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Abstract
High quality speech-to-lips conversion, investigated in this work, ren-
ders realistic lips movement (video) consistent with input speech (audio)
without knowing its linguistic content. Instead of memoryless frame-
based conversion, we adopt maximum likelihood estimation of the vi-
sual parameter trajectories using an audio-visual joint Gaussian Mixture
Model (GMM). We propose a minimum converted trajectory error ap-
proach (MCTE) to further refine the converted visual parameters. First,
we reduce the conversion error by training the joint audio-visual GMM
with weighted audio and visual likelihood. Then MCTE uses the gen-
eralized probabilistic descent algorithm to minimize a conversion error
of the visual parameter trajectories defined on the optimal Gaussian ker-
nel sequence according to the input speech. We demonstrate the effec-
tiveness of the proposed methods using the LIPS 2009 Visual Speech
Synthesis Challenge dataset, without knowing the linguistic (phonetic)
content of the input speech.
Index Terms: visual speech synthesis, speech-to-lips conversion, mini-
mum conversion error, minimum generation error

1. Introduction
Speech-to-lips conversion aims to render realistic face video, particu-
larly the lips, that is consistent with the input speech audio. This has
various applications in multimedia communication. For example,the in-
telligibility of speech can be increased with a synthesizedtalking head.
We can also reduce the network load for video conferencing byconvert-
ing speech to face video at the receiving end. Speech-to-lips conversion
may also find use in other scenarios when direct video capturing is inap-
propriate, e.g., when video conferencing from a private environment.

Various approaches have been proposed for speech-to-lips conver-
sion, under different names, such as audio-visual mapping [1], synthe-
sis [2] and lip synchronization [3]. In particular,phone-based methods
model the audio-visual data using different phone models, mostly artifi-
cial neural network [4] and hidden Markov models (HMM) [5]. These
models usually synthesize the visual parameters from a phone sequence
that is either provided by human labelers or by an automatic speech rec-
ognizer (ASR). While the former is expensive and subject to inconsis-
tency resulting from human disagreement in phone labeling, the latter
requires a well trained speech recognizer that is usually complex and in
need of handmade labels for training.

Direct audio-visual conversion, without using phones, has also been
shown effective. For example, a comparison of several single HMM
based conversion approaches is available at [1]. Terissi and Gomez [6]
inverted an ergodic HMM instead of a set of left-to-right phone HMMs.
Recently, Takacs et al.[7] reports that ASR-based speech-to-lips con-
version has inferior performance compared with direct conversion using
a neural network in their experiments. Some missing feature recovery
literature [8] also argues that phone-based models are proneto segmen-
tation and phone identification errors, though the problem can be allevi-
ated by an audio-visual HMM inversion approach (HMMI) [1] that uses
a set of phone HMMs but doesn’t operate on a phone sequence obtained
by Viterbi decoding.

Another class of direct audio-visual conversion methods uses Gaus-
sian Mixture Models (GMM). In [3], while a set of HMMs are used
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for audio-visual conversion of spoken digits (small vocabulary), large
vocabulary audio-visual conversion is performed using frame-by-frame
MMSE visual parameter estimation based on a single joint audio-visual
GMM. In this work, we focus on GMM-based speech-to-lips conversion
that does not use phones as an intermediate representation.

GMMs are also extensively used in another closely related applica-
tion, voice conversion. Besides frame-by-frame MMSE estimation [9],
the GMM has been used for maximum likelihood estimation of complete
parameter trajectories. In particular, [10] uses both static and dynamic
feature statistics, as investigated in phone-based visualspeech synthe-
sis [2], to significantly improve the voice conversion quality. We adopt
the same method in GMM-based speech-to-lips conversion to model
the constraints between the static and dynamic visual parameters in the
framework of maximum likelihood estimation.

Speech-to-lips conversion aims to convert input speech acoustics
into lips video as similar to what would have been presented bya talk-
ing human as possible. The maximum likelihood estimation criterion
provides a effective way to train the GMM and perform the conversion.
However, maximum likelihood training does not explicitly optimize the
quality of audio-visual conversion. First, the criterion weights all feature
dimensions equally and does not take into consideration thatthey consist
of two parts, i.e., the audio part and the video part. Second,an audio-
visual GMM with maximum likelihood on the training data does not
necessarily result in converted visual trajectories that have minimized
error in human perception.

In response to the above issues, we propose a minimum trajectory
matching error approach, called Minimum Converted Trajectory Error
(MCTE) method, for improved audio-visual conversion. First,we re-
duce the conversion error by weighting the audio and visual subspaces
in training the joint audio-visual GMM. Inspired by Minimum Genera-
tion Error (MGE) in speech synthesis [11], we propose further refining
the model parameters by minimizing the mean square error between the
conversion result and the real visual trajectories using the generalized
probabilistic descent (GPD) algorithm.

We develop a GMM-based direct speech-to-lips conversion sys-
tem incoporating MCTE. Evaluated on the LIPS 2009 Visual Speech
Synthesis Challenge task [12], the MTE approach results in improved
audio-visual conversion. Although the linguistic contentof the input
speech is unknown to the presented system, we compare it with the top-
rated LIPS2009 submission that has access to the aligned ground truth
of phone transcription.

2. MLE-based Audio-visual Conversion
The GMM has been used for maximum likelihood estimation (MLE) of
parameter trajectories in speech synthesis and voice conversion. In par-
ticular, [10] uses both static and dynamic features in MLE-based con-
version to improve the voice conversion quality over frame-by-frame
MMSE estimation [9]. A similar approach has been investigatedin
phone-based visual speech synthesis/rewriting [2]. We propose using
the same method in GMM-based direct audio-visual conversion.

The audio-visual conversion leverages a mapping functionŷ =
f(x), wherex = [x1, x2, · · · , xT ] is a time sequence of the source
feature vectors andy = [y1, y2, · · · , yT ] is the target feature se-
quence. Supposext hasDx dimensions, andyt hasDy dimensions,
at each frame, thesestatic features are augmented with thedynamic
features and become2Dx or 2Dy dimensions:Xt = [xt;∆xt] and



Yt = [yt;∆yt].
Similar to voice conversion [10], we formulate the audio-visual con-

version problem as

Y = argmax
Y

P (Y |X) ≈ argmax
Y

P (Y |X, Θ), (1)

whereY = [Y1; . . . ; Yt], X = [X1; . . . , Xt], andΘ is the GMM for
the joint probabilityP (Xt, Yt).
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As shown in the voice conversion literature [10], the sequence
Y can be represented as a linear tranformation of the static vectors:
Y = Wy, such that∆yt = 1

2
(yt+1 − yt−1). Similarly, X = Wx.

Therefore,

ŷ = argmax P (Wy|X, Θ). (5)

The complexity of solving Equation 5 can be significantly reduced
by two reasonable approximations.

First, the summation over all mixture component sequences in
Equation 2 can be approximated with a single component sequence,

P (Y |X, Θ) ≈ P (m̂|X, Θ)P (Y |X, m̂, Θ), (6)

wherem̂ is the Maximum A Posterior (MAP) mixture component se-
quence,m̂ = argmaxm P (m|X, Θ).

With Equation 6, Equation 5 can then be solved in a closed form
[10].
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It is observed in voice conversion that performance degradation ow-
ing to the above approximation is not significant [10]. Our preliminary
results on audio-visual conversion also confirm that the full-fledged so-
lution by EM algorithm performs no better than the approximated one.

Second, in calculating Equation 4 and Equation 4, we may further

simplify the problem by assumingΣ(XY )
m = 0.

Given a mixture componentm0, the full coviarance matrix in the

joint space ofX andY can be partitioned intoΣ(XX)
m0

, Σ(Y Y )
m0

, Σ(XY )
m0

andΣ
(Y X)
m0

. In many cases where training data is not abundant, it is
not easy to obtain robust estimation of all elements in these matrices.
WhenX andY are in the same feature space, such as in voice con-

version,Σ(XY )
m0

andΣ
(Y X)
m0

are usually approximated using diagonal
matrices. In audio-visual conversion, however,X andY are in differ-
ent spaces with no strong correlation between the corresponding dimen-

sions. Therefore, we only estimateΣ(XX)
m0

andΣ
(Y Y )
m0

, yielding the
simplified Equation 10.
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3. AV conversion with MCTE
The MLE-based conversion algorithm is effective and outperforms pre-
vious methods. However, maximum likelihood training does not opti-
mize directly towards audio-visual conversion error. In particular, an
audio-visual GMM with maximum likelihood for the training data does
not lead to converted visual trajectories with minimized error.

Similar problems exist for MLE-based speech synthesis. To com-
pensate this deficiency, Minimum Generation Error (MGE) [11]has
been proposed for HMM training. In particular, an appropriate gener-
ation error is defined, which is minimized by using a generalized proba-
bilistic descent (GPD) algorithm to update the parameters ofthe HMMs.

We propose the Minimum Converted Trajectory Error (MCTE)
method to further refine the audio-visual conversion result,or any con-
version result in general, by minimizing the error between theconversion
result and the real target trajectories in the training set.

In Figure 1, we illustrate the speech-to-lips conversion system.

Figure 1: Speech-to-Lips Conversion

3.1. Refined audio modeling

When training the GMM in the joint audio-visual feature spaceusing
the EM algorithm, it is common to impose equal weight on all feature
dimensions. For the conversion task, this criterion doesn’ttake into con-
sideration that the training features consist of two parts.We propose
weighting the audio and visual subspaces with parametersαX andαY

respectively:
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In our experiments, we observe consistently that weighting the au-
dio spaces more than the visual space reduces the mean square er-
ror of the converted visual trajectories. According to Equation 2, the
conversion quality is affected byP (m|X, Θ) andP (Y |m, Θ), which
can be interpreted as choosing the right mixture component formap-
ping given the audio observation and estimating the visual distribution
given the mixture component. Heavier weighting on the audio subspace
in Equation 11 leads to more distinguishable mixture components in
P (m|X, Θ) but increased perplexity ofP (Y |m, Θ). The observation
suggests thatP (m|X, Θ) may be dominating the approximation quality
of Equation 2. This may also depend on the particular parameterization
of the features.

Note that though it is possible to fine tune the weighting parame-
ters, we find the empirical choice of weighting exclusively onthe audio
subspace (αX = 1, αY = 0) already result in significant performance
improvement.



3.2. Refined visual modeling

Inspired by the MGE, we further improve the conversion resultby refin-
ing the visual GMM model using the GPD algorithm.

We define the conversion error as the Euclidean distance between
the conversion result and the real visual trajectory in the training set,

D(y, ŷ) =

T
∑

t=1

‖yt − ŷt‖. (12)

With the approximation using the MAP mixture component se-
quence adopted in Equation 6, the conversion problem, i.e., maximiz-
ing P (Y |X, Θ), becomes the following two steps. First, given the
sequence of audio featuresX, a MAP mixture sequence is estimated:
m̂ = argmax P (m|X, Θ). Second, given the MAP mixture sequence,
the visual features are estimated by maximizingP (Y |m̂, Θ). Note that
the second step is the same as a parameter generation problem for a mix-
ture component sequencêm. In other words, we tackle the conversion
problem by generating features from a corresponding HMM, which has
a sequence of states and Gaussian kernelsm̂ determined by the MAP
process.

Therefore, we can improve the conversion performance by mini-
mizing the empirical conversion error, measured using a cost function
L(Θ) similar to MGE in synthesis [11].
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N
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whereN is the number of training utterances.
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In contrast to the MGE, which directly estimates the parameters in
the involved HMMs, MCTE uses the GPD algorithm to update the visual
distribution parameters of the MAP mixture component sequence, which
replace the corresponding parameters in the visual GMM.

4. Experiments and Results
4.1. Setup
We employ the dataset used in LIPS 2008/2009 Visual Speech Synthesis
Challenge [12] to evaluate the proposed audio-visual conversion meth-
ods. This dataset has 278 video files with corresponding audio tracks,
each being one English sentence spoken by a single native speaker with
neutral emotion.

The video is sampled at every 20ms, or 50 frames per second.
For each image, Principle Component Analysis (PCA) is performed

on automatically detected and aligned mouth image, resulting in a 60-
dimensional visual parameter vector. Mel-Frequency Cepstral Coeffi-
cient (MFCC) vectors are extracted from local windows of 20mswith a
step size of 5ms. The visual parameter vectors are interpolated up to the
same sampling frequency as the MFCCs. In audio-visual conversion,
the input sequence of MFCCs are converted into a sequence of visual
PCA vectors, which drives a lips movement image sequence beforeit is
stitched to a facial background video [13].

We compare the performance of several alternative conversionmod-
ules.

1. PhnRewritingis a phone rewriting method leverages a set of
tied triphone visual parameter HMMs, trained using the visual
PCA sequences segmented by human labeled phone transcrip-
tion. The visual speech synthesis has access to ground truth
phone labels and boundaries, and is performed by using the vi-
sual HMMs to synthesize the visual PCAs. This was the MSRA
submission to LIPS 2009 [13].

2. Conv(equal)is a direct audio-visual conversion method based
on maximum likelihood estimation. Each audio and visual di-
mension is weighted equally when training the joint GMM. We
empirically determined to use 1024 Gaussian mixtures.

3. MCTE is the proposed MCTE method, with the same number of
Gaussian mixtures as the alternative direct conversion modules.

4. Conv(a-weighted)andMCTE(a-weighted)weight each audio di-
mension equally and the visual dimensions have weight zero
when training the joint GMM.Conv(v-weighted)andMCTE(v-
weighted)have weight zero for the audio dimensions.

Note that while Takacs et al. [7] uses an automatic speech recog-
nizer to obtain the phone sequence for the phone-based videorewriting
system, we use the LIPS 2009 ground truth phone labels and bound-
aries in the phone rewriting methods, eliminating the question about the
quality of the speech recognition results. This should be helpful in un-
derstanding the performance of phone rewritting approach and the direct
conversion approach.

4.2. Objective evaluation results

The objective evaluations are performed using two metrics. First, we
use all the data for both training and conversion, for the “Training” set
performances. Second, we perform leave-20-out cross validation, and
the measures from all the folds are averaged to form the “Testing” set
performance.

The conversion performances are evaluated using Mean SquareEr-
ror (MSE) and Average Correlation Coefficient (ACC), definedas fol-
lows,

MSE =
1

T

T
∑

t=1

‖ŷt − yt‖ , (17)

ACC =
1

TD
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D
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)

σyd
σŷd
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In Figure 2, we can see that weighting only the audio dimensions
in training the joint GMM consistently improves both the MLE-based
conversion and the MCTE conversion. The proposed MCTE method
consistently outperforms MLE-based direct conversion. Having access
to human labeled phone transcription in both training and testing gives
the phone rewriting methods an advantage. The gap however is largely
reduced by adopting the proposed MCTE method. According to the ob-
jective measures, the best MCTE performance is comparable to the Phn-
Rewriting method, which won the top audio-visual consistency ranking
in LIPS 2009 [13] .

In Figure 3, we illustrate the conversion results by the MCTE
method and by the MLE-based direct conversion method, respectively.
The proposed MCTE method is shown to result in trajectories more sim-
ilar to the ground truth which a human speaker produces.

4.3. Subjective evaluation results

A subjective “scoring” test is also carried out to compare Conv(a-
weighted), MCTE(a-weighted), PhnRewriting and the original record-
ing. We select twelve sentences from the LIPS 2009 test set, each is
constructed by a sequence of words but in a semantically meaningless
order. These sentences are converted into video clips of thelower part of
the face using each method. The original recordings cropped to the same
area and the conversion results are randomly assigned into six subjective



Figure 2: Objective Evaluations

Figure 3: Top PCA dimensions w/ and w/o MCTE

test sessions, such that each session has two sentences fromeach method
or the original recording. Each video clip also includes theground truth
input speech audio. The subjects are asked to score the perceived “audio-
visual consistency” on a 1-5 basis for each sentence in each session.
Each session is evaluated by three different subjects.

Figure 4: Subjective scores for “audio-visual consistency” (with stan-
dard errors)

Figure 4 shows the averaged subjective scores for “audio-visual
consistency”. Besides the similar observations as in the objective evalu-

ations, we also point out the p-values in the unpaired two-tailed T-Test:
MCTE(a-weighted) and Conv(a-weighted) 0.0002%; MCTE and Phn-
Rewriting 3.9%.

5. Conclusion & Discussion
This work investigates the problem of speech-to-lips conversion and
aims to render photo-realistic lips movement that are consistent with the
input speech signal without knowing the underlying linguistic content.
Instead of frame-based conversion, it adopts the maximum likelihood
based Gaussian Mixture Model (GMM) in estimating visual parameter
trajectories. We propose Minimum Converted Trajectory Error (MCTE)
training to refine the converted visual trajectories. The proposed method
leverages a joint audio-visual GMM trained with audio-visual-weighted
maximum likelihood criterion. MCTE uses the generalized probabilistic
descent algorithm to minimize conversion error of the visual parame-
ter trajectories defined on the optimal mixture component sequence ob-
tained using the input speech. On the LIPS 2008/2009 visual speech
synthesis challenge dataset, we demonstrate the effectiveness of the pro-
posed MCTE method. The best presented system, without knowingthe
linguistic content of the input speech, is compared with the top-rated
LIPS 2009 submission that utilized the given ground truth phone se-
quence and their timing information. The proposed MCTE method can
be applied to general conversion problems, not necessarily limited to the
speech-to-lips conversion reported in this work.
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