairs, where the key is 

the hash of an n-gram string and the value is either 

the n-gram probability or the backoff parameter.  

In our test data, the average query length is 2.7 

words. We consider 20 candidate corrections in 

ranking, so the average number of n-grams re-

quested per query is 54.  Assume that computing a 

5-gram probability requests 9 key lookups (5 

n-gram probabilities and 4 backoff parameters), it 

requests around 500 key lookups per query. Our 

results show that the platform can serve about 800 

key lookups per millisecond. So the process of 

calculating a 5-gram LM feature for a query takes 

less than 1 millisecond.  

5 Phrase-Based Error Models 

The goal of an error model is to transform a cor-

rectly spelled query C into a misspelled query Q. 

Rather than replacing single words in isolation, 

the phrase-based error model replaces sequences 

of words with sequences of words, thus incorpo-

rating contextual information. The training pro-

cedure closely follows Sun et al. (2010). For 

instance, we might learn that “theme part” can be 

replaced by “theme park” with relatively high 

probability, even though “part” is not a mis-

spelled word. We use this generative story: first 

the correctly spelled query C is broken into K 

non-empty word sequences c1, …, ck, then each is 

replaced with a new non-empty word sequence 

q1, …, qk, finally these phrases are permuted and 

concatenated to form the misspelled Q. Here, c 

and q denote consecutive sequences of words. 

To formalize this generative process, let S 

denote the segmentation of C into K phrases c1…cK, 

and let T denote the K replacement phrases 

q1…qK – we refer to these (ci, qi) pairs as 

bi-phrases. Finally, let M denote a permutation of 

K elements representing the final reordering step. 

Figure 2 demonstrates the generative procedure. 

Next let us place a probability distribution over 

rewrite pairs. Let B(C, Q) denote the set of S, T, M 

triples that transform C into Q. If we assume a 

uniform probability over segmentations, then the 

phrase-based probability can be defined as: 

Recursive 

Reducer

Node 1 Node 2 Node N…...

…...

Output

Web Pages

Parsing

Counting

Local 

Hash

Tokenize

Web Pages

Parsing

Counting

Local 

Hash

Tokenize

Web Pages

Parsing

Counting

Local 

Hash

Tokenize

 

Figure 1. Distributed 5-gram counting. 

C: “disney theme park” correct query 

S: [“disney”, “theme park”] segmentation 

T: [“disnee”, “theme part”] translation 

M: (1  2, 2 1) permutation 

Q: “theme part disnee” misspelled query 

Figure 2: Example demonstrating the generative procedure 

behind the phrase-based error model. 
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(6) 

As is common practice in SMT, we use the 

maximum approximation to the sum:  

          
        
      

                    (7) 

5.1 Forced Alignments 

Although we have defined a generative model for 

transforming queries, our goal is not to propose 

new queries, but rather to provide scores over 

existing Q and C pairs that will act as features for 

the ranker. Furthermore, the word-level align-

ments between Q and C can most often be iden-

tified with little ambiguity. Thus we restrict our 

attention to those phrase transformations con-

sistent with a good word-level alignment. 

Let J be the length of Q, L be the length of C, 

and A = a1, …, aJ  be a hidden variable repre-

senting the word alignment between them. Each ai 

takes on a value ranging from 1 to L indicating its 

corresponding word position in C, or 0 if the ith 

word in Q is unaligned. The cost of assigning k to 

ai is equal to the Levenshtein edit distance (Le-

venshtein, 1966) between the i
th
 word in Q and the 

k
th
 word in C, and the cost of assigning 0 to ai is 

equal to the length of the i
th
 word in Q. We can 

determine the least cost alignment A* between Q 

and C efficiently using the A-star algorithm. 

When scoring a given candidate pair, we fur-

ther restrict our attention to those S, T, M triples 

that are consistent with the word alignment, 

which we denote as B(C, Q, A
*
). Here, con-

sistency requires that if two words are aligned in 

A
*
, then they must appear in the same bi-phrase 

(ci, qi). Once the word alignment is fixed, the final 

permutation is uniquely determined, so we can 

safely discard that factor. Thus we have: 

          
        
         

         (8) 

For the sole remaining factor P(T|C, S), we 

make the assumption that a segmented query T = 

q1… qK is generated from left to right by trans-

forming each phrase c1…cK independently: 

         ∏         
 
   , (9) 

where          is a phrase transformation 

probability, the estimation of which will be de-

scribed in Section 5.2.  

To find the maximum probability assignment 

efficiently, we use a dynamic programming ap-

proach, similar to the monotone decoding algo-

rithm described in Och (2002).  

5.2 Training the Error Model 

Given a set of (Q, C) pairs as training data, we 

follow a method commonly used in SMT (Koehn 

et al., 2003; Och and Ney, 2004) to extract bi- 

phrases and estimate their replacement probabili-

ties. A detailed description is discussed in Sun et 

al. (2010). 

We now describe how (Q, C) pairs are gener-

ated automatically from massive query reformu-

lation sessions of a commercial Web browser. 

A query reformulation session contains a list 

of URLs that record user behaviors that relate to 

the query reformulation functions, provided by a 

Web search engine. For example, most commer-

cial search engines offer the "did you mean" 

function, suggesting a possible alternate inter-

pretation or spelling of a user-issued query. Fig-

ure 3 shows a sample of the query reformulation 

sessions that record the "did you mean" sessions 

from three of the most popular search engines. 

These sessions encode the same user behavior: A 

user first queries for "harrypotter sheme part", and 

Google: 

http://www.google.com/search? 

hl=en&source=hp& 

q=harrypotter+sheme+park&aq=f&oq=&aqi= 

http://www.google.com/search? 

hl=en&ei=rnNAS8-oKsWe_AaB2eHlCA& 

sa=X&oi=spell&resnum=0&ct= 

result&cd=1&ved=0CA4QBSgA& 

q=harry+potter+theme+park&spell=1 

Yahoo: 

http://search.yahoo.com/search; 

_ylt=A0geu6ywckBL_XIBSDtXNyoA? 

p=harrypotter+sheme+park& 

fr2=sb-top&fr=yfp-t-701&sao=1 

http://search.yahoo.com/search? 

ei=UTF-8&fr=yfp-t-701& 

p=harry+potter+theme+park 

&SpellState=n-2672070758_q-tsI55N6srhZa. 

qORA0MuawAAAA%40%40&fr2=sp-top 

Bing: 

http://www.bing.com/search? 

q=harrypotter+sheme+park&form=QBRE&qs=n 

http://www.bing.com/search? 

q=harry+potter+theme+park&FORM=SSRE 

Figure 3.  A sample of query reformulation sessions from 

three popular search engines. These sessions show that a user 

first issues the query "harrypotter sheme park", and then 

clicks on the resulting spell suggestion "harry potter theme 

park". 



then clicks on the resulting spelling suggestion 

"harry potter theme park". In our experiments, we 

"reverse-engineer" the parameters from the URLs 

of these sessions, and deduce how each search 

engine encodes both a query and the fact that a 

user arrived at a URL by clicking on the spelling 

suggestion of the query – an important indication 

that the spelling suggestion is desired. In this 

study, from 1 year of query reformulation ses-

sions, we extracted about 120 million (Q, C) 

pairs. We found the data set very clean because all 

these spelling corrections are actually clicked, and 

thus judged implicitly, by many users. 

In addition to the "did you mean" functionali-

ty, recently some search engines have introduced 

two new spelling suggestion functions. One is the 

"auto-correction" function, where the search 

engine is confident enough to automatically apply 

the spelling correction to the query and execute it 

to produce search results for the user.  The other is 

the "split pane" result page, where one half por-

tion of the search results are produced using the 

original query, while the other half, usually visu-

ally separate portion of results are produced using 

the auto-corrected query. 

In neither of these functions does the user ever 

receive an opportunity to approve or disapprove 

of the correction. Since our extraction approach 

focuses on user-approved spelling suggestions, 

we ignore the query reformulation sessions re-

cording either of the two functions. Although by 

doing so we could miss some basic, obvious 

spelling corrections, our experiments show that 

the negative impact on error model training is 

negligible. One possible reason is that our base-

line system, which does not use any error model 

learned from the session data, is already able to 

correct these basic, obvious spelling mistakes. 

Thus, including these data for training is unlikely 

to bring any further improvement. 

We found that the error models trained using 

the data directly extracted from the query refor-

mulation sessions suffer from the problem of 

underestimating the self-transformation probabil-

ity of a query P(Q2=Q1|Q1), because we only 

included in the training data the pairs where the 

query is different from the correction. To deal 

with this problem, we augmented the training data 

by including correctly spelled queries, i.e., the 

pairs (Q1, Q2) where Q1 = Q2.  First, we extracted a 

set of queries from the sessions where no spell 

suggestion is presented or clicked on. Second, we 

removed from the set those queries that were 

recognized as being auto-corrected by a search 

engine. We do so by running a sanity check of the 

queries against our baseline noisy channel speller, 

which will be described in Section 6. If the system 

thought an input query was misspelled, we as-

sumed it was an obvious misspelling, and re-

moved it. The remaining queries were assumed to 

be correctly spelled and were added to the training 

data. 

6 Experiments 

We perform the evaluation using a manually 

annotated data set containing 24,172 queries 

sampled from one year’s worth of query logs from 

a commercial search engine. The spelling of each 

query is manually judged and corrected by four 

independent annotators. The average length of 

queries in the data sets is 2.7 words. We divided 

the data set into non-overlapped training and test 

data sets. The training data contain 8,515       

pairs, among which 1,743 queries are misspelled 

(i.e.    ). The test data contain 15,657       

pairs, among which 2,960 queries are misspelled.  

The speller systems we developed in this study 

are evaluated using the following three metrics. 

 Accuracy: The number of correct outputs 

generated by the system divided by the total 

number of queries in the test set. 

 Precision: The number of correct spelling 

corrections for misspelled queries generated 

by the system divided by the total number of 

corrections generated by the system. 

 Recall: The number of correct spelling cor-

rections for misspelled queries generated by 

the system divided by the total number of 

misspelled queries in the test set. 

We also perform a significance test, a t-test 

with a significance level of 0.05. A significant 

difference is read as significant at the 95% level. 

In our experiments, all the speller systems are 

ranker-based. Unless otherwise stated, the ranker 

is a two-layer neural net with 5 hidden nodes. The 

free parameters of the neural net are trained to 

optimize accuracy on the training data using the 

back propagation algorithm (Burges et al., 2005), 

running for 500 iterations with a very small 

learning rate (0.1) to avoid overfitting. We did not 

adjust the neural net structure (e.g., the number of 

hidden nodes) or any training parameters for 

different speller systems. Neither did we try to 

seek the best tradeoff between precision and 

recall. 

6.1 System Results 

Table 1 summarizes the main results of different 

spelling systems. Row 1 is the baseline speller 



where the noisy channel model of Equations (2) 

and (3) is used. The error model is based on the 

weighted edit distance function and the LM is a 

backoff bigram model trained on 1 year of query 

logs, with count cutoff 30. Row 2 is the speller 

using a linear ranker to incorporate all ranking 

features described in Section 3. The weights of 

the linear ranker are optimized using the Aver-

aged Perceptron algorithm (Freund and Schapire, 

1999). Row 3 is the speller where a nonlinear 

ranker (i.e., 2-layer neural net) is trained atop the 

features. Rows 4, 5 and 6 are systems that incor-

porate the additional features derived from the 

phrase-based error model (PBEM) described in 

Section 5 and the four Web scale LMs (WLMs) 

listed in Table 1. 

The results show that (1) the ranker is a very 

flexible modeling framework where a variety of 

fine-grained features can be easily incorporated, 

and a ranker-based speller outperforms signifi-

cantly (p < 0.01) the traditional system based on 

the noisy channel model (Row 2 vs. Row 1); (2) 

the speller accuracy can be further improved by 

using more sophisticated rankers and learning 

algorithms (Row 3 vs. Row 2); (3) both WLMs 

and PBEM bring significant improvements (Rows 

4 and 5 vs. Row 3); and (4) interestingly, the gains 

from WLMs and PBEM are additive and the 

combined leads to a significantly better speller 

(Row 6 vs. Rows 4 and 5) than that of using either 

of them individually. 

In what follows, we investigate in detail how 

the WLMs and PBEM trained on massive Web 

content and search logs improve the accuracy of 

the speller system. We will compare our models 

with the state-of-the-art models proposed previ-

ously. From now on, the system listed in Row 3 of 

Table 1 will be used as baseline. 

6.2 Language Models 

The quality of n-gram LMs depends on the order 

of the model, the size of the training data, and 

more importantly how well the training data 

match the test data. Figure 4 illustrates the per-

plexity results of the four LMs trained on different 

data sources tested on a random sample of 

733,147 queries from the search engine’s May 

2009 query log. The results suggest several con-

clusions. First, higher order LMs in general pro-

duce lower perplexities, especially when moving 

beyond unigram models. Second, as expected, the 

query LMs are most predictive for the test queries, 

though they are from independent query log 

snapshots. Third, it is interesting to notice that 

although the body LMs are trained on much larger 

amounts of data than the title and anchor LMs, the 

former lead to much higher perplexity values, 

indicating that both title and anchor texts are 

quantitatively much more similar to queries than 

body texts. 

Table 2 summarizes the spelling results using 

different LMs. For comparison, we also built a 

4-gram LM using the Google 1T web 5-gram 

corpus (Brants and Franz, 2006). This model is 

referred to as the G1T model, and is trained using 

the “stupid backoff” smoothing method (Brants et 

al., 2007). Due to the high count cutoff applied by 

the Google corpus (i.e., n-grams must appear at 

least 40 times to be included in the corpus), we 

found the G1T model results to a higher OOV rate 

(i.e., 6.5%) on our test data than that of the 4 Web 

scale LMs (i.e., less than 1%). 

The results in Table 2 are more or less con-

sistent with the perplexity results: the query LM is 

the best performer; there is no significant differ-

ence among the body, title and anchor LMs 

though the body LM is trained on a much larger 

amount of data; and all the 4 Web scale LMs 

outperform the G1T model substantially due to 

the significantly lower OOV rates. 

6.3 Error Models 

This section compares the phrase-based error 

model (PBEM) described in Section 5, with one 

of the state-of-the-art error models, proposed by 

Brill and Moore (2000), henceforth referred to as 

# System Accuracy Precision Recall 

1 Noisy channel 85.3 72.1 35.9 

2 Linear ranker 88.0 74.0 42.8 

3 Nonlinear ranker 89.0 74.1 49.6 

4 3 + PBEM 90.7 78.7 58.2 

5 3 + WLMs 90.4 75.1 58.7 

6 3 + PBEM + WLMs  91.6 79.1 63.9 

Table 1. Summary of spelling correction results. 

 
Figure 4. Perplexity results on test queries, using 

n-gram LMs with different orders, derived from dif-

ferent data sources. 

 



the B&M model. B&M is a substring error model. 

It estimates        as 

          
    

           

∏        
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where R is a partitioning of correction term c into 

adjacent substrings, and T is a partitioning of 

query term q, such that |T|=|R|. The partitions are 

thus in one-to-one alignment. To train the B&M 

model, we extracted 1 billion term-correction 

pairs       from the set of 120 million que-

ry-correction pairs      , derived from the 

search logs as described in Section 5.2.  

Table 3 summarizes the comparison results. 

Rows 1 and 2 are our baseline ranker-based 

speller systems with and without the error model 

(EM) feature. The error model is of Equation (3), 

and is based on weighted edit distance, where the 

weights are learned on a small set of manually 

annotated term-correction pairs (which is not used 

in this study). Rows 3 and 4 are two versions of 

the B&M model using different maximum sub-

string lengths, specified by L. Setting L=1 reduces 

B&M to the weighted edit distance model in Row 

2. Rows 5 and 6 are PBEMs with different 

maximum phrase lengths. PBEM in Row 5 where 

L=1 is equivalent to a word-based error model. 

The results show the benefits of capturing context 

information in error models. In particular, the 

significant improvements resulting from PBEM 

demonstrate that the dependencies between words 

are far more effective than that between charac-

ters (within a word) for spelling correction. This 

is largely due to the fact that there are many re-

al-word spelling errors in search queries. We also 

notice that PBEM is a more powerful and so-

phisticated  model  than  B&M  (e.g. PBEM con 

# # of word pairs Accuracy Precision Recall 

1 Baseline w/o EM 88.55 71.95 46.97 

2 1M 89.15 73.71 50.74 

3 10M 89.22 74.11 50.92 

4 100M 89.20 73.60 51.06 

5 1B 89.21 73.72 50.99 

Table 4. The performance of B&M error model (L=3) as a 

function of the size of training data (# of word pairs). 

# # of (Q, C) pairs Accuracy Precision Recall 

1 Baseline w/o EM 88.55 71.95 46.97 

2 5M 89.59 77.01 52.34 

3 15M 90.23 77.87 56.67 

4 45M 90.45 78.56 57.02 

5 120M 90.70 78.49 58.12 

Table 5. The performance of PBEM (L=3) as a function of 

the size of training data (# of (Q, C) pairs). 

tains several magnitudes more model parameters 

than B&M), and can benefit more from increas-

ingly larger training data extracted from search 

logs. As shown in Tables 4 and 5, whilst the 

performance of B&M saturates quickly with the 

increase of training data, the performance of 

PBEM does not appear to have peaked in our 

study – further improvements are likely given a 

larger data set. 

7 Conclusions and Future Work 

This paper explores the use of massive Web 

corpora and search logs for improving a ranker- 

based search query speller. We show significant 

improvements over a noisy channel speller using 

fine-grained features, Web scale LMs, and a 

phrase-based error model that captures intern- 

word dependencies. There are several techniques 

we are exploring to make further improvements. 

First, since a query speller is developed for im-

proving the Web search results, it is natural to use 

features from search results (e.g., the frequency of 

a query term in the snippets of the retrieved 

documents) in ranking, as studied in Chen et al. 

(2007). The challenge is efficiency. Second, in 

addition to query reformulation sessions, we are 

exploring other search logs from which we might 

extract more       pairs for error model training. 

One promising data source is clickthrough data 

(e.g., Agichtein et al, 2006; Gao et al., 2009). For 

instance, we might try to learn a transformation 

from the title or anchor text of a document to the 

query that led to a click on that document. Finally, 

the phrase-based error model is inspired by 

phrase-based SMT systems. We are introducing 

more SMT techniques such as alignment and 

translation rule exaction. In a broad sense, 

spelling correction can be viewed as a monolin-

gual MT problem where we translate bad English 

queries into good ones. 

# System Accuracy Precision Recall 

1 Baseline 89.0 74.1 49.6 

2 1+ query 4-gram 90.1 75.6 56.3 

3 1 + body 4-gram 89.9 75.7 54.4 

4 1 + title 4-gram 89.8 75.4 54.7 

5 1 + anchor 4-gram 89.9 75.1 55.6 

6 1 + G1T 4-gram 89.4 75.1 51.5 

Table 2. Spelling correction results using different LMs 

trained on different data sources. 

# System Accuracy Precision Recall 

1 Baseline w/o EM 88.6 72.0 47.0 

2 Baseline 89.0 74.1 49.6 

3 1 + B&M, L=1 89.0 73.3 50.1 

4 1 + B&M, L=3 89.2 73.7 51.0 

5 1 + PBEM, L=1 90.1 76.7 55.6 

6 1 + PBEM, L=3 90.7 78.5 58.1 

Table 3. Spelling correction results using different error 

models. 
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