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Abstract

Retrieving images to match with a hand-drawn sketch

query is a highly desired feature, especially with the pop-

ularity of devices with touch screens. Although query-by-

sketch has been extensively studied since 1990s, it is still

very challenging to build a real-time sketch-based image

search engine on a large-scale database due to the lack of

effective and efficient matching/indexing solutions. The ex-

plosive growth of web images and the phenomenal success

of search techniques have encouraged us to revisit this prob-

lem and target at solving the problem of web-scale sketch-

based image retrieval. In this work, a novel index structure

and the corresponding raw contour-based matching algo-

rithm are proposed to calculate the similarity between a

sketch query and natural images, and make sketch-based

image retrieval scalable to millions of images. The pro-

posed solution simultaneously considers storage cost, re-

trieval accuracy, and efficiency, based on which we have

developed a real-time sketch-based image search engine by

indexing more than 2 million images. Extensive experiments

on various retrieval tasks (basic shape search, specific im-

age search, and similar image search) show better accuracy

and efficiency than state-of-the-art methods.

1. Introduction

Shape plays an important role in human visual percep-

tion, and has been widely used as a basic representation
for a variety of computer vision tasks, such as object de-

tection and recognition [14, 1]. As a core research problem

in computer vision, searching for images to match with a
hand-drawn sketch query has become a highly desired fea-

ture, especially due to the explosive growth of web images

and the popularity of devices with touch screens. An effec-
tive and efficient technique for sketch-based image search

technique could enable many useful applications, such as

enhancing traditional keyword-based image search, and en-
lightening children/designers’ drawing.

Sketch-based image search has been extensively studied

since 1990s. However, due to the lack of an efficient in-
dex solution, it still remains very challenging to develop a

∗This work was performed at Microsoft Research Asia.

Figure 1. Example results of the MindFinder system, queried by

some sequential interactive operations. For each step, top 10 re-

sults from the database of 2 million images are shown. The user

first drew a circle-like shape, and then progressively added more

curves. As we can see, every newly added stroke leads to more

impressive and relevant results.

sketch-based search system for millions or even billions of

images. Most research efforts still focus on the study of

sketch-to-image matching on a small-scale dataset. But in
practice, a large-scale image database is highly desired to

ensure the system can always find good matches for any s-

ketch query. The necessity of an efficient index solution
further makes sketch-based image search more challenging.

To build a large-scale sketch-based image search engine,

we need to overcome the following two challenges, i.e.

matching and indexing. However, the two challenges are
intimately coupled with each other, making it inappropriate

to just study one of them. The complexity of a matching

algorithm determines whether a proper index structure can
be designed to speed up the retrieval process. Meanwhile,

the growing desire of searching in larger databases poses

a more rigid requirement on the matching precision, for a
larger database increases the possibility of returning false

positives in top results.

In computer vision, many research efforts have been

spent on the shape-to-image matching problem. To bridge
the representational gap, many methods first generate some

intermediate descriptors, e.g. edge histogram [7], or di-
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rectly extract representative contours, e.g. Canny Edge [3],

from natural images in the database. Other methods try to
avoid this problem and constrain themselves to searching a

special kind of artworks, such as clip arts [15, 8] or simple

patterns [11, 12], which cannot be easily generalized to nat-
ural images. To facilitate the similarity calculation between

a sketch query and a natural image, mainstream approaches

divide them into the same number of blocks in a 2-D space
[7] or angular sectors in a polar space [5], in which the final

representations are all 1-D vectors with equal length. This
process greatly speeds up the pairwise matching. However,

none of these methods can fully capture the spatial informa-

tion of contours within each block. The other trend is to use
complex models to encode geometric information and mu-

tual relationship of objects, e.g. topology models [15, 8].

However, these models are computationally very expensive.

In contrast, little work has been done for solving the

shape-based indexing problem. Most existing query-by-
sketch methods suffer from the scalability issue due to the

lack of efficient indexing mechanisms. When scaling up to

millions of images, the response time and system cost are
generally unacceptable. A few methods [7] in the literature

were reported to increase the data size to more than one mil-

lion. However, their core techniques merely rely on linear
scan in the whole database, which greatly limits their scal-

ability to larger image corpora. In the industry, Gazopa1 is

a large-scale multi-modal image search engine, whose tech-
nical details of the sketching part are undisclosed. However,

its response time for a sketch query is typically more than
15 seconds, which is far from satisfactory.

In this work, we systematically investigate the problem

of large-scale sketch-based image search, and propose an
efficient matching/indexing framework targeting at million-

level or even larger image corpora. First, a novel index
structure called edgel2 index is proposed for sketch-based

image search by converting a shape image to a document-

like representation. Different from the well-known bag-

of-features representation in local feature-based image re-

trieval, where the visual vocabulary is quantized in the vi-

sual space, we describe a visual word using a triple (x, y, θ)
of the position x = (x, y) of an edge pixel (edgel) and

the edgel orientation θ at that position. By converting <

image, edgels > representation to < document, words >
representation, we can leverage an inverted index-like struc-

ture to speed up the sketch-based image search and make

real-time response possible in a million-level database. Sec-
ond, we propose a matching algorithm called structure-

consistent sketch matching to measure the similarity be-
tween a sketch query and a database image, which could be

efficiently implemented by our index strategy. Third, based

on the proposed matching/indexing framework, we build a
sketch-based image search engine called MindFinder3 [4],

which indexes 2.1 million Flickr images with 6.5GB memo-

1http://www.gazopa.com/
2edgel - the abbreviation of edge pixel
3http://research.microsoft.com/en-us/projects/mindfinder/

ry cost on a common server, and supports real-time response

(around 1 second). See Fig.1 for example search results.

It is worth noting that the tags of web images can be used
to bridge the semantic gap between a query sketch and a

natural image in case the sketch is insufficient to describe a

user’s search intent. MindFinder also supports adding tags
to associate with the sketch query to further enhance the

relevance of search results.

It should be noted that there are two works that looks re-

lated but are different from this work. Retrievr4 is an inter-
esting image search engine that enables users to find images

by drawing color strokes, which actually matches the color
distributions rather than shapes. Sketch2Photo [6] has a s-

ketch input interface, but it is an image montage system, in

which the sketch works as a rough filter to extract candidate
objects from a small image set collected by tag queries. It

often takes long time (in minutes) to composite an image.

2. Edgel Index

In this section, we introduce the proposed indexing s-
trategy for large-scale sketch-based image search, followed

by the structure-consistent sketch matching algorithm in the

next section.

2.1. Problem Formulation

The sketch-based image search in this work is defined as

follows. As shown in Fig.1, a user can draw some strokes

to represent the contours of an object(s) or a scene, and our
system will return the “best matched” images to the user.

The so-called “best matched” are two folds: 1) shape sen-

sitive, which means that the shape of the resulting image
should be as close as possible to the user’s input, and 2) po-

sition sensitive, which means that the matched object should

be at a similar position as the input sketch. In this paper, a
sketch is represented by multiple contours, and each con-

tour consists of many edgel pixels (edgels). For each image
in the database (called database image), we first convert it

to a shape image by edge detection and boundary detection,

and then we compare the similarity between a query sketch
and each database image in the shape space. We will detail

the image feature extraction in the experiment section.

To achieve this goal, many similarity measures could be

adopted, among which we choose the Chamfer Matching

(CM) [2] and its variants, e.g. the Oriented Chamfer Match-

ing (OCM) [16], due to their good performance on compar-

ing contours of objects [10]. Let us use a set of edgels D
to represent the contours of an image, in which the posi-

tion of an edgel p ∈ D is denoted by xp = (xp, yp) and its

gradient orientation is denoted by θp. The basic Chamfer
Distance [2] from a database image D to the query sketch

Q is defined as follows:

DistD→Q =
1

|D|
Σp∈D min

q∈Q
‖xp − xq‖2 (1)

4http://labs.systemone.at/retrievr
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Figure 2. Illustration of how to compare an object contour (blue

line) with a query sketch (red line). For convenience, we adopt

the L1 distance and only show one orientation channel for each

method. (a) A distance transform map generated from the sketch

using the OCM method. (b) The object contour. (c) A Hit map

generated from the sketch using the proposed IOCM method.

where |D| is the number of edgels of image D. Chamfer

Matching seeks to find the nearest edgel on the query sketch

Q for every edgel of the database image D. In order to re-
duce its complexity fromO(|D|×|Q|) to O(|D|), a distance

transform map (as illustrated in Fig.2) of the query sketch

Q could be constructed in advance, which actually uses s-
torage cost to reduce time cost. The symmetric Chamfer

Distance is given by:

DistQ,D =
1

2
(DistQ→D +DistD→Q) (2)

To encode orientation information of the edgel during

the matching, the basic Oriented Chamfer Matching [16]

was proposed:

DistD→Q =
1

|D|
Σθ∈ΘΣp∈D&θp=θ min

q∈Q&θq=θ
‖xp − xq‖2

(3)where Θ is the set of quantified orientations.

A major shortcoming of the Oriented Chamfer Match-

ing (OCM) is its scalability issue. With OCM, we have to

compare a query sketch with all the images in a database
and store their distance maps for speedup. Although it is

not difficult to calculate the distance between two contours

using OCM method according to Eqn.3, it is not trivial to
design an efficient indexing mechanism for OCM in sketch-

based image retrieval, which makes chamfer matching-
related methods rarely used in large-scale applications. To

search within two million images, all distance transform

maps for distance calculation need an extra 447GB5 memo-
ry space, which is difficult to handle using a common serv-

er with 8GB∼32GB memory. Due to the lack of index-

ing mechanism, even if there exists a super machine which
could load such a huge amount of data into memory, the

time cost of linear scanning the whole database is still un-

acceptable.

Therefore, to build a practical sketch-based image search

engine with OCM as the similarity matching function, we
need to develop an efficient index structure for it.

5We assume that all images are downsampled to a size whose longest
side is 200 (see Section 4.2 for details). Supposing a distance transfor-
m map has 6 orientation channels, the total size is 200 × 200 × 6 ×
2/1024/1.0242 ≈ 447GB.

Contour 0°      •       60°           90°          120°    • Sketch
Hit Map from Sketch

     (a)    (c)                (b)

match generate

Figure 3. Toy example of the IOCM process from a contour to a

sketch with tolerance radius r = 3. (a) The contour (black lines).

(c) The sketch (colored lines). It is divided into 3 parts based on

their orientations. Different colors, i.e. purple (0o), green (60o)

and red (120o), indicate different orientations. (b) Hit map (6

channels) generated from the sketch. In each channel, light col-

ored grids show the valid area expanded from the corresponding

sketch. We also display the contours (black lines) on correspond-

ing channels. Two channels are ignored since they are empty. In

this case, the horizontal line of the contour matches with the query

sketch, whereas the vertical line does not have a match.

2.2. Edgel Index Algorithm

2.2.1 Indexable Oriented Chamfer Matching

Actually, as shown in Fig.2(a), the distance transform map

of a contour is a multi-value distance map and not easy to
index. To utilize an inverted index-like structure, we pro-

pose to transform the distance map to a binary similarity

map (called Hit map). In our algorithm, the Hit map MQ

of a query sketch Q has NΘ channels, and each channel is a

binary map MQ
θ , θ ∈ Θ , where NΘ is the number of quan-

tified orientations. The value of the position xp on the map

MQ
θ is given by the following Hit function:

HitQ(p) =

{

1 ∃q ∈ Q (‖xq − xp‖2 ≤ r & θp = θq),

0 otherwise.

(4)where r is the tolerance radius.
Moreover, for an edgel p ∈ D, we can also use Eqn.4

to identify whether there is an edgel in Q with the same

orientation around position xp. By a simple Breadth-First-
Search algorithm, the Hit map of Q could be generated in

Ω(|Q|). To calculate the similarity from image D to Q, we

only need a linear scan as follows:

SimD→Q =
1

|D|
Σp∈DHitQ(p) (5)

whose time complexity is Ω(|D|). Thus, the symmetric In-
dexable Oriented Chamfer Matching (IOCM) is given by:

SimQ,D = (SimQ→D · SimD→Q)
1

2 (6)

In this way, we naturally convert the distance measure-

ment into a similarity measurement. Compared with OCM,

IOCM greatly simplifies the computational complexity and
reduces the system cost. Besides the indexable property, an-

other advantage of this measurement is the ability of tolerat-

ing local distortions. For example, as shown in Fig.2, when
a user tries to draw a straight line, due to the trembling of

user’s fingers, local distortions (red line) are unavoidable.
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Figure 4. Index structure for database-to-query IOCM process.

Picture in the upper-left corner is a mixed map combined with the

user sketch and its Hit map (all channels are merged into one map

for better visibility).

Using OCM (Fig.2(a)), the distance from the desired con-
tour (blue line) to the sketch is 1.16, which is much larger

than 0. While using IOCM (Fig.2(c)), the two contours are

treated to be fully matched. Another example is shown in
Fig.3, where the horizontal line of the contour matches with

the query sketch, while the vertical line does not match.

2.2.2 Indexing for Database-to-Query Matching

Given a query sketch and its Hit map, although Eqn.5 is

computationally simple, to enumerate edgels of all images
from a large database is still very time consuming. Motivat-

ed by the success of search techniques, we adopt an inverted

index strategy to implement the IOCM formula.

From Fig.3 we find that, in the matching process, an

edgel p = (x, y, θ) from an image could have a hit only

when the value of position (x, y) in channel θ of the Hit map
of the query sketch is 1. Thus, if considering each edgel

as a “word”, we could build an edgel dictionary for the w-

hole database, in which each entry is represented by a triple
(x, y, θ). In this work, the resolution of our sketch panel is

200 × 200, and the orientation space is equally quantified
into 6 bins, i.e. −15◦ ∼ 15◦, 15◦ ∼ 45◦, . . . , 135◦ ∼ 165◦.

Thus, our dictionary has 200 × 200 × 6 = 240,000 en-

tries. Based on this, we propose a novel edgel index struc-
ture (Fig.4) to organize all database images. For each entry

(x, y, θ) in the dictionary, there is an inverted list of images

(IDs) which contain edgel p = (x, y, θ).
With the help of this index structure, we can design an

efficient ranking algorithm to quickly execute the D → Q
matching. As shown in Fig.4, given a query sketch and its
pre-generated Hit map, for each non-zero element at posi-

tion (x, y) in channel θ of the Hit map, the algorithm visits
its corresponding entry and inverted list in the index struc-

ture, and then goes through all the image IDs. Each ID

contributes 1 hit to the similarity score of the correspond-
ing image. Then the algorithm analyzes every non-zero el-

ement, and sums up hit numbers for each image. Finally,

by dividing the number of total edgels |D| for each image
as in Eqn.5, we can rank database images based on these

normalized similarity scores.

Sketch Query

Two-WayDatabase→Query Without |D|

Figure 5. Top one results from three matching methods. Images in

the bottom line are the corresponding contour maps.

The proposed edgel index and rank strategy fully imple-

ments the IOCM process (database to query part), which
greatly reduces the time complexity from Ω(T ) (T is total

number of edgels in the database) to Ω(P · L), where P is

the number of non-zero elements in the Hit map and L is the
average length of inverted lists. A typical operation cost is

small (less than 1 second in this work to search more than 2
million images), for it inherently avoids unmatched edgels.

The storage cost of this index structure in this work is 3.7G-

B6 for 2.1 million images, which is generally acceptable for
a common server.

2.2.3 Efficient Indexing for Two-Way Matching

As shown in Fig.5, the one-way D → Q IOCM often leads

to trivial results (see the left column in Fig.5). This problem
cannot be trivially solved by abolishing the denominator |D|
in Eqn.5. Without this punishment, the top images tend to

be full of edgels (the middle column). Actually, these un-
satisfactory results could be filtered out by combining the

opposite direction matching Q → D as in Eqn.6 (the right
column).

The Q → D matching could be achieved by using a sim-

ilar index mechanism as that for D → Q matching. To build
such index structure, we should first generate Hit maps for

all images in the database, which will cost about 55.9GB

memory. Apparently, it cannot be handled by a common
server. To address this problem, we only store raw curves

instead of the distance transform map for each database im-

age. Our solution is to first choose top N candidate images
based on the database-to-query indexing7, then online gen-

erate the distance transform maps for the N images, and

finally use Eqn.6 to rank these images. In this work, N is
set to 5000 for considering both time cost and retrieval pre-

cision.

Using the proposed Edgel Indexing framework, we have
built the MindFinder system which indexed 2.1 million im-

ages. The total memory cost includes two parts, 3.7GB

for indexing and 2.8GB for raw curve features, which are
6.5GB in total. The retrieval time is around 1s. In Table.1,

we list the resource cost after each step. The last colum-
n shows a practical solution for a large-scale sketch-based

system.

6The database contains 1001 million individual edgels. To index them,
each ID takes 4 byes, and total size is 1001× 4/1024/1.0242 ≈ 3.7GB.

7In order to increase the recall of the candidate images, in implementa-

tion, we use
√

|D| instead of |D| in Eqn.5 in this step.
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OCM SSM EI Final

Memory (D → Q ) 2.8 2.8 3.7 3.7

Memory (Q → D ) 447 55.9 55.9 2.8

Time (D → Q ) N/A N/A 0.8 0.8

Time (Q → D ) N/A N/A N/A 0.4

Table 1. Overview of the resource cost after each step for indexing

and searching 2 million images. The first two rows are memory

cost (GB) and the rest are response time (second). N/A indicates

it is far from practical. “EI” means SSM with edgel index (EI)

strategy. “Final” means approximate two-way matching.

3. Structure-Consistent Sketch Matching

When searching images, users may draw multiple
strokes to find images with multiple objects. Sometimes,

the database may be lack of such ideal images. As shown in

Fig.6, image A with one part well matched with the query
is ranked higher than image B with two parts matched but

both of them are not matched very well. However, users

may prefer image B since their search intent (sketch) con-
sists of two objects.

To handle this problem, we need to calculate the match-
ing similarity in a global way. In the implementation, we

decompose one query sketch into multiple sub-queries, and
use the geometric mean of similarity scores from all these

sub-queries as the final score. The order and spatial infor-

mation of strokes recorded by our interface could naturally
guide us to divide the sketch query into isolated sub-queries.

Besides, we further divide each stroke into several contin-

uous contours in case users prefer non-stop drawing. We
consider each continuous contour with length more than Ld

(half of the radius of the canvas in this work) as a sub-query,

and contours less than this threshold will be counted with
the next contour until it meets the requirement. For a s-

ketch queryQ and its N components {Q1,Q2, ...,QN}, the

structure-consistent similarity from Q to D is given by:

SimSSM
Q→D = (ΠN

i=1SimQi→D)
1

N (7)

which guarantees that each part is evenly considered and the
global structure becomes more important than local details.

In implementation, if one component is mismatched, we as-
sume there is still one hit to avoid zero similarity. It should

be noted that, the time complexity of structure-consistent

sketch matching (Eqn.7) is still Ω(|Q|), for it just linearly
scans the Hit map as SimQ→D does, and separately counts

similarity for each sub-queries as they are individual ones.

Thus, the final Structure-consistent Sketch Matching (SSM)
score is given as follows:

SimSSM
Q,D = (Π

NQ

i=1
SimQi→D)

1

2NQ ·(ΠND

j=1
SimDj→Q)

1

2ND

(8)
where SimQi→D and SimDj→Q are given by Eqn.5.

For easy implementation, we only use SSM in Q → D
matching, which does not influence the proposed Edgel In-

dex structure.

User Query

Image A Image B

Contour Map of A Contour Map of  B

A Rank: 2    Sim:0.333

B Rank: 4    Sim:0.259

A Rank:13    Sim:0.188
B Rank: 2     Sim:0.258

Decomposition

1 2

Figure 6. Illumination of structure-consistent matching. It shows

ranks and similarity scores before and after adding structure-

consistent matching. As we can see, image B is ranked higher

than A after taking account of the query structure.

4. Experimental Results

In this section, we evaluate the proposed algorithms and
framework for three tasks: basic shape search, specific im-

age search, and similar image search.

4.1. Experiment Setup

To evaluate the proposed matching and indexing algo-
rithms, we built a sketch-based image search system which

indexed 2.1 million images crawled from Flickr.

To the best of our knowledge, the Tensor Descriptor (de-

noted by TENSOR in this work) proposed by Eitz et al.

[7] is the only published large-scale sketch-based image

search work in the literature. Different from our system,
TENSOR is a descriptor-based method rather than a raw

contour-based method. Moreover, no index system is par-

ticularly designed in TENSOR and it has to linearly scan
the database to respond a query.

We also evaluated three variants of the proposed ap-

proaches: the proposed edgel index framework with

structure-consistent matching (denoted by EI-S), the
database-to-query one-way matching/indexing without

structure-consistent matching (EI-1) and the two-way

matching/indexing without structure-consistent matching
(EI-2).

4.2. Image Preprocessing

Before extracting contour features, we first downsample

images to a small size (maximal side 200) to keep good
balance between structure information preservation and s-

torage cost. Then, we adopt the Berkeley detector [13] to

extract object contours. With this detector, a natural image
is transformed into a contour map, and each contour is com-

posed by edgels.

4.3. Basic Shape Search

In this part, we evaluate our framework by using eight
elemental shapes as sketch queries (see Fig.7 for shape in-

formation). These queries are fundamental components to

compose most of complex sketches, and this experiment can
verify whether our approach can precisely match structures

and successfully present users’ intents.
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Decomposition

EI-1

EI-2

TENSOR

Sketch Query

EI-S

Figure 8. Illustration of top 4 images retrieved from different meth-

ods. The user sketch and its decomposition (different gray-scale

indicates different sub-queries) are provided in the top line.

For each shape, we have four queries, out of which one

was automatically generated by computer, and the others

were freely drawn by three subjects. Then the three sub-
jects were asked to evaluate the results of each method by

labeling top 20 results as relevant or not. The evaluation
criterion is whether the salient object contours of the image

is highly matched with the query sketch.

The precision of the top 20 search results for each shape

is shown in Fig.7. It is clear that EI-S is superior than other
three methods due to its good accuracy on matching shapes.

The performance of EI-2 is quite close to that of EI-S ex-

cept for the multi-line shapes. The major reason is that, EI-
2 only counts the total matching edgels without considering

the structure information, whereas EI-S could preserve the

global structure to some extend. As shown in Fig.8, EI-S di-
vides the query sketch into 3 sub-queries (presented by the

grey-scale image), and the results are all triangles with sim-

ilar structure, including an unsymmetrical triangle (marked
by a green star). However, EI-2 misses this image at the top

4 place, instead, returning an image with only a long bot-
tom line (marked by a red circle) partially matched with the

initial query.

From Fig.7 we can also see that TENSOR performs

worse than both EI-S and EI-2 when searching elemental
shapes, especially for basic lines. This is caused by the in-

herent limitation of descriptor-based method, which assigns

Sketch QueryEI-S TENSOR

Figure 9. Top one results of the EI-S method (left) and tensor

method (right) when searching an oblique line (middle).
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Figure 10. Performance comparison for specific image search.

a short vector to a region and loses part of local spatial infor-

mation. In contrast, our raw contour-based methods could

fully depict the original shape information. As shown in
Fig.9, for TENSOR (right), though the corresponding areas

are roughly related with the user sketch, few of our subject-

s treated it as relevant, while the result from EI-S (left) is
highly matched. The weakness at distinguishing a specific

line from local texture with similar orientation distribution,

could explain why two images of pathway (marked by yel-
low crosses) are retrieved in topmost results of TENSOR

in Fig.8. On the contrary, EI-1 prefers to retrieve images
with simple shapes, and thus is difficult to handle complex

queries. The inferior results of EI-1 in the other two tasks

also verified this point (see Fig.10 and 11 in the next two
subsections).

We conducted our experiments on an Intel Xeon 2.4GHz

Quad-Core server with 16GB memory. The memory cost of
EI-S are 6.5GB, and the average response time is 0.8 sec-

ond; as to TENSOR method, the costs are 12.6GB and 2.1

seconds respectively. These results have shown the impor-
tance of an index scheme in a large-scale database.

4.4. Specific Image Search

In this task, we want to evaluate the performance of our

system by finding a target image using a sketch query. We

invited five subjects to finish 100 search tasks. For each
task, we use one image as the query reference. Thus, there

are totally 100 target images, in which 20 images of com-

mon objects were manually selected, and the others were
randomly picked from the database. For each reference im-

age, each subject was asked to first carefully watch it, and
then search it by sketching its major contours. Besides, sub-

jects were also asked to add tags for every sketch query

to facilitate their search. This approach is denoted as EI-
S(+Tag). The pure tag-based method (denoted by Tag) by

using the above additional tags as the query is also evaluat-

ed.
“Hit Rate@K”, which is the proportion of all the 100

search tasks that could rank the target image in the top K
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Figure 11. Performance comparison for similar image search.

search results, is defined as the measurement.

The results are shown in Fig.10, from which we can see
that, EI-S is useful for finding specific images, since 61 tar-

get images are ranked at top one, which is 10.9% higher

than that of EI-2.

The performance of Tag is not good, and only 4 targets

are ranked in the top 20 results. The reason of the poor per-

formance of tag queries is two folds. On the one hand, the
target image might not contain the query tag(s). In this case,

the target image cannot be found at all if only using a tag

query. On the other hand, even if the subject chooses a right
tag, the tag feature is not distinguishable enough to locate a

specific image in the top results. Thus, from this experiment

we can see that, pure tag feature is not applicable to specific
image search task. However, as a complement of sketch-

based search, tag plays a very important role in reducing

the semantic gap. As shown in Fig.10, EI-S(+Tag) perform-
s better than EI-S (8.2% better in terms of Hit Rate@1).

As we can see in Fig.10, TENSOR is worse than EI-S

and EI-2 methods. As to the Hit Rate@1, EI-S and EI-
2 are 52.5% and 37.5% higher than TENSOR. This result

is consistent with our previous observation that TENSOR

is incapable of both precisely depicting local structure and
matching two contours. It also verified our assumption that

in such a huge database, raw contour-based method for ac-

curate matching is very necessary.

The average response time of EI-S for 100 complex s-

ketch queries is about 1.17s, which is about 3 times faster

than TENSOR’s. Moveover, the average response time of
EI-2 (1.16s) is almost the same as EI-S, which shows that

the consistent-structure matching does not bring much time

cost comparing with EI-2.

4.5. Similar Image Search

In real scenarios, users may be interested in searching

a concept in mind by sketching and tagging. This task is

termed as “similar image search” in this work. Notice that
the definition to “correctness” for the new task is not as rig-

orous as that for the specific search task.

For convenience, we reused the experimental setup of
specific image search. The subjects were asked to evaluate

the precision of top N results for each query rather than on-

ly evaluate the hit of the target image. For all methods in
our comparison, the criterion of relevance is not only struc-

turally (in terms of shape) but also semantically (in terms

Figure 13. Top four results of sketch-based clipart image search.

The system is scale and translation invariant to query sketch. Im-

ages in the first column are initial sketch queries.

of concept) matched with the target image. The comparison

results are given in Fig.11.
From Fig.11 we can see that, by relaxing the constrain-

t from finding specific images to finding similar objects

with the same structure, for 75% of the 100 queries, EI-S
successfully ranks the correct images at the top one. By

combining with tags to reduce the semantic gap, the per-

formance of returning similar images at the first position
increases to nearly 83%. For the tag-only search, the poor

performance can be explained as the lack of shape and struc-

ture information in the search process. Although the TEN-
SOR method also achieves performance improvement in

this task, it still performs much worse than the proposed
approaches.

Fig.12 shows several sketch queries and the correspond-

ing top search results of EI-S in the 2.1 million database, in
which the top three ones produced very impressive results,

while the bottom three ones are selected from the query pool

with “bad” search results in terms of similar image search.

5. Conclusions and Discussions

How to build a practical sketch-based image search en-

gine is deemed to be a very challenging problem in both
academic and industrial communities. In this work, we

have systematically investigated this problem, and success-

fully built a real-time large-scale sketch-based image search
engine. We have proposed the structure-consistent sketch

matching algorithm as well as the edgel index structure for

implementing the matching algorithm. This might be the
first indexing strategy particularly designed for large-scale

sketch-based image search.

In this work, we describe a visual word using a triple
(x, y, θ) of the position x = (x, y) of an edge pixel (edgel)

and the edgel orientation θ at that position. The introduc-

ing of edgel position to visual word description enables a
highly efficient inverted index structure and makes it pos-

sible to build a real-time large-scale sketch-based image
search system. Although the proposed solution can toler-

ate local distortions of users’ sketch inputs (See Figure 2(c)

for details), this representation inevitably results in the loss
of position-invariant feature for sketch-to-image matching,

which is often a desired feature for query sketching. Tech-

nically it is very difficult to get a tradeoff solution between
efficient index and position-invariant matching. We have

noticed that most position-invariant works [9, 14] usually
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Figure 12. Example queries and the corresponding top results. According to subjects’ labeling, images marked by yellow cross indicate

that they are irrelevant with the corresponding sketch query in terms of both structure and conceptual meaning; while images marked by

red circle mean that although they are not the same concept of the sketch query, these images still have very similar structures to the query.

target at searching images in a small-scale dataset. Such
methods usually require a complex algorithm to find objects

in arbitrary positions in an image. The complexity of these
algorithms makes it impractical to design a feasible index

structure to speed up the search process, which constrains

them only to small-scale retrieval tasks.
In practice, a large-scale database is highly desired to

serve for users’ various search intents. We expect that an ef-

ficient and scalable index solution can compensate the lack
of position-invariant matching, as in a large-scale search

system, users care more about search precision than recal-

l. If the database is large enough, we can always find good
matches from the database and return them to users. Works

in this genre consider the layout of the drawings in the query

panel as a constraint, and thus could design simpler match-
ing algorithms to search images in a web-scale database.

We can also make further assumptions in some vertical

domains, such as clipart image search in which we can as-
sume that there is only one main object in a clipart image.

Based on this assumption, a variant of the proposed sys-
tem was developed to support scale and translation-invariant

sketch-based search in a 0.7 million clipart image set, which

is much more robust to users’ inputs (see Fig.13).
However, an efficient index solution capable of affine-

invariant shape-to-image matching is definitely worth to be

explored and we treat this as our future work.
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