Photo-Real Lips Synthesis with Trajectory-Guided Sample Selection

Lijuan Wang¹, Xiaojun Qian², Wei Han³, Frank K. Soong¹

¹Microsoft Research Asia, Beijing, China
²Department of Systems Engineering, Chinese University of Hong Kong, China
³Department of Computer Science, Shanghai Jiao Tong University, China
¹{lijuanw, frankkps}@microsoft.edu, ²xjqian@se.cuhk.edu.hk, ³weihan@live.com

Abstract

In this paper, we propose an HMM trajectory-guided, real image sample concatenation approach to photo-real talking head synthesis. It renders a smooth and natural video of articulators in sync with given speech signals. An audio-visual database is used to train a statistical Hidden Markov Model (HMM) of lips movement first and the trained model is then used to generate a visual parameter trajectory of lips movement for given speech signals, all in the maximum likelihood sense. The HMM generated trajectory is then used as a guide to select, in the original training database, an optimal sequence of mouth images which are then stitched back to a background head video. The whole procedure is fully automatic and data driven. With an audio/video footage as short as 20 minutes from a speaker, the proposed system can synthesize a highly photo-real video in sync with the given speech signals. This system won the FIRST place in the Audio-Visual match contest in LIPS2009 Challenge, which was perceptually evaluated by recruited human subjects. http://www.lips2008.org/

Index Terms: visual speech synthesis, photo-real, talking head, trajectory-guided

1. Introduction

Talking heads are useful in applications of human-machine interaction, e.g. reading emails, news or eBooks, acting as an intelligent voice agent or a computer assisted language teacher or a virtual talk show host in a TV program, etc. A lively, lip sync talking head can attract the attention of a user, make the human/machine interface more engaging or adds entertainment ingredients to an application. Generating animated talking heads that look like real people is challenging. A photo-real talking head needs to be not just photo-realistic in a static appearance, but exhibit convincing plastic deformations of the lips synchronized with the corresponding speech, realistic head movements and emotional facial expressions. In this paper, we focus on the articulator movements (including lips, teeth, and tongue), which is the most eye-catching region on a talking face.

Synthesizing realistic articulator movements from video training data has been studied for many years under different names like “visual speech”, “speech animation”, “talking head”, and “articulator movement”, etc. Various approaches have been proposed before, roughly in three categories: key-frame based interpolation, unit selection synthesis and HMM-based synthesis. In comparison with the studies on speech synthesis, it is interesting that some major progress in visual speech synthesis, like unit selection and HMM-based synthesis, are driven by the new booming technologies in speech synthesis.

The key-frame-based interpolation method [2] is based upon morphing between 2-D key-frame images. The most frequently used key-frame set is visemes (visual phonemes), which form a set of images spanning a large range of mouth shapes. Using morphing techniques, the transitions from one viseme to other viseme can be computed and interpolated automatically.

The unit selection, or sample-based method starts with collecting representative samples. The samples are then parameterized by its contextual label information so that they can be recalled according to the target context information in synthesis. Typically, minimal signal processing is performed to avoid introducing artifacts or distortions unnecessarily. Video snippets of tri-phone have been used as basic concatenation units [3-5]. Since these video snippets are parameterized with phonetic contextual information, the resulting database can become too large. Smaller units like image samples have shown their effectiveness in improving the coverage of candidate units. In LIPS2008 Challenge, Liu demonstrated a photo-real talking head [6] in a sample-based approach, which is an improved version of the original work of Cosatto and Graf [1].

The Hidden Markov Model (HMM) based speech synthesis has made a steady but significant progress in the last decade [7]. The approach was also tried for visual speech synthesis [8,9]. In HMM-based visual speech synthesis, audio and video are jointly modeled in HMMs and the visual parameters are generated from HMMs by using the dynamic (“delta”) constraints of the features [8]. Convincing mouth video can be rendered from the predicted visual parameter trajectories. One drawback of the HMM-based visual speech synthesis method is its blurring due to feature dimension reduction in PCA and the maximum likelihood-based statistical modeling. Therefore, further improvement is still needed to make a high quality, photo-real talking head.
Inspired by the newly proposed HMM-guided unit selection method in speech synthesis [10,11], we propose the trajectory-guided real sample concatenation method for generating lip-synched articulator movements for a photo-real talking head. In particular, in training stage, an audio/visual database is recorded and used to train a statistical Hidden Markov Model (HMM). In synthesis, trained HMM is used to generate visual parameter trajectory in maximum likelihood sense first. Guided by the HMM predicted trajectory, a succinct and smooth lips sample sequence is searched from the image sample library optimally and the lips sequence is then stitched back to a background head video.

This paper is organized as follows. Section 2 gives an overview of the synthesis framework. Section 3 introduces the HMM-based visual parameter trajectory generation. Section 4 proposes the trajectory-guided sample selection method. Section 5 discusses the experimental results, and section 6 draws the conclusions.

2. Overview of Lips Synthesis System

Fig. 2 illustrates the synthesis framework of the proposed trajectory-guided sample selection approach. In training, first the original image samples \(S \) are encoded in low-dimensional visual feature vector \(V \). Then the features \(V \) are used to train statistical HMM model \(\lambda \). In synthesis, for any arbitrary natural or Text-to-Speech (TTS) synthesized speech input \(A \), the trained model \(\lambda \) generates the optimal feature trajectory \(\vec{V} \) in the maximum likelihood sense. The last step is to reconstruct \(\vec{V} \) back to \(S \) in the original high-dimensional sample space, so that the synthesis results can be seen/heard.

To put it briefly, there are four main modules: \(\Rightarrow V; (A, V) \Rightarrow \lambda ; (\lambda, A) \Rightarrow \vec{V}; \) and \(\vec{V} \Rightarrow S \). The main contribution of this paper is the last processing module, \(\vec{V} \Rightarrow S \), which is our proposed trajectory-guided real sample selection method for converting the low-dimensional visual parameter trajectory to samples in the original sample space. In particular, guided by the HMM predicted trajectory \(\vec{V} \), a succinct and smooth image sample sequence \(S \) is searched optimally from the sample library and the mouth sequence is then stitched back to a background head video.

3. HMM-based Visual Parameter Trajectory Synthesis

3.1. Visual parameter extraction (\(S \Rightarrow V \))

Training the talking head requires a small, about 20-minutes of audio-visual data of a speaker recorded in reading prompted sentences. Since the speaker moves his/her head naturally during recording, head pose. With the help of a 3D model-based head pose tracking algorithm [20], head poses of all frame are normalized and aligned to the full-frontal view. The lips images can then be cropped out with a fixed rectangle window and a library of lips sample is made. We obtain eigen-lips (eigenvectors of the lips images) by applying PCA to all the lips images. The top 20 eigen-lips contains about 90% of the accumulated variance. The visual feature of each lips image is formed by its PCA vector,

\[
V^T = S^TW
\]

where \(W \) is the projection matrix made by the top 20 eigen-lips.

3.2. Audio-Visual HMM modeling (\(A, V \Rightarrow \lambda \))

We use acoustic vectors \(A_t = [v_t^a, \Delta v_t^a, \Delta \Delta v_t^a]^T \) and visual vectors \(V_t = [v_t^v, \Delta v_t^v, \Delta \Delta v_t^v]^T \) which is formed by augmenting the static features and their dynamic counterparts to represent the audio and video data. Audio-visual HMMs, \(\lambda \), are trained by maximizing the joint probability \(p(A, V | \lambda) \) over the stereo data of MFCC(acoustic) and PCA(visual) training vectors. In order to capture the contextual effects, context dependent HMMs are trained and tree-based clustering is applied to acoustic and visual feature streams separately to improve the corresponding model robustness. For each AV HMM state, a single Gaussian mixture model (GMM) is used to characterize the state output. The state \(q \) has a mean vectors \(\mu_{q}^{(A)} \) and \(\mu_{q}^{(V)} \). In this paper, we use the diagonal covariance matrices for \(\Sigma_{q}^{(A)} \) and \(\Sigma_{q}^{(V)} \), null covariance matrices for \(\Sigma_{q}^{(AV)} \) and \(\Sigma_{q}^{(G)}) \), by assuming the independence between audio and visual streams and between different components.

3.3. Visual trajectory generation (\(\lambda, A \Rightarrow \vec{V} \))

Given a continuous audio-visual HMM \(\lambda \) and acoustic feature vectors \(A = [A_0^T, A_1^T, \ldots, A_T^T]^T \), we use the following algorithm to determine the best visual parameter vector sequence \(\vec{V} = [V_0^T, V_2^T, \ldots, V_T^T]^T \) by maximizing the following likelihood function.

\[
p(V|A, \lambda) = \sum_{q} p(Q|A, \lambda) \cdot p(V|A, Q, \lambda),
\]

(2) is maximized with respect to \(V \), where \(Q \) is the state sequence.

At frame \(t \), \(p(V_t|A_t, q_t) \) are given by

\[
p(V_t|A_t, q_t, \lambda) = N (V_t; \hat{\mu}_{q_t}^{(V)}, \Sigma_{q_t}^{(V)})
\]

(3)

\[
\hat{\mu}_{q_t}^{(V)} = \mu_{q_t}^{(V)} + \Sigma_{q_t}^{(V)}(\Sigma_{q_t}^{(A)}+\Sigma_{q_t}^{(AV)}+\Sigma_{q_t}^{(G)})^{-1}(A_t - \mu_{q_t}^{(A)}),
\]

(4)

\[
\Sigma_{q_t}^{(V)} = \Sigma_{q_t}^{(V)} - \Sigma_{q_t}^{(V)}(\Sigma_{q_t}^{(A)}+\Sigma_{q_t}^{(AV)}+\Sigma_{q_t}^{(G)})\Sigma_{q_t}^{(V)}
\]

(5)

We only consider the optimal state sequence \(Q \) by maximizing the likelihood function \(p(Q|A, \lambda) \) with respect to the given acoustic feature vectors \(A \) and model \(\lambda \). Then, the logarithm of the likelihood function is written as

\[
\log p(V|A, Q, \lambda) = \log p(V|\hat{\mu}^{(V)}, \hat{\Sigma}^{(V)})
\]

\[
= -\frac{1}{2} \vec{V}^T \hat{\Sigma}^{(V)} \vec{V} + \vec{V}^T \hat{\Sigma}^{(V)} \hat{\mu}^{(V)} + K,
\]

(6)

where

\[
\hat{\Sigma}^{(V)} = \left[\hat{\Sigma}_{q_0}^{(V)}, \hat{\Sigma}_{q_2}^{(V)}, \ldots, \hat{\Sigma}_{q_T}^{(V)} \right]^T,
\]

\[
\hat{\mu}^{(V)} = \left[\hat{\mu}^{(V)}_{q_0}, \hat{\mu}^{(V)}_{q_2}, \ldots, \hat{\mu}^{(V)}_{q_T} \right]^T,
\]

\[
\hat{\Sigma}^{(V)} = \left[\begin{array}{ccc} \Sigma^{(V)}_{q_0} & \Sigma^{(V)}_{q_0,q_2} & \Sigma^{(V)}_{q_0,q_T} \\ \Sigma^{(V)}_{q_2,q_0} & \Sigma^{(V)}_{q_2} & \Sigma^{(V)}_{q_2,q_T} \\ \Sigma^{(V)}_{q_T,q_0} & \Sigma^{(V)}_{q_T,q_2} & \Sigma^{(V)}_{q_T} \end{array} \right]^{-1}
\]

(7)

(8)

The constant \(K \) is independent of \(V \). The relationship between a sequence of the static feature vectors \(C = [v_1^T, v_2^T, \ldots, v_T^T]^T \) and a sequence of the static and dynamic feature vectors \(V \) can be represented as a linear conversion,

\[
\vec{V} = W_C C,
\]

(9)

where \(W_C \) is a transformation matrix described in [7]. By setting

\[
\frac{\partial}{\partial C} \log p(V|A, Q, \lambda) = 0,
\]

we obtain \(C \) that maximizes the logarithmic likelihood function is given by

\[
C_{opt} = W_C \hat{\Sigma}^{(V)}^{-1} \hat{\mu}^{(V)}.
\]

(10)
4. Trajectory-Guided Sample Selection ($\hat{V} \Rightarrow \hat{S}$)

The HMM predicted visual parameter trajectory is a compact description of articulator movements, in the lower rank eigenspace. However, the lips image sequence shown at the top of Fig. 3 is blurred due to: (1) dimensionality reduction in PCA; (2) ML-based model parameter estimation and trajectory generation. To solve this blurring, we propose the trajectory-guided real sample concatenation approach to constructing \hat{S} from \hat{V}. It searches for the closest real image sample sequence in the library to the predicted trajectory as the optimal solution. Thus, the articulator movement in the visual trajectory is reproduced and photo-real rendering is guaranteed by using real image sample.

4.1. Cost function

Like the unit selection in concatenative speech synthesis [29], the total cost for a sequence of T selected samples is the weighted sum of the target and concatenation costs:

$$C(\hat{V}_1^T, \hat{S}_1^T) = \sum_{t=1}^{T} \omega^t C^t(\hat{V}_t, \hat{S}_t) + \sum_{t=2}^{T} \omega^t C^c(\hat{S}_{t-1}, \hat{S}_t)$$

The target cost of an image sample \hat{S}_t is measured by the Euclidean distance between their PCA vectors.

$$C^t(\hat{V}_t, \hat{S}_t) = \|\hat{V}_t - \hat{S}_t\|_W$$

The concatenation cost is measured by the normalized 2-D cross correlation (NCC) between two image samples \hat{S}_t and \hat{S}_1, as Eq. 13 shows. Since the correlation coefficient ranges in value from -1.0 to 1.0, NCC is in nature a normalized similarity score, which is an advantage superior to other similarity metrics.

$$NCC(I, J) = \arg\max_{(u,v)} \frac{\sum_{x,y} [I(x, y) - \bar{I}_I][J(x, y - u, y - v) - \bar{J}]}{\sqrt{\sum_{x,y} [I(x, y) - \bar{I}_I]^2 \sum_{x,y} [J(x, y - u, y - v) - \bar{J}]^2}}$$

Assume that the corresponding samples of \hat{S}_1 and $\hat{S}_\hat{1}$ in the sample library are S_p and S_q, i.e., $\hat{S}_1 = S_p$, and $\hat{S}_\hat{1} = S_q$, where, p and q are the sample indexes in video recording. And hence S_p and S_{q+1}, and S_p, are consecutive frames in the original recording. As defined in Eq. 14, the concatenation cost between \hat{S}_1 and $\hat{S}_\hat{1}$ is measured by the NCC of the S_p and the S_{q+1} and the NCC of the S_{p+1} and S_q.

$$C^c(\hat{S}_1, \hat{S}_\hat{1}) = C^c(S_p, S_{q+1}) + C^c(S_{p+1}, S_q)$$

Since $NCC(S_p, S_p) = NCC(S_q, S_q) = 1$, we can easily derive, $C^c(S_p, S_{q+1}) = C^c(S_{p+1}, S_q)$ = 0

So that it would encourage the selection of consecutive frames in original recording.

4.2. Optimal sample sequence

The sample selection procedure is the task of determining the set of image sample \hat{S}_1^T so that the total cost defined by Eq. 11 is minimized:

$$\hat{S}_1^T = \arg\min_{\hat{S}_1^T} C(\hat{V}_1^T, \hat{S}_1^T)$$

Optimal sample selection can be performed with a Viterbi search. However, to obtain near real-time synthesis on large dataset, containing tens of thousands of samples, the search space must be pruned. This has been implemented by two pruning steps. Initially, for every target frame in the trajectory, K-nearest samples are identified according to the target cost. The beam width K is 40 in our experiments. The remaining samples are pruned with the concatenation cost.

5. Experimental Results

5.1. Experimental setup

We employ the LIPS 2008/2009 Visual Speech Synthesis Challenge data [12] to evaluate the proposed trajectory-guided sample selection methods. This dataset has 278 video files with corresponding audio track, each being one English sentence spoken by a single native speaker with neutral emotion.

The video frame rate is 50 frames per sec. For each image, Principle Component Analysis projection is performed on automatically detected and aligned mouth image, resulting in a 60-dimensional visual parameter vector. Mel-Frequency Cepstral Coefficient (MFCC) vectors are extracted with a 20ms time window shifted every 5ms. The visual parameter vectors are interpolated up to the same frame rate as the MFCCs. The A-V feature vectors are used to train the HMM models using HTS 2.1 [7].

In objective evaluation, we measured the performance quantitatively using mean square error (MSE), normalized cross correlation, and global variance, as defined in Eq. 16-20. In a closed test where all the data are used in training, the evaluation is done on all the training data. In open test, leave-20-out cross validation is adopted to avoid data insufficiency problem. In subjective evaluation, the performance of the proposed trajectory-guided approach was evaluated by 20 native language speaking subjects in the audiovisual consistency test in LIPS2009 challenge.

$$\varepsilon_1 = \|\hat{V} - \hat{V}\| = \frac{1}{T} \sum_{t=1}^{T} \|\hat{V}_t - \hat{V}_t\|$$

$$\varepsilon_2 = \|\hat{S} - \hat{S}\| = \frac{1}{T} \sum_{t=1}^{T} \|\hat{S}_t - \hat{S}_t\|$$

$$\rho(V, \hat{V}) = \frac{1}{T \cdot d} \sum_{t=1}^{T} \sum_{i=1}^{d} (V_{t,i} - \mu_{V_i})(\hat{V}_{t,i} - \mu_{V_i})/\sigma_{V_i}$$

$$\delta_{\hat{V}} = \frac{1}{T \cdot d} \sum_{t=1}^{T} \sum_{i=1}^{d} (V_{t,i} - \mu_{V_i})^2$$

$$\delta_{\hat{V}} = \frac{1}{T \cdot d} \sum_{t=1}^{T} \sum_{i=1}^{d} (\hat{V}_{t,i} - \mu_{V_i})^2$$
5.2. Objective test

5.2.1. Evaluation of trajectory prediction

Fig. 4 shows an example of the HMM predicted trajectory \hat{V} in both the closed and open tests. Comparing with the ground truth V, the predicted visual trajectory \hat{V} closely follows the moving trends in V. To objectively evaluate the predicted trajectory, we calculated the mean square error, normalized cross correlation and global variance of \hat{V} with respect to the ground truth trajectory V.

1. $\|\hat{V} - V\|$: the MSE measure in Eq. 16 shows how good the HMM predicted trajectory which will be used as a guide later is. The model parameters, like the numbers of tied states for the audio and visual streams, are optimized in closed test. Fig. 5 shows the total MSE between V and \hat{V}, and also the respective MSE of the first four PCA components, both in the closed and open tests. The MSE distortion is 7.82×10^3 between the HMM-predicted trajectory and the ground truth in open test. Since the cropped lips images are all 150x130 pixels in size, the distortion can be approximated to the averaged 6.33 color level distortion per pixel.

2. $\rho(V, \hat{V})$: the average cross correlation (ACC) in Eq. 18 is another similarity measure between the HMM-predicted trajectory and the ground truth. Fig. 6 shows the ACC between V and \hat{V}, and also the respective ACC of the first four PCA components, both in the closed and open tests. The ACC of the top 3 dominate PCA dimensions are 0.8, 0.7, 0.73 respectively, indicating the predicted trajectory highly correlates to the ground truth.

3. $\sigma_V, \sigma_{\hat{V}}$: the global variances (Eq. 19-20) of the ground truth and predicted trajectory in closed and open tests are presented in Fig. 7. The predicted trajectories appear to suffer from the dynamic range suppression caused by the maximum likelihood model training, which echoes the similar observation in HMM-based speech synthesis [24].

5.2.2. Evaluation of sample selection

The measure, $\|\hat{S} - S\|$ $(\hat{V} = V)$, is to evaluate the performance of trajectory-guided sample selection by ignoring the trajectory prediction error, or ideally we can assume the predicted trajectory is perfect, i.e., $\hat{V} = V$. In this oracle experiment, we take the ground truth trajectory as the perfect guidance in order to test the sample selection performance alone. For each test sentence, we use the image samples from other sentences to do the selection and concatenation. The MSE distortion of the sample selection is 1.77×10^3.

5.2.3. Total distortion

As summarized in Table I, $\|\hat{V} - V\|$ is the distortion of the HMM-based visual trajectory prediction; $\|\hat{S} - S\| (\hat{V} = V)$ is the distortion of the sample selection step; $\|\hat{S} - S\|$ is the total distortion in the synthesis, including both the trajectory prediction errors and sample selection errors. The total distortion 9.42×10^5 is slightly less than the summation $(7.82 \times 10^3 + 1.77 \times 10^3 - 9.59 \times 10^5)$ of the first two distortions. Fig. 10 shows the snapshots of the synthesized lips images (right), the intermediate results restored from the HMM predicted visual trajectories (middle), and the ground truth in recording as reference (left).

5.3. Pruning of sample library

Some samples in the sample library are rarely or never selected because they are too far away to the model predicted trajectory. We conducted a large scale synthesis test in order to estimate the frequency of selection for all the image samples in the library. The experiment is to synthesis 10,000 phonetic balanced sentences and computes the frequency of selection of all 61,244 images. As shown in Fig. 8, all the 61244 image samples in the library are rank ordered according to their occurrence count in the final best path (red curve) and k-nearest pre-selection (blue curve), respectively. It shows that there are less than 46% samples used in the pre-selection, while about 20% samples used in the final best path. The pruning is good because misaligned and outlying mouth images are discarded. Meanwhile, we achieve the same output quality but at a much faster speed (5 times) by keeping only a small subset (20%) of the original library.

5.4. Subjective Test

We participate in the LIPS2009 Challenge contest with the proposed photo-real talking head. The contest was conducted in the AVSP (Auditory-Visual Speech Processing) workshop and subjectively evaluated by 20 native British English speaking subjects with normal hearing and vision. All contending systems were evaluated in terms of their audio-visual consistency. When each rendered talking head video sequence was played together with the original speech, the viewer was asked to rate the naturalness of visual speech gestures (articulator movements in the lower face) in a five point MOS score. Fig. 9 shows the subjective results. Our system got the highest MOS score 4.15 among all other participants, which is only inferior to the 4.8 MOS score of the original AV recording.

Fig. 4. Closed test predicted (blue curve), open test predicted (red curve) vs. actual (black curve) trajectories of the 1st (up) and 2nd (bottom) PCA coefficients for a testing utterance.

Fig. 5. Mean square error (MSE) of the predicted trajectories of visual PCA coefficients.
We propose a trajectory-guided, real sample concatenating approach for synthesizing high-quality photo-real articulator animation. It renders a photo-real video of articulators in sync with given speech signals by searching for the closest real image sample sequence in the library to the HMM predicted trajectory. Objectively, we evaluated the performance of our system in terms of MSE and investigate the pruning strategies in terms of storage and processing speed. Our talking head took part in the LIPS2009 Challenge contest and won the FIRST place with a subjective MOS score of 4.15 in the Audio-Visual match evaluated by 20 human subjects.

7. Acknowledgements
The authors would like to thank Dr. Qiang Wang who used to be in Microsoft now in Samsung Electronic R&D China, and Dr. Lin Liang in Microsoft Research Asia, for their expertise on head pose tracking and normalization.

8. References