
Matching Unstructured Product Offers to Structured
Product Specifications

Anitha Kannan
Microsoft Research

ankannan@microsoft.com

Inmar E. Givoni
∗

University of Toronto
inmar@psi.utoronto.ca

Rakesh Agrawal
Microsoft Research

rakesha@microsoft.com

Ariel Fuxman
Microsoft Research

arielf@microsoft.com

ABSTRACT
An e-commerce catalog is typically comprised of specifica-
tions for millions of products. The search engine receives
millions of sales offers from thousands of independent mer-
chants that must be matched to the right products. This
problem is hard for several reasons. First, unique identi-
fiers are absent in most offers. Second, although the prod-
uct specifications are well structured, offers are described
in the form of free text. Third, offers mention the values of
the attributes without providing the corresponding attribute
names. Fourth, values of a large number of attributes are
often missing from the offer description. Finally, offers may
also contain words other than attribute names and values.
We present an automated technique for matching unstruc-

tured offers to structured product descriptions. A novel as-
pect of our approach is the semantic parsing of offer descrip-
tions using dictionaries built from the structured catalog.
Another novelty is that the matching function we learn fac-
tors in not only matches but also mismatches of attribute
values as well as the missing attribute values. Our approach
has been implemented in an experimental search engine and
is used to match all the offers received by Bing shopping to
the Bing product catalog on a daily basis. We present ex-
tensive experimental results from this implementation that
demonstrate the effectiveness of the proposed approach.

1. INTRODUCTION
With the increasing widespread use of the Internet, there

has been tremendous growth in the amount of commerce
conducted over the Web. A recent Comscore study [1] es-
timates that the yearly retail e-commerce sales in the U.S.
alone has topped $100 Billion. Nearly seven out of ten con-
sumers said that the Internet has become important in pro-

∗Work done while author was an intern at Microsoft Re-
search

viding them with information to help them make buying
decisions. More than 70% of consumers said they are likely
to shop online before making an offline purchase.

A comprehensive product catalog is a prerequisite for the
effectiveness of an e-commerce search service. Such a catalog
at web-scale will contain information about every product as
well as sales offers from various merchants. For instance, the
Bing Shopping catalog (shopping.bing.com) has information
on more than five million products and more than ten mil-
lion offers from upwards of tens of thousands of merchants.
The product information consists of various attributes and
their corresponding values, stored in a structured record
comprised of attribute ⟨name, value⟩ pairs. Many products
do not have universally agreed unique identifiers. The prod-
uct information is obtained from multiple product aggrega-
tors (e.g., CNET, PriceGrabber), each of them having only
partial but different information. Consequently, the cata-
log can have multiple data records, each somewhat different
from the other, corresponding to the same product.

Similarly, offers come frommultiple merchants (e.g., buy.com,
gadgettown.com). Generally, there is very little structure
in the offers. Typically, an offer consists of a textual de-
scription of the product for which the offer is being made.
Embedded in the description are some attribute values and
sometimes attribute names along with other terms, which
the merchant presumes might be sufficient for the offer to
be matched to the intended product. Different merchants of-
ten use different names for the same attribute. Many offers
have no identifier that could be used for matching the offer
to the corresponding product. The matching is currently
done using rules written by experts – a costly, error-prone,
and brittle process. Consequently, many offers are matched
incorrectly and millions of offers go unmatched.

Fig. 1 shows part of the structured record for Panasonic
DMC-FX07 digital camera as well as three merchant offers
for this product as they appear in the Bing Shopping catalog.
We make the following observations:

• While Offer-1 is the most detailed one shown, it still
contains only a small part of the information in the
structured record. The phrase ‘Panasonic Lumix’ in-
dicates both brand (Panasonic) as well as product line
(Panasonic Lumix). Some of the attribute values only
match approximately (7.2 megapixel vs. 7 megapixel,
LCD monitor vs. LCD display). The only attribute
name present in the offer is optical zoom (called ‘lens
system: optical zoom’ in the structured record). The

Structured Record (Product)

Attribute Name Attribute Value

category

brand

product line

model

sensor resolution

color

weight

width

height

depth

display: type

display: technology

display: diagonal size

audio input type

flash memory: form factor

flash memory: storage capacity

video input: still image format

video input: digital video format

lens system: optical zoom

digital camera

Panasonic

Panasonic Lumix

DMC-FX07

7 megapixel

silver

132 g

9.4 cm

5.1 cm

2.4 cm

LCD display

TFT active matrix

2.5 in

none

memory stick

8 MB

JPEG

MPEG-1

3.6lens system: optical zoom

…

3.6

Panasonic DMC-FX07EB digital camera silver

Panasonic Lumix DMC-FX07 digital camera [7.2 megapixel, 2.5”, 3.6x

optical zoom, LCD monitor]

Unstructured Text (Offer-1)

Lumix FX07EB-S, 7.2 MP

Unstructured Text (Offer-2)

Unstructured Text (Offer-3)

Figure 1: Structured product record for ‘Panasonic
DMC-FX07 digital camera’ and textual descriptions
from three matching offers.

corresponding values for this attribute are 3.6x vs. 3.6.

• Information provided in Offer-2 is largely a subset of
what is provided in Offer-1. This offer provides the val-
ues of category and brand, but the value of the model
has an extra suffix. It additionally provides the value
of the color attribute.

• Offer-3 is even more interesting. It provides part of
the value of the product line (Lumix) and a some-
what different value for sensor resolution (7.2 MP vs.
7 megapixel) as well as model (FX07EB-S vs. DMC-
FX07). It neither provides category nor brand infor-
mation.

• With respect to Offer-3, note further that Panasonic
also makes other 7.2 megapixel Lumix digital cam-
eras (e.g., DMC-TZ3K, DMC-LZ6, and DMC-FX12).
Moreover, there is also a field controller product with
model number FX07.

Clearly, we have on our hands a hard problem of matching
unstructured textual descriptions of products to structured
records for which it is desirable to have algorithmic solution.

1.1 Problem Description and Highlights of the
Solution

We have a large database of product specifications. Each
product specification (which we shall interchangeably call
‘product’) consists of a set of attribute ⟨name, value⟩ pairs
and is represented in the database as a structured record.
Some of the attributes can be numeric, while the others can
be categorical. The unstructured offer descriptions (which
we shall call ‘offer’, for short) are comprised of free text. The
text has embedded in it some of the values and possibly some
attribute names corresponding to one of the products. The
text may also contain additional words. The attribute names
and values in the text may not precisely match those found
in the database. The text does not contain an identifier
that uniquely identifies the corresponding product. Different
textual descriptions may be provided for the same product.
An offer may match more than one product as only partial
descriptions are provided in the offers and because the same
real-world product might have multiple representations in
the product database.

Our goal is to enable automated matching of the offers to
corresponding products. Highlights of our proposed solution
include:

1. Developing semantic understanding of the offers by
leveraging structured information in the database. Specif-
ically, we identify and assign attribute names to the
values present in the offers. This semantic parsing
serves to identify the product the offer corresponds to.

2. Learning a matching function that finds the product
which has the largest probability of match to the given
offer. This function is designed to have the following
properties:

• It takes into account matches as well as mismatches
in attribute values between offer-product pairs.

• It differentiates between missing attribute values
and mismatch of attribute values.

• It infers the relative importance of different at-
tributes in the matching.

3. Built-in strategies for the solution to work at web scale.
These strategies include

• Avoiding domain-specific features in the match-
ing system.

• Reducing the candidate set of products that can
potentially match a given set of offers.

To evaluate the quality of the proposed solution, we per-
form large scale experiments using the Bing product cat-
alog and merchant offers. The precision and recall values
obtained from these experiments demonstrate the effective-
ness of the solution. Our approach has been implemented in
a working search engine and is used to match all the offers
received by Bing shopping to the Bing product catalog on a
daily basis.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work. In Section 3, we present our approach.
The data-sets and metrics we use for evaluating the per-
formance of the algorithm are given in Section 4. We also
present experimental results in this section. We conclude
with a summary and directions for future work in Section 5.

Algorithm 1 Off-line Training

Input:
U = {u1 . . . uN} - a set of offers
S = {s1 . . . sM} - a set of structured product descriptions,
M >> N
M = {⟨ui, sj⟩i}Ni=1, (ui ∈ U , sj ∈ S) - pairs of correctly
matched records, one for every ui.
N = {⟨ui, sk⟩i}Ni=1 - similarly, pairs of mismatched
records.
Output:
D - dictionaries,
w - algorithm parameters
Preprocess:
D ⇐ CreateAttributeDictionaries(S) - build dictionaries
of attributes and their values using S
Train:
for all u ∈ U do

u ⇐ SemanticParsing(u,D) - Extract plausible parses
(Sec. 3.2)

end for
for all pairs ∈ M and pairs ∈ N do

fMi ⇐ ExtractSimFeatures(pairi)
fNj ⇐ ExtractSimFeatures(pairj) - Construct similar-
ity feature vector for matched and mismatched pairs
(Sec. 3.3)

end for
w ⇐ argmaxω LearnToMatch(F(ω, f), {fMi }, {fNj }) -
Train a function that maps feature vectors to match prob-
ability, F(ω, f) : f → [0, 1] (Sec. 3.4)
Return: w,D

2. RELATED WORK
The problem of matching records has been studied under

various topics including record linkage [2, 3, 4, 5], duplicate
detection [6, 7], entity resolution [8, 9, 10], and merge/purge
[11]. While our work continues this rich lineage of work,
there are distinguishing traits in our setting that call for
fresh approaches and techniques. For instance, while the
work of Newcombe [4] (later formalized by Fellegi and Sunter
in [3]) pioneered the probabilistic approach to matching,
their work (and much of the subsequent record linkage liter-
ature) tacitly assumes that the data to be matched consists
of properly structured records with a well-defined schema.
The work on duplicate detection, merge/purge, and entity
resolution is also targeted at structured and properly seg-
mented records. At the other end of the spectrum, the work
in the natural language processing[12] focuses on the detec-
tion of mentions of the same entity in free text. In contrast,
in matching offers to products, there are components from
both bodies of work: the offers consist of only free text, while
the products are properly structured under a given schema.
Much of the prior work has relied on presence of values for

all attributes in the data records, and the goal has been to
design similarity metric either at the entire record level [13,
14] or at the attribute level that are subsequently combined
to measure record level match [15, 16]. This assumption
is not valid in our setting. Since offers are free text, their
tokens need to be mapped to attributes. However, not all
tokens may map to any attribute (e.g., the token ‘monitor’
in Offer-1 of Fig. 1), and when they do map, they can be
ambiguously mapped to multiple attributes (e.g., the token

Algorithm 2 Online Matching

Input:
u - offer
S,D,w
Output: s∗ - best matching s ∈ S
u ⇐ SemanticParsing(u,D) - (Sec. 3.2)
Blocking:
[ki] ⇐ Top attributes with largest weights in w
S∗ ⇐ Subset of S with ∪i(u.val(ki) = s.val(ki)
for all si ∈ S∗ do

fi ⇐ ExtractSimFeaturs(⟨û, si⟩,K) - (Sec. 3.3)
P (match(si, u)) ⇐ F(w, fi) - Matching score of a pair
(Sec. 3.5)

end for
Return: s∗ = argmaxsi P (match(u, si)) - Best Matching
score of all pairs (Sec. 3.5)

’Panasonic’ in Offer-1 of Fig. 1). So, unlike in previous set-
tings, matching algorithm needs to disambiguate among the
multiple possible interpretations of the offers. These prob-
lems also arise in the context of understanding queries [17,
18]. In [17], a probabilistic model is introduced to identify
the annotation of a query which corresponds to best expla-
nation of that query. In our work, we propose the notion of
optimal parse which is defined with respect to a product the
offer will be matched against.

While prior work has focused primarily on the computa-
tion of weights for value matches and mismatches for the
different fields of a record [15, 16], the explicit modeling of
missing values has not received much attention. An excep-
tion is in [19], wherein a comparison feature vector is aug-
mented to encode presence/absence of values. However, this
approach does not explicitly penalize mismatches at the at-
tribute level, and therefore does not leverage a strong signal
for matching offers to products.

Specifically in the Commerce domain, Bilenko et al. [20]
proposed techniques for clustering merchant offers, but as-
sume that the offers have structured information. The chal-
lenges of matching unstructured offers to structured product
specifications are not present when clustering structured of-
fers.

3. METHODOLOGY

3.1 Problem Statement
We have a database S of product descriptions, represented

as structured records. Every structured record s ∈ S con-
sists of a set of attribute ⟨name, value⟩ pairs. The attributes
can be numeric or categorical. We receive an unstructured
offer u as input, which is a concise free-text description that
specifies values for a subset of the attributes in S in an
arbitrary manner. The text may also contain additional
words. Our objective is to match u to one or more struc-
tured records in S. We use the metric of precision and recall
for judging the quality of the matching system.

We take a probabilistic approach and find the product s ∈
S that has the largest probability of match to the given offer,
u. Our matcher is learned in an offline stage (Algorithm 1).
For this, we postulate a small training set U of unstructured
offers. Each u ∈ U has been matched to one structured
record in S (set M). We also have mismatched records

Panasonic Lumix DMC-FX07 digital camera [7.2 megapixel , 2.5“, 3.6x optical zoom, LCD monitor]

brand model optical sensor

resolution
display

diagonal size
display typeoptical zoom

Attribute Type Attribute Value Maximal Parsing of Unstructured Record (a)

product line

(a)

(b) Attribute Type Attribute Value Maximal Parsing of Unstructured Record (a)

s1 brand

product line

model

display diagonal size

display type

Panasonic

Panasonic Lumix

DMC-FX05

2.5 in

LCD

s2 brand

model

optical sensor resolution

optical zoom

Panasonic

DMC-FX07

7.2 megapixel

3.6x

Panasonic Lumix DMC-FX07 digital camera

[7.2 megapixel , 2.5“, 3.6x optical zoom, LCD monitor]

Panasonic Lumix DMC-FX07 digital camera

[7.2 megapixel , 2.5“, 3.6x optical zoom, LCD monitor]

(b)

Figure 2: (a) An offer u (b) Two products s1 and s2 and the optimal parses of u.

from S, one for every u ∈ U (set N).
In the subsequent online stage (Algorithm 2), new offers

are matched one at a time. We first do candidate selec-
tion, and then choose the best matched product amongst
the candidates by applying the learned model.
We next describe the key components required for the

two algorithms corresponding to learning the matcher in the
offline stage and matching the offers in the online stage:

3.2 Semantic Parsing
Our matching algorithm is based on understanding the

semantics in the offer descriptions and using that seman-
tics to aid in matching. Thus, the first step in matching is
the semantic parsing step in which the semantics present in
the offer is understood. This is operationalized in a three
stage process consisting of tagging the offer with attributes,
identifying plausible parsings based on the tags and finally
obtaining an optimal parse. We describe each of these steps
below.
Tagging: The tagging step identifies attribute names

present in the offer and associates all strings in the offer that
can be assigned to them. Let A represent all the attributes
present in structured data available in product descriptions
S. We first build an inverted index D from S such that D(v)
returns the attribute name a ∈ A associated with string v.
Given an offer u, let Zu represent the set of all n-grams (up
to n = 4) present in u. Then, the tagging step identifies the
set of all attribute ⟨name, value⟩ pairs in u:

Ru =
{⟨

a, {v|v ∈ Zu,D(v) = a|}
⟩
|a ∈ A

}
(1)

Fig. 2(a) shows an offer for digital camera, and the out-
put of the tagging step. A portion of the output from this
step is { {brand, {‘panasonic’}}, {product line, {‘lumix’,
‘panasonic lumix’}}, where brand and product line are the
two of the identified attributes, with brand having a single
value ‘panasonic’ and product line having a set of two values
{‘lumix’, ‘panasonic lumix’}.
Plausible parse: Given the tagging, a plausible parse

of an offer is defined to be a particular combination of all
attributes identified in the tagging step such that each at-
tribute is associated with exactly one value. Thus, if each
attribute a has ka values, then there are exactly

∏
a ka plau-

sible parses in the offer. Typically, ka is small and thus, only
a small number of parses are plausible.

The example in Fig. 2(a) has a single value for six of the
seven identified attributes and the ‘product line’ attribute
has two values. Thus, this offer has two plausible parses,
one parse in which ‘lumix’ is the ‘product line’ and other
in which ‘panasonic lumix’ is the ‘product line’, while the
values do not change for other attributes between parses.

Multiple plausible parses arise because of ambiguities in
the data. Therefore, we maintain these plausible parses until
the offer is paired with a product which gives rise to the
optimal parse of the offer with respect to that product.

Optimal parse: When an offer is paired with a product
⟨u, s⟩ ∈ M (also for pairs in N), we use the parse of the
offer that is best in agreement with the product. By best
in agreement we mean, the parse in which the maximum
number of attributes agree in their values in u and s. We
call this plausible parse as the optimal parse of the offer to
the product. Note that optimal parse is defined only with
respect to the product. Different products can give rise to a
different choice of plausible parse to be optimal.

Continuing with our example using Fig.2b, the optimal
parse of u corresponding to product s1 is the plausible parse
with ‘Panasonic Lumix’ as the product line. When u is
paired with s2, both plausible parses are optimal since s2
does not have product line specified.

3.3 Similarity Feature Vectors
Similarity between an offer and a product is measured

in terms of their similarity on the values of the attributes
present in them. Since products have a large number of
attributes, we choose a subset of these attributes that are
present in offers. In particular, using Eqn. 1, we select at-

tributes, K such that∑
u∈U I[Ru(k) ̸= ∅]

|U| > 0 (2)

where Ru(k) represents the values of the attribute k found
in Ru (according to Eqn. 1). I[t] is the indicator function
and the expression [Ru(k) ̸= ∅] is defined to be true if Ru(k)
has one valid value for attribute k is found in u.
We would like the similarity function defined over K to

take into account not only the match in values of certain
attributes, but also reflect mismatches or missing values in
either products or offers. The function should penalize mis-
matches differently from missing values; In fact, a mismatch-
ing value is a stronger indicator of the corresponding offer
and product mismatching. In addition, an attribute that is
frequently missing reflects its lower importance for match-
ing.
With these design considerations, we define the similarity

feature vector as follows: Let û represent the optimal parse
of offer u with respect to product s. Then, for the pair
⟨û, s⟩, we compute a similarity feature vector f by deter-
mining similarity levels between û and s for each attribute.
Let û.val(k) and s.val(k) represent the value of some at-
tribute k from û and s, respectively. The similarity between
û and s for attribute k is defined to be:

fj =


0 if û.val(k) = ∅ OR s.val(k) = ∅
(−1)

I[
|û.val(k)−s.val(k)|

max(û.val(k),s.val(k))
>λ]

if kj is numeric attribute

(−1)I[û.val(k)=s.val(k)] otherwise
(3)

where I[z] is the indicator function. When either the optimal
parse of the offer or the product has a missing value for
an attribute, the corresponding feature value is 0, unlike
when the values mismatch whence the value is -1. This
enables penalizing the matching score differently when û or
s is missing an attribute value than if they disagree on that
attribute.
For categorical attributes, we use binary loss since the of-

fer descriptions typically do not have typographical errors
(perhaps due to the fact that they are shown on merchants’
websites). However, numeric attributes frequently have im-
precise values because of round-off errors (e.g. 7 MP vs. 7.2
MP) or difference in conversion factors (1GB = 1000 MB
or 1GB =1024 MB). After some experimentation, we set λ
to .1 to provide a less sensitive measure of similarity than
that of the binary loss. This parameter is held at .1 across
all categories. If desired, it can be learned using cross val-
idation. Another possibility, is to set λ to zero, requiring
the stringent condition that numeric attribute values should
also match exactly.

3.4 Matching Function
We would like a matching function that can provide a

probabilistic score of match between an offer and a product
so that the best matching product to an offer is the one that
has the largest probability. In addition, as the number of
attributes in S is large, and not all attributes are present
in the offers, the function needs to automatically infer at-
tributes that are required to be matched, and also learn the
relative importance between them.
We find that binary logistic regression conveniently lends

itself to satisfy these two criteria. Given some labeled data
of good and bad matches, and features that measure simi-
larity between the attributes, it can automatically learn the

relative importance between the attributes, and in turn pro-
vide a function that measures the match between an offer
and product in terms of a probabilistic score. Hence, we use
binary logistic regression of the form:

F(w, f) = P (y = 1|f ,w) =
1

1 + exp {−(b+ fTw)} (4)

The logistic regression learns a mapping from the similarity
feature vector f to a binary label y, through the logistic
function. The parameter w is the weight vector wherein
each component wj measures the relative importance of the
feature fj for predicting the label y.

We have with us all matched and mismatched training
pairs, and let fi = [fi1, fi2, . . . , fi|K|] be the feature vector
for pair i. Let {F,Y} = {(f1, y1), . . . , (fN , yN)} be the set of
feature vectors along with their corresponding binary labels.
Here, yi = 1 indicates that the ith pair is a match, otherwise
yi = 0. Logistic regression maximizes an objective function
which is the conditional log-likelihood of the training data
P (Y|F,w):

argmax
w

logP (Y|F,w) = argmax
w

N∑
i=1

logP (yi|fi,w), (5)

where P (yi = 1|fi,w) is defined by Eq. 4. Note that a fea-
ture with positive weight will affect the score by increasing
the probability of match for a pair with agreement on the
feature, by decreasing the score in the case of a mismatch,
and by leaving the score unaffected in the case of a missing
value.

3.5 Online Matching
During the online phase, we are given a previously unseen

offer u, and the goal is to identify the best matching product
s ∈ S.

The scoring function learned during the offline phase pro-
vides the probability of match for a pair ⟨u, s⟩. Naively, we
can find the best match by pairing u with every s ∈ S, calcu-
lating the pair match score, and choosing the s∗ that results
in the highest score. However, such naive pairing will cost
O(|S|) operation for each offer.

Instead, building upon the work in record linkage [2, 21]
and merge/purge [11], we design a staged blocking strategy.
We note that the products are usually categorized into a
taxonomy. Therefore, in the first stage, we use a classifier
to categorize the given offer into a category node in this
taxonomy. This reduces the candidate set to only those
products that belong to the offer category.

Further, within the category, we would like to reduce the
number of candidate products to match agaisnt the offer.
For that, we make the following observation. The goal of
the matching process is to match the offer to the product
that has the largest matching score. To obtain this large
score, a product needs to agree, especially on the values of
the attributes that contribute large weights to the matching
function. Using this insight, in the second stage, we further
reduce the candidate set by identifying those top weighing
attributes that can potentially give a matching score of at
least θ in Equation 4. To describe in detail, after identi-
fying attributes in the offer using method in Sec. 3.2, we
choose attributes in the descending order of weights until
the following condition is satisfied:∑

j

fjwj ≥ log
θ

1− θ
− b (6)

where weights are ordered so that wj >= wj+1∀j.
This equation can be derived in straightforward way from

Equation. 4 by rearranging terms and taking the log. Here,
θ corresponds P (y = 1|f ,w). This set of attributes {kj} are
then used to retrieve products such that the retrieved prod-
ucts match on value of at lease one of the attributes in {kj}.
The union of all these products becomes the candidate set
of products. Note that, this candidate set is a superset of
products that can potentially match to offer since we con-
sider all products that have at least one matching attribute
value, within this attribute set. In our experiments, we use
θ = 0.5 as it is mid point on the probability scale.

4. EVALUATION
The matching system described in the previous section has

been implemented in a working experimental search engine
and is used to match all the offers received by Bing shopping
to the Bing product catalog on a daily basis. In this section,
we present performance results from experiments using this
implementation.

4.1 Algorithms used in the Study

Variants of our Algorithm
We define the following variants of our matching algorithm
in order to study its various characteristics:

1. Equal Weights (EW): This is the simplest version
where the number of agreeing attributes between the
offer u and the product s is used as the predictor for
matching. The product s having the largest number of
attributes in agreement with u is taken to be the best
match.

2. Learned Weights (LW): In this version, we learn
the relative importance between the attributes, but we
treat missing and mismatched attributes as equals. For
attribute k, the value of feature fk is -1 when either the
values are missing or when the values are mismatched.

3. LW with distinction between Mismatched and
Missing (LWMM): Here, relative importance be-
tween attributes is learned taking into account whether
attribute values are mismatched or missing. For at-
tribute k, the value of feature fj for missing values is
0, and it is -1 for mismatched values. This version
implements the full functionality of Algorithm 1.

Baseline Algorithms
In the absence of an algorithm, directly applicable to our
problem formulation, we define two baselines, COSINE and
TFIDF for comparison. They are inspired by the work in
record linkage for measuring token-level similarity ([13, 14,
20]).

• COSINE: This baseline uses the cosine similarity as
the measure of agreement between the offer and prod-
uct. Similarity is measured between the frequency dis-
tribution of tokens in u and s [20]. As s is structured,
it is first converted into a string by concatenating the
content of the record. The s having the largest cosine
similarity with u is taken as the best match.

• TFIDF: This baseline uses the tf-idf weighted cosine
similarity as the measure of agreement between the

offer and product. Each token is associated with the tf-
idf score defined by log(TF(token)+1) log(IDF(token))
[14]. Here, TF(token) is the frequency of the token in
the offer/product and IDF(token) is its corresponding
inverse document frequency; IDF(token) is computed
across all the products in the category. Similarity is
measured between the normalized tf-idf score of tokens
in u and s.

Note that while COSINE treats all tokens as equally use-
ful, TFIDF will weigh them inversely to their popularity.
Thus, a token such as ‘40d’ (corresponding to model num-
ber of a canon eos 40d digital camera) will have higher tf-
idf score than ‘digital camera’ that is ubiquitous in digital
camera category. Typically, tokens that are unique such
as model numbers and brands are those that are useful in
matching. Since TFIDF can choose such unique tokens, it
can serve as a good baseline to our approach.

4.2 Performance Metrics
For evaluation purposes, we have access to a test set of

offers, u ∈ T . We also know the correctly matched product
s∗ for every u. The matcher has no knowledge about the
matching product, but instead predicts the best matched
product s̃ with probabilistic score γu,s̃. By best matched we
mean that there is no other s that can match u with a higher
score. Thus, instead of a standard classification task, we are
evaluating performance on the harder task of the matcher
finding the best matching s for every offer u. We require the
match score to be at least some given level θ ∈ [0, 1] before
calling out a match.

We define precision and recall at threshold level θ as:

Precision(θ) =

∑
u∈U I[(γu,s̃ > θ) AND (s∗ = s̃)]∑

u∈U I[γu,s̃ > θ]
(7)

Recall(θ) =

∑
u∈U I[(γu,s̃ > θ) AND (s∗ = s̃)]

|T | , (8)

where I[z] is the indicator function. Unless stated otherwise,
θ is set to 0.5. We also combine precision and recall values
into the well-known F-measure, defined as:

F-measure(θ) =
2 ∗ Precision(θ)Recall(θ)

Precision(θ) + Recall(θ)
. (9)

4.3 Data Sets
We use a subset of the Bing Shopping catalog in our eval-

uation. The products belong to 87 categories related to
electronics (e.g., televisions, mp3 players), computing (e.g.,
desktop computers, laptops) and cameras and accessories
(e.g., digital cameras, camera accessories). We had a la-
beled set of 40,000 offers from these categories, each labeled
with the corresponding matched products. There were on
average 460 offers/category; the smallest category had 50
offers. For each category, we randomly sampled 100 offers
(20 if the number of offers is less than 200) and used them
for training the matcher. We used whatever offers were left
within a category as the test set for that category. Thus, the
training set for each category had at most 100 samples. The
test set size varied from category to category as we made
use of all the available samples, but in no case the test set
was smaller than 30 samples. Results are shown using 5-fold
cross validation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
r
e
c
i
s
i
o
n

Modems

Bags & cases

Memory cards

Hubs

Laptops

Privacy filters

Digital cameras

Motherboards

Televisions

Switches

(a) Performance of LWMM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F measure for COSINE

F

m
e
a
s
u
r
e

f
o
r

L
W
M
M

Mouse pads
Hubs

(b) LWMM vs. COSINE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F measure for TFIDF COSINE

F

m
e
a
s
u
r
e

f
o
r

L
W
M
M

AV Receivers

Digital cameras

Tripods

Mouse pads

(c) LWMM vs. TF-IDF

Figure 3: LWMM Performance

Offer Description Products

imation 4gb nano usb 2.0
flash drive - 4gb - usb - ex-
ternal

imation nano flash drive
usb flash drive - 4 gb

imation 2gb usb 2.0 clip
flash drive

Table 1: Sample offer and two products from the
memory cards category.

Note that other than using a separate training set for each
category, we do not use any category-specific feature and
the same code is used for different categories. We use small
training set (100 offers per category), which can be curated
easily from successful matches (e.g., high click throughs) in
a running system. We also do not have any parameters that
needs to be tuned. These characteristics are critical for a
solution to work at web scale.

4.4 Experiment 1: LWMM Performance
We start by presenting precision and recall values for dif-

ferent categories. Fig. 3(a) shows the scatter plot of precision-
recall values that the LWMM algorithm exhibits. Each circle
corresponds to a category and the area of the circle is pro-
portional to the test set size. We have labeled some of the
categories. The macro average precision is 80% while the
macro average recall is 50%.

By way of comparison, Fig. 3(b) (resp. Fig. 3(c)) gives the
ratio of the F-measure achieved by LWMM to the F-measure
achieved by COSINE (resp. TFIDF). The macro average
precision and recall for COSINE are 50% and 37%, respec-
tively. The corresponding numbers for TFIDF are 54% and
42%.

We observe that LWMM has high performance over a
range of categories and performs better than COSINE as
well as TFIDF. The next three subsections present further
findings.

Difference in performance of LWMM over various cat-
egories
We see in Fig. 3(a) that LWMM has very high performance
on categories such as digital cameras and televisions, but
the performance becomes lower on categories such as bags
& cases and memory cards. This difference can be under-
stood by examining how complete the information is for the
products in the corresponding categories.

As described in Section. 3.2, an important component of
our matching system is semantic parsing which makes use of
attribute dictionaries compiled from attribute data for the
products. This means that the quality of the attribute di-
rectories is dependent upon the quality of the product data.
For the categories such as digital cameras and television the
product data is nearly complete that enables high quality
semantic parsing leading to LWMM’s high performance.

In comparison, note that memory cards category has low
recall and precision. Table. 1 shows an offer and two prod-
ucts from this category. The distinguishing attribute for cor-
rect matching in this category is the capacity of the mem-
ory card. However, in our product catalog, the value for
this attribute is missing in all but two products (out of 7500
products).

Improvement in LWMM over COSINE
In Fig. 3(b), COSINE’s F-measure is much lower than LWMM
for most of the categories. By examining instances where the
matches differ, we found that the main reason is that there
are many tokens in the offers that are not distinguishing at-
tribute names or values, but generic terms. Since, the cosine
similarity weighs all tokens equally, it is unable to perform
effective matching. This demonstrates the importance of
performing semantic parsing of the offer description and us-
ing only the relevant tokens (attribute names and values) in
the matching.

Improvement in LWMM over TFIDF
TFIDF weighs the relative importance of the tokens, but
only as measured by the frequency of their presence in the
product collection. It is not cognizant of what tokens are
semantically important. Thus, the token ‘canon’ gets down-
weighted because there are very many canon cameras. How-
ever, ‘canon’ as the brand is a very good indicator of a prod-
uct identity. Hence, it is important to identify the attributes
that are present in the offers and their relative importance
for better matching.
We investigated further the categories where the COSINE

and TFIDF do better than LWMM. These categories include
hubs, mouse pads and tripods. We found that the primary
reason is that these categories have very few structured at-
tributes. For example, tripods have only two attributes:
brand and height. Additionally, many tripods have the same
value for these attributes. Our matching function thus finds
that it is matching too many products for an offer and re-
fuses to return a product. LWMM thus ends up with 100%
precision and 8% recall for tripods. COSINE and TFIDF,
on the other hand, take chance on the name of the product
and have higher recall (and a higher score for F-measure).
Similar observations hold for hubs and mouse pads.
Two points are in order here. First, our deployed system

is designed to be conservative; it is willing to sacrifice re-
call for precision. More importantly, this analysis points to
selectively adopting a hybrid strategy. When a category is
impoverished with respect to the number of the attributes
required to explain its products, a hybrid scheme that uses
both structured information as well as token representation
should be used.

4.5 Experiment 2: Importance of learning weights
Fig. 4(a) shows the scatter plot of F-measure of LWMM

over EW’s F-measure. Clearly, learning weights makes match-
ing better. We notice that the gains are much larger for
some categories than others. To understand this difference,
we drill down on two categories – digital cameras and tele-
visions.
Fig. 4(b) shows the precision-recall values for digital cam-

eras. For this category, there were seven attributes present
in at least one offer during the offline training phase. These
attributes were brand, model, product line, color, resolu-
tion, optical zoom, viewfinder type and video input type).
EW weighs these attributes equally. At low recall, EW
insists on all key attributes to agree on their values, and
hence the precision becomes high. However, as we increase
recall by reducing the number of agreements in attributes,
precision drops. It is as expected since certain combinations
of attributes provide spurious matches (eg. agreement on
color and resolution of a camera). On the other hand, by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F measure for EW

F

m
e
a
s
u
r
e

f
o
r

L
W
M
M

Monitor stands
Digital cameras

Mousepads

Mics

Televisions

(a) LWMM vs. EW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
r
e
c
i
s
i
o
n

LWMM

EW

(b) LWMM vs. EW (Digital Cameras)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
r
e
c
i
s
i
o
n

LWMM

EW

(c) LWMM vs. EW (Televisions)

Figure 4: Importance of learning weights

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F measure for LW

F

m
e
a
s
u
r
e

f
o
r

L
W
M
M

Privacy filters

Digital cameras

TelevisionsBatteries

Printer Parts

car speakers

Figure 5: Treating mismatching attributes differ-
ently from missing attributes

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

Recall

P
r
e
c
i
s
i
o
n

100

200
150

20
50

Figure 6: Effect of training set size on test set per-
formance

learning the relative importance of the attributes, LWMM
matches a larger fraction of offers without sacrificing much
of precision.
The precision-recall values for televisions are shown in

Fig. 4(c). For this category, only five attributes (brand,
model, product line, diagonal screen size, projection display
technology) are present in the offers, during the offline train-
ing phase. We found that these attributes were often present
in the data completely and the values were generally correct.
Hence, the performance of EW is quite high and it performs
almost as well as its learned counterpart, LWMM.

4.6 Experiment 3: Importance of treating mis-
matching attributes differently from miss-
ing attributes

Fig. 5 shows the scatter plot comparing the F-measures
between LWMM and LW. We can see that there is a gain
in F-measure for all categories, when we treat missing at-
tributes differently from mismatched values. The gain is
less pronounced for high economic value categories such as
digital cameras than for low economic value categories such
as batteries. The reason is that in the case of the former,
the merchants have the incentive to provide better offer de-
scriptions containing all the necessary attributes needed for
matching. Hence, missing attributes becomes less of an is-
sue.

4.7 Experiment 4: Scalability

0 20 40 60 80 100
0

20

40

60

80

100

Total number of attributes

N
o
.

o
f

k
e
y

a
t
t
r
i
b
u
t
e
s

c
h
o
s
e
n

Digital
camerasMouse pads

0 1000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
0

1000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

of products

A
v
e
r
a
g
e

#

o
f

p
r
o
d
u
c
t
s

c
o
n
s
i
d
e
r
e
d

p
e
r

o
f
f
e
r

Memory
cards

Laptops

Figure 7: Scalability contributors during online
matching

In this section, we give data on factors that contributed
significantly for our solution to work at web scale.

Off-Line Training Phase
In addition to the insistence on not having any custom-
designed features, we limit the training sets to small sizes.
Fig. 6 plots the macro average precision and recall values
for average number of samples per category in the training
set. We see that the number of samples needed is small.
It is because the matcher has to learn only a small number
of parameters as it is trained only on attributes present in
the offers. In our evaluation, for many categories having a
small number of matched offers, we used only 20 samples for
training. For larger categories, we used 100.

Online Matching Phase
As discussed in Section. 3.3, we consider only those at-
tributes that are present in offers. Fig. 7(a) shows that such
selection on attributes prunes away a large number of at-
tributes. Every point in this scatter plot corresponds to a
category and we can see that only 7-8 attributes are required
for matching even though the number of attributes generally
ranged from 40 to 50.

Additionally, we do staged blocking at the time of match-
ing. In the first stage, offers are classified into categories,
and then they are matched to products within that category.
This substantially reduces the number of products to com-
pare against. Subsequently, as described in Section. 3.5 only
a viable subset of products is selected to be matched against
the given offer. Fig. 7(b) shows the number of candidates
considered for each category. Each stem corresponds to a
particular category; the length of the stem is one standard

deviation variation of the average of number of candidates
across the offers in that category. We can see that the can-
didate set size is much smaller than the number of products
in most of the categories.

5. CONCLUSIONS AND FUTURE WORK
We studied the problem of matching unstructured tex-

tual description to structured data records that arises in the
context of matching sales offers to product specifications in
the e-commerce websites. The product specifications include
both numeric and categorical data. The key distinguishing
characteristics of our solution are:

• Semantic understanding of offer descriptions using au-
tomatically built attribute dictionaries from structured
product specifications contained in the product catalog

• A matching function that considers not only matches
but also mismatches of attribute values and the miss-
ing attribute values. The function learns the relative
importance between the attributes

• Avoidance of domain-specific features and use of staged
blocking strategies for the solution to work at web scale

We performed extensive experiments using Bing Shop-
ping catalog to understand the performance characteristics
of the proposed solution. The experimental results show
that the proposed approach scores high on F-measure and
consistently beats baseline approaches for product categories
that have reasonably rich attribute structure and good data.
They also point to the desirability of hybrid solutions that
additionally make use of classical text matching techniques
for attribute impoverished product categories. The method-
ology we employed for analyzing the experimental results
might also be of interest to those building and analyzing
web scale systems.
There are a number of potential future research direc-

tions. Currently, the training data we used has positive
examples (matched pairs), and we obtained negative exam-
ples by randomly pairing offers with non-matched products.
Ideally, we would like negative examples that are similar
to positive examples, yet mismatched so that the learning
algorithm can tease out subtle nuances between matching
and non-matching pairs. One possibility would be to obtain
such negative examples by using active learning, taking cues
from [7]. Another research direction is to learn to infer inter-
attribute correlations that can be helpful when the number
of key attributes is large. Finally, it will be interesting to
apply the proposed techniques to other application domains
(eg. Travel, Health) where there is preponderance need for
matching unstructured text to structured data records.

6. REFERENCES
[1] G. Fulgoni, “State of the U.S. Retail Economy in Q2

2009,” Comscore, Tech. Rep., August 20 2009.

[2] W. E. Winkler, “Overview of record linkage and
current research directions,” Bureau of the Census,
Tech. Rep., 2006.

[3] I. P. Fellegi and A. B. Sunter, “A theory for record
linkage,” Journal of the American Statistical
Association, vol. 64, no. 328, pp. 1183–1210, 1969.

[4] H. B. Newcombe, M. J. Kennedy, S. J. Axford, and
A. P. James, “Automatic linkage of vital records.”
Science, vol. 130, pp. 954–959, October 1959.

[5] P. Ravikumar and W. W. Cohen, “A hierarchical
graphical model for record linkage,” in UAI, 2004.

[6] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios,
“Duplicate record detection: A survey,” IEEE Trans.
on Knowl. and Data Eng., vol. 19, no. 1, pp. 1–16,
2007.

[7] S. Sarawagi and A. Bhamidipaty, “Interactive
deduplication using active learning,” in KDD, 2002,
pp. 269–278.

[8] R. Agrawal, R. Bayardo, C. Faloutsos, J. Kiernan,
R. Rantzau, and R. Srikant, “Auditing compliance
with a hippocratic database,” in VLDB, 2004, pp.
516–527.

[9] O. Benjelloun, H. Garcia-Molina, D. Menestrina,
Q. Su, S. E. Whang, and J. Widom, “Swoosh: a
generic approach to entity resolution,”The VLDB
Journal, vol. 18, no. 1, pp. 255–276, 2009.

[10] S. Singh, K. Schultz, and A. McCallum,
“Bi-directional joint inference for entity resolution and
segmentation using imperatively-defined factor
graphs,” in ECML-PKDD, 2009, pp. 414–429.

[11] M. A. Hernández and S. J. Stolfo, “The merge/purge
problem for large databases,” in SIGMOD, 1995, pp.
127–138.

[12] R. Mitkov, Anaphora Resolution. Longman, 2002.

[13] A. Monge and C. Elkan, “The field-matching problem:
algorithm and application,” in KDD, 1996.

[14] W. Cohen, “Integration of heterogeneous databases
without common domains using queries based on
textual similarity,” in SIGMOD, 1998, pp. 202–212.

[15] M. Cochinwala, V. Kurien, G. Lalk, and D. Shasha,
“Efficient data reconciliation,” Information Sciences,
vol. 137, no. 1-4, pp. 1–15, 2001.

[16] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and
S. Fienberg, “Adaptive name matching in information
integration,” IEEE Intelligent Systems, vol. 18, no. 5,
pp. 16–23, 2003.

[17] N. Sarkas, S. Paparizos, and P. Tsaparas, “Structured
annotations of web queries,” in SIGMOD, 2010, pp.
771–782.

[18] K. Q. Pu and X. Yu, “Keyword query cleaning,” in
PVLDB, 2008, pp. 909–920.

[19] J. N. S. D’Andrea Du Bois, “A solution to the problem
of linking multivariate documents,” Journal of the
American Statistical Association, vol. 64, no. 325, pp.
163–174, March 1969.

[20] M. Bilenko, S. Basu, and M. Sahami, “Adaptive
product normalization: Using online learning for
record linkage in comparison shopping,” in ICDM,
2005, pp. 58–65.

[21] A. Mccallum, K. Nigam, and H. L. Ungar, “Efficient
clustering of high-dimensional data sets with
application to reference matching,” in In Knowledge
Discovery and Data Mining, 2000, pp. 169–178.

