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1 Introduction

In recent years, performance gains in computer systems have come mainly from increased paral-
lelism. As a result, exploiting the full potential of a modern computer has become increasingly
difficult. Applications must not only work on multiple cores, but also access memory efficiently,
taking into account issues such as data locality. Parallel algorithms are often unavailable or in-
volve a compromise, performing more operations than the best sequential algorithm for the same
problem. In this paper we introduce a compromise-free algorithm for the single-source shortest
path problem on road networks. Our algorithm performs fewer operations than existing ones,
while taking advantage of locality, multi-core and instruction-level parallelism.

The single-source shortest path problem is a classical optimization problem. Given a graph
G = (V,A), a length `(a) assigned to each arc a ∈ A, and a source vertex s, the goal is to find
shortest paths from s to all other vertices in the graph. Algorithms for this problem have been
studied since the 1950’s. The non-negative single-source shortest path problem (NSSP), in which
`(a) ≥ 0, is a special case that comes up in several important applications. It can be solved more
efficiently than the general case with Dijkstra’s algorithm [6, 11]. When implemented with the
appropriate priority queues [15], its running time is within a factor of three of breadth-first search
(BFS), a simple linear-time traversal of the graph. This indicates that any significant practical
improvements in performance must take advantage of better locality and parallelism. Both are
hard to achieve based on Dijkstra’s algorithm [24, 25].

Motivated by web-based map services and autonomous navigation systems, the problem of
finding shortest paths in road networks has received a great deal of attention recently; see e.g.
[7, 8] for overviews. However, most research focused on accelerating point-to-point queries, in
which both a source s and a target t are known. Up to now, however, Dijkstra’s algorithm was
still the fastest known solution to the NSSP problem.

We present a new algorithm for the NSSP problem that works well for certain classes of graphs,
including road networks. We call it parallel hardware-accelerated shortest path trees (PHAST).
Building on previous work on point-to-point algorithms, PHAST uses contraction hierarchies [14]
to essentially reduce the NSSP problem to a traversal of a shallow, acyclic graph. This allows
us to take advantage of modern computer architectures and get a significant improvement in
performance.

The PHAST algorithm requires a preprocessing phase, whose cost needs a moderate number of
shortest path computations to be amortized. Moreover, PHAST only works well on certain classes
of graphs. Fortunately, however, road networks are among them. Several important practical
applications require multiple shortest path computations on road networks, such as preprocessing
for route planning (see, e.g., [19, 23, 17, 18]) or the computation of certain centrality measures, like
betweenness [2, 13]. For these applications, PHAST is extremely efficient. On continental-sized
road networks, a purely sequential version of our algorithm is two orders of magnitude faster
than the best previous solution. Moreover, PHAST scales well on multi-core machines. On a
standard 4-core workstation, one can compute all-pairs shortest paths in a few days instead of
several months.

Another development in modern computers is the availability of very powerful, highly-parallel,
and relatively cheap graphics processing units (GPUs). They have a large number of special-
ized processors and a highly optimized memory system. Although aimed primarily at computer
graphics applications, GPUs have increasingly been used to accelerate general-purpose computa-
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tions [27]. In this paper, we propose an efficient GPU implementation of PHAST. Note that this
is nontrivial, since GPUs are geared towards computation on very regular data objects, unlike
actual road networks. Still, our implementation achieves significant speedups even compared to
the CPU implementation of PHAST itself. On a standard workstation equipped with a high-end
consumer graphics card, we gain another order of magnitude over CPU-based PHAST. This re-
duces the computation of all-pairs shortest paths on a continental-sized road network to about
half a day, making applications requiring such computations practical.

This paper is organized as follows. Section 2 reviews Dijkstra’s algorithm and the point-to-
point algorithm PHAST builds upon, contraction hierarchies [14]. Section 3 describes the basic
PHAST algorithm. Section 4 shows how to improve locality to obtain a faster single-core version
of the algorithm. Section 5 shows how the algorithm can be parallelized in different ways, leading
to even greater speedups on multi-core setups. Section 6 describes a typical GPU architecture
and a GPU implementation of PHAST. Section 7 presents how to extend PHAST to compute
the auxiliary data needed for some applications. Section 8 reports detailed experimental results.
Final remarks are made in Section 9.

2 Background

2.1 Dijkstra’s Algorithm

We now briefly review the NSSP algorithm proposed by Dijkstra [11] and independently by
Dantzig [6]. For every vertex v, the algorithm maintains the length d(v) of the shortest path
from the source s to v found so far, as well as the predecessor (parent) p(v) of v on the path.
Initially d(s) = 0, d(v) = ∞ for all other vertices, and p(v) = null for all v. The algorithm
maintains a priority queue of unscanned vertices with finite d values. At each step, it removes
from the queue a vertex v with minimum d(v) value and scans it: for every arc (v, w) ∈ A with
d(v)+ `(v, w) < d(w), it sets d(w) = d(v)+ `(v, w) and p(w) = v. The algorithm terminates when
the queue becomes empty.

Efficient implementations of this algorithm rely on fast priority queues. On graphs with n
vertices and m arcs, an implementation of the algorithm using binary heaps runs in O(m log n)
time. One can do better, e.g., using k-heaps [20] or Fibonacci heaps [12], the latter giving an
O(m + n log n) bound. If arc lengths are integers in [0 . . . C], bucket-based implementations of
Dijkstra’s algorithm work well. The first such implementation, due to Dial [10], gives an O(m+nC)
bound. There have been numerous improvements, including some that are very robust in practice.
In particular, multi-level buckets [9] and smart queues [15] run in O(m+n log C) worst-case time.

Smart queues actually run in linear time if arc lengths have a uniform distribution [15]. In
fact, experimental results show that, when vertex IDs are randomly permuted, an implementation
of NSSP using smart queues is usually within a factor of two of breadth-first search (BFS), and
never more than three, even on especially-built bad examples.

For concreteness, throughout this paper we will illustrate the algorithms we discuss with their
performance on one well-known benchmark instance representing the road network of Western
Europe [8], with 18 million vertices and 42 million arcs. (More detailed experiments, including
additional instances, will be presented in Section 8.) If vertex IDs are assigned at random, the
smart queue algorithm takes 9.2 seconds on an Intel Core-i7 920 clocked at 2.67 GHz, and BFS
takes 7.0 seconds. The performance of both algorithms improve if one reorders the vertices such
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that neighboring vertices tend to have similar IDs, since this reduces the number of cache misses
during the computation. Interestingly, reordering the vertices by a simple depth first search (DFS)
like procedure (explained in detail in Section 8) already gives good results: Dijkstra’s algorithm
takes 3.3 seconds, and BFS takes 2.2. We tested several other layouts but were unable to obtain
significantly better performance. Therefore, unless otherwise noted, in the remainder of this paper
we use the DFS layout when reporting running times.

2.2 Contraction Hierarchies

We now discuss the contraction hierarchies (CH) algorithm, proposed by Geisberger et al. [14]
to speed up point-to-point shortest path computations on road networks. It has two phases.
The preprocessing phase takes only the graph as input, and produces some auxiliary data. The
query phase takes the source s and target t as inputs, and uses the auxiliary data to compute the
shortest path from s to t.

The preprocessing phase of CH picks a permutation of the vertices and shortcuts them in
this order. The shortcut operation deletes a vertex v from the graph (temporarily) and adds arcs
between its neighbors to maintain the shortest path information. More precisely, for any pair
{u, w} of neighbors of v such that (u, v) · (v, w) is the only shortest path in between u and w in
the current graph, we add a shortcut (u, w) with `(u, w) = `(u, v) + `(v, w). The output of this
routine is the set A+ of shortcut arcs and the position of each vertex v in the order (denoted
by rank(v)). Although any order gives a correct algorithm, query times and the size of A+ may
vary. In practice, the best results are obtained by on-line heuristics that select the next vertex to
shortcut based, among other factors, on the number of arcs added and removed from the graph
in each step [14].

The query phase of CH runs a bidirectional version of Dijkstra’s algorithm on the graph
G+ = (V,A ∪ A+), with one crucial modification: both searches only look at upward arcs, those
leading to neighbors with higher rank. More precisely, let A↑ = {(v, w) ∈ A ∪ A+ : rank(v) <
rank(w)} and A↓ = {(v, w) ∈ A ∪ A+ : rank(v) > rank(w)}. During queries, the forward search
is restricted to G↑ = (V,A↑), and the reverse search to G↓ = (V,A↓). Each vertex v maintains
estimates ds(v) and dt(v) on distances from s (found by the forward search) and to t (found
by the reverse search). These values can be infinity. The algorithm keeps track of the vertex
u minimizing µ = ds(u) + dt(u), and each search can stop as soon as the minimum value in its
priority queue is at least as large as µ.

Consider the maximum-rank vertex u on the shortest s-t path. As shown in [14], u minimizes
ds(u) + dt(u) and the shortest path from s to t is given by the concatenation of the s–u and u–t
paths. Furthermore, the forward search finds the shortest path from s to u (which belongs to
G↑), and the backward search finds the shortest path from u to t (which belongs to G↓).

This simple algorithm is surprisingly efficient on road networks. On the European road net-
work, random s–t queries visit fewer than 500 vertices (out of 18 million) on average and take a
fraction of a millisecond on a standard workstation. Preprocessing takes only about 10 minutes
and adds fewer shortcuts than there are original arcs.

Note that the forward search can easily be made target-independent by running Dijkstra’s
algorithm in G↑ from s until the priority queue is empty. Even with this loose stopping criterion,
the upward search only visits about 500 vertices on average. Also note that the distance label
ds(u) of a scanned vertex u does not necessarily represent the actual distance from s to u—it
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may be only an upper bound. We would have to run a backward search from u to find the actual
shortest path from s to u.

From a theoretical point of view, CH works well in networks with low highway dimension [1].
Roughly speaking, these are graphs in which one can find a very small set of “important” vertices
to hit all “long” shortest paths.

3 Basic PHAST Algorithm

We are now ready to discuss a basic version of PHAST, our new algorithm for the NSSP problem.
It has two phases, preprocessing and (multiple) NSSP computations. The algorithm is efficient
only if there are sufficiently many NSSP computations to amortize the preprocessing cost.

The preprocessing phase of PHAST just runs a standard CH preprocessing, which gives us a set
of shortcuts A+ and a vertex ordering. This is enough for correctness. We discuss improvements
in the next section.

A PHAST query initially sets d(v) = ∞ for all v 6= s, and d(s) = 0. It then executes
the actual search in two subphases. First, it performs a simple forward CH search: it runs
Dijkstra’s algorithm from s in G↑, stopping when the priority queue becomes empty. This sets
the distance labels d(v) of all vertices visited by the search. The second subphase scans all
vertices in G↓ in descending rank order.1 To scan v, we examine each incoming arc (u, v) ∈ A↓;
if d(v) > d(u) + `(u, v), we set d(v) = d(u) + `(u, v).

Theorem 3.1 PHAST computes correct distance labels from s.

Proof. We have to prove that, for every vertex v, d(v) eventually represents the distance from s
to v in G (or, equivalently, in G+). Consider one such v in particular, and let w be the maximum-
rank vertex on the shortest path from s to v in G+. The first phase of PHAST is a forward CH
query, and is therefore guaranteed to find the shortest s–w path and to set d(w) to its correct
value (as shown in [14]). By construction, G+ contains a shortest path from w to v in which
vertices appear in descending rank order. The second phase scans the arcs in this order, which
means d(v) is computed correctly.

In this and the following few sections, our discussion will focus on the computation of distance
labels only, and not the actual shortest path trees. Section 7 shows how to compute parent
pointers and other auxiliary data in a straightforward manner.

On our benchmark instance, PHAST performs a single-source shortest path computation in
about 2.2 seconds, which is the same as BFS and lower than the 3.3 seconds needed for Dijkstra’s
algorithm.

4 Improvements

In this section we describe how the performance of PHAST can be significantly improved by
taking into account the features of modern computer architectures. We focus on its second phase
(the linear sweep), since the time spent on the forward CH search is negligible: less than 0.05 ms

1For correctness, any reverse topological order will do.
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on our benchmark instance. In Section 4.1, we show how to improve locality when computing
a single tree. Then, Section 4.2 discusses how building several trees simultaneously not only
improves locality even further, but also enables the use of special instruction sets provided by
modern CPUs. Finally, Section 4.3 explains how a careful initialization routine can speed up the
computation.

4.1 Reordering Vertices

To explain how one can improve locality and decrease the number of cache misses, we first need to
address data representation. For best locality, G↑ and G↓ are represented separately, since each
phase of our algorithm works on a different graph.

Vertices have sequential IDs from 0 to n−1. We represent G↑ using a standard cache-efficient
representation based on a pair of arrays. One array, arclist, is a list of arcs sorted by tail ID, i.e.,
arc (u, ·) appears before (w, ·) if u < w. This ensures that the outgoing arcs from vertex v are
stored consecutively in memory. Each arc (v, w) is represented as a two-field structure containing
the ID of the head vertex (w) and the length of the arc. The other array, first, is indexed by
vertex IDs; first [v] denotes the position in arclist of the first outgoing arc from v. To traverse
the adjacency list, we just follow arclist until we hit first [v + 1]. We keep a sentinel at first [n] to
avoid special cases.

The representation of G↓ is identical, except for the fact that arclist represents incoming
instead of outgoing arcs. This means that arclist is sorted by head ID, and the structure repre-
senting an arc contains the ID of its tail (not head). Distance labels are maintained as a separate
array, indexed by vertex IDs.

Given this representation, a simple reordering of the vertices leads to improved memory locality
during the second phase of PHAST, which works on G↓.

To determine a good new order, we first assign levels to vertices. Levels can be computed as we
shortcut vertices during preprocessing, as follows. Initialize all levels to zero; when shortcutting
a vertex u, we set L(v) = max{L(v), L(u) + 1} for each current neighbor v of u, i.e., for each v
such that (u, v) ∈ A↑ or (v, u) ∈ A↓. By construction, we have the following lemma.

Lemma 4.1 If (v, w) ∈ A↓, then L(v) > L(w).

This means that the second phase of PHAST can process vertices in descending order of level:
vertices on level i are only visited after all vertices on levels greater than i have been processed.
This order respects the topological order of G↓.

Within the same level, we can scan the vertices in any order. In particular, by processing
vertices within a level in increasing order of IDs,2 we maintain some locality and decrease the
running time of PHAST from 2.2 to 0.8 seconds.

We can obtain additional speedup by actually reordering the vertices. We assign lower IDs
to vertices at higher levels; within each level, we keep the DFS order. Now PHAST will be
correct with a simple linear sweep in increasing order of IDs. It can access vertices, arcs, and
head distance labels sequentially, with perfect locality. The only non-sequential access is to the
distance labels of the arc tails (recall that, when scanning v, we must look at the distance labels
of its neighbors). Keeping the DFS relative order within levels helps to reduce the number of the
associated cache misses.

2As mentioned in Section 2.1, we assign IDs according to a DFS order, which has a fair amount of locality.
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As most data access is now sequential, we get a substantial speedup. With reordering, one
NSSP computation is reduced from 0.8 seconds to 195 milliseconds, which is about 17 times faster
than Dijkstra’s algorithm. We note that the notion of reordering vertices to improve locality has
been applied before to hierarchical route planning techniques [16], albeit in a more ad hoc manner.

4.2 Computing Multiple Trees

Reordering ensures that the only possible non-sequential accesses during the second stage of the
algorithm happen when reading distance labels of arc tails. More precisely, when processing
vertex v, we must look at all incoming arcs (u, v). The arcs themselves are arranged sequentially
in memory, but the IDs of their tail vertices are not sequential.

We can improve locality by running multiple NSSP computations simultaneously. To grow
trees from k sources (s0, s1, . . . , sk−1) at once, we maintain k distance labels for each vertex
(d0, d1, . . . , dk−1). These are maintained as a single array of length kn, laid out so that the k
distances associated with v are consecutive in memory.

The query algorithm first performs (sequentially) k forward CH searches, one for each source,
and sets the appropriate distance labels of all vertices reached. As we have seen, the second phase
of PHAST processes vertices in the same order regardless of source, so we can process all k sources
during the same pass. We do so as follows. To process each incoming arc (u, v) into a vertex v,
we first retrieve its length and the ID of u. Then, for each tree i (for 0 ≤ i < k), we compute
di(u)+ `(u, v) and update di(v) if the new value is an improvement. For a fixed v, all di(v) values
are consecutive in memory and are processed sequentially, which leads to better locality and fewer
cache misses.

Increasing k leads to better locality, but only up to a point: storing more distance labels tend
evict other, potentially useful, data from the processor caches. Another drawback is increased
memory consumption, because we need to keep an array with kn distance labels.

Still, for small values of k we can achieve significant speedups with a relatively small mem-
ory overhead. Setting k = 16 reduces the average running time per tree from 195.3 to 113.3
milliseconds on our benchmark instance.

SSE Instructions. We use 32-bit distance labels. Current x86-CPUs have special 128-bit SSE
registers that can hold four 32-bit integers and allow basic operations, such as addition and
minimum, to be executed in parallel. We can use these registers during our sweep through the
vertices to compute k trees simultaneously, k being a multiple of 4. For simplicity, assume k = 4.
When processing an arc (u, v), we load all four distance labels of u into an SSE register, and four
copies of `(u, v) into another. With a single SSE instruction, we compute the packed sum of these
registers. Finally, we build the (packed) minimum of the resulting register with the four distance
labels of v, loaded into yet another SSE register. Note that computing the minimum of integers
is only supported by version 4.1 of SSE or higher.

For k = 16, using SSE instructions reduces the average run-time per tree from 113.3 to 43.0
milliseconds, for an additional factor of 2.6 speedup. In total, this algorithm is 77 times faster
than Dijkstra’s algorithm on one core.
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4.3 Initialization

PHAST (like Dijkstra’s algorithm) assumes that all distance labels are set to ∞ during initial-
ization. This requires a linear sweep over all distance labels, which takes about 10 milliseconds.
This is negligible for Dijkstra’s algorithm, but represents a significant time penalty for PHAST.
To avoid this, we mark vertices visited during the CH search with a single bit. During the linear
sweep, when scanning a vertex v, we check for this bit: If it is not set, we know d(v) = ∞,
otherwise we know that v has been scanned during the upward search and has a valid (though
not necessarily correct) value. After scanning v we unmark the vertex for the next shortest path
tree computation. The results we have reported so far already include this implicit initialization.

5 Exploiting Parallelism

We now consider how to use parallelism to speed up PHAST on a multi-core CPU. For computa-
tions that require shortest path trees from several sources, the obvious approach for parallelization
is to assign different sources to each core. Since the computations of the trees are independent
from one another, we observe excellent speedups. Running on four cores, without SSE, the av-
erage running time per tree (k = 1) decreases from 195.3 to 49.2 ms, a speedup of 3.97. (Recall
that k indicates the number of sources per linear sweep.) Setting k to 16 (again without SSE),
the running time drops from 113.3 to 28.5 ms per tree, a speedup of 3.98.

However, we can also parallelize a single tree computation. On our benchmark instance, the
number of the vertex levels is around 140, orders of magnitude smaller than the number of vertices.
Moreover, low levels contain many more vertices than upper levels. Half of the vertices are in level
0, for example. This allows us to process vertices of the same level in parallel if multiple cores are
available. We partition vertices in a level into (roughly) equal-sized blocks and assign each block
to a thread (core). When all threads terminate, we start processing the next level. Blocks and
their assignment to threads can be computed during preprocessing. Running on 4 cores, we can
reduce a single NSSP computation from 195.3 to 51.1 milliseconds on the same machine, a factor
of 3.82 speedup. Note that this type of parallelization is the key to our GPU implementation of
PHAST, explained in the next section.

6 GPU Implementation

Our improved implementation of PHAST is memory bandwidth limited. One way to overcome
this limitation is to use a modern graphics card. The NVIDIA GTX 480 (Fermi) we use in our
tests has a higher memory bandwidth (177 GB/s) than a high-end Intel Xeon CPU (32 GB/s).
Although clock frequencies tend to be lower on GPUs (less than 1 GHz) than CPUs (higher
than 3 GHz), the former can compensate by running many threads in parallel. The NVIDIA
GTX 480 has 15 independent cores, each capable of executing 32 threads (called a warp) in
parallel. It follows a Single Instruction Multiple Threads (SIMT) model, which uses predicated
execution to preserve the appearance of normal thread execution at the expense of inefficiencies
when the control-flow diverges. Moreover, barrel processing is used to hide DRAM latency. For
maximal efficiency, all threads of a warp must access memory in certain, hardware-dependent
ways. Accessing 32 consecutive integers of an array, for example, is efficient. Another constraint
of GPU-based computations is that communication between main and GPU memory is rather
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slow. Fortunately, off-the-shelf GPUs nowadays have enough on-board RAM (1.5 GB in our case)
to hold all the data we need.

Our GPU-based variant of PHAST, called GPHAST, satisfies all the constraints mentioned
above. In a nutshell, GPHAST outsources the linear sweep to the GPU and the CPU remains
responsible for computing the upward CH trees. During initialization, we copy both G↓ and the
array of distance labels to the GPU. To compute a tree from s, we first run the CH search on the
CPU and copy the search space (with less than 2 KB) to the GPU. As in the single-tree parallel
version of PHAST, we then process each level in parallel. The CPU starts, for each level i, a
kernel on the GPU, which is a (large) collection of threads that all execute the same code and
that are scheduled by the GPU hardware. Note that each thread is responsible for exactly one
vertex. With this approach, the overall access to the GPU memory within a warp is efficient in the
sense that DRAM bandwidth utilization is minimized. Caching on the GPU is only moderately
effective due to limited data reuse.

On an NVIDIA GTX 480, installed on the machine used in our previous experiments, a single
tree can be computed in 9.7 ms. This represents a speedup of 339 over Dijkstra’s algorithm, 20
over the sequential variant of PHAST, and 5.3 over the 4-core CPU version of PHAST. Note that
GPHAST uses a single core from the CPU.

We also tested reordering vertices by degree to make each warp work on vertices with the
same degree. However, this has a strong negative effect on the locality of the distance labels
of the tails of the incoming arcs. Hence, we keep the same ordering of vertices as for our CPU
implementation of PHAST.

Multiple Trees. If the GPU has enough memory to hold additional distance labels, GPHAST
also benefits from computing many trees in parallel. When computing k trees at once, the CPU
first computes the k CH upward trees and copies all k search spaces to the GPU. Again, the CPU
activates a GPU kernel for each level. Each thread is still responsible for writing exactly one
distance label. We assign threads to warps such that threads within a warp work on the same
vertices. This allows more threads within a warp to follow the same instruction flow, since they
work on the same part of the graph.

For k = 16, GPHAST needs 2.9 ms per shortest path tree. That is more than 1000 times
faster than sequential Dijkstra’s algorithm, 67 times faster than sequential PHAST, and 6.7 times
faster than computing 64 trees on the CPU in parallel (16 sources per sweep, one sweep per core).
GPHAST can compute all-pairs shortest paths (i.e., n trees) in about 14 hours on a standard
workstation. On the same machine, n executions of Dijkstra’s algorithm would take 230 days,
even if we compute 4 trees in parallel (one on each core).

7 Computing Auxiliary Information

Our discussion so far has assumed that PHAST computes only distances from a root s to all
vertices in the graph. We now discuss how it can be extended to compute the actual shortest path
trees (i.e., parent pointers) and show how PHAST can be used for several concrete applications.
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7.1 Building Trees

One can easily change PHAST to compute parent pointers in G+. When scanning v during the
linear sweep phase, it suffices to remember the arc (u, v) responsible for d(v). Note that some of
the parent pointers in this case will be shortcuts (not original arcs). For many applications, paths
in G+ are sufficient and even desirable [4].

If the actual shortest path tree in G is required, it can be easily obtained with one additional
pass through the arc list of G. During this pass, for every original arc (u, v) ∈ G, we check
whether the identity d(v) = d(u) + `(u, v) holds; if it does, we make u the parent of v. As long
as all original arc lengths are strictly positive, this leads to a shortest path tree in the original
graph.

In some applications, one might need to compute all distance labels, but the full description
of a single s–t path. In such cases, a path in G+ can be expanded into the corresponding path in
G in time proportional to the number of arcs on it [14].

7.2 Applications

With the tree construction procedure at hand, we can now give practical applications of PHAST:
computing exact diameters and centrality measures on continental-sized road networks, and as
well as faster preprocessing for point-to-point route planning techniques. The applications require
extra bookkeeping or an additional traversals of the arc list to compute some auxiliary information.
As we shall see, the modifications are easy and the computational overhead is relatively small.

Diameter. The diameter of a graph G is defined by the longest shortest path in G. Its exact
value can be computed by building n shortest path trees. PHAST can easily do it by making each
core keep track of the maximum label it encounters. The maximum of these values is the diameter.
To use GPHAST, we maintain an additional array of size n to keep track of the maximum value
assigned to each vertex over all n shortest path computations. In the end, we do one sweep over all
vertices to collect the maximum. This is somewhat memory-consuming, but it keeps the memory
accesses within the warps efficient.

Arc Flags. Arc flags [22, 23] are used to speed up the computation of point-to-point shortest
paths. A preprocessing algorithm first computes a partition C of V into cells, then attaches a label
to each arc a. A label contains, for each cell C ∈ C, a Boolean flag FC(a) which is true if there
is a shortest path starting with a to at least one vertex in C. During queries, a modified variant
of Dijkstra’s algorithm only considers arcs for which the flag of the target cell is set to true. This
approach can easily be made bidirectional and is very efficient, with speedups of more than three
orders of magnitude over a bidirectional version of Dijkstra’s algorithm [19].

The main drawback of this approach is its preprocessing time. While a good partition can be
computed in a few minutes [21, 26, 28], computing the flags requires building a shortest path tree
from each boundary vertex, i.e., each vertex with an incident arc from another cell. In a typical
setup, one has to compute about 40 000 shortest path trees resulting in preprocessing times of
about 12 hours (on four cores). Instead of running Dijkstra’s algorithm, however, we can run
GPHAST with tree reconstruction, reducing the time to set flags to about 3 minutes.
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Centrality Measures. PHAST can also be used to compute the exact reach [18] of a ver-
tex v. The reach of v is defined as the maximum, over all shortest s–t paths containing v, of
min{dist(s, v), dist(v, t)}. This notion is very useful to accelerate the computation of point-to-
point shortest paths. The best known method to calculate exact reaches for all vertices within a
graph requires computing all n shortest path trees, which we can do much faster with PHAST.
Fast heuristics [16] compute reach upper bounds only and are fairly complicated.

Another centrality measure based on shortest paths is betweenness [2, 13]. It is defined as
cB(v) =

∑
s 6=v 6=t∈V σst(v)/σst, where σst is the number of shortest paths between two vertices s and

t, and σst(v) is the number of shortest s–t paths on which v lies on. Computing exact betweenness
relies on n shortest path tree computations [5]. Again, replacing Dijkstra’s algorithm by PHAST
makes exact betweenness tractable for continent-size road networks.

Note that these and other applications often require traversing the resulting shortest path tree
in bottom-up fashion. This can be easily done in a cache-efficient way by scanning vertices in
reverse level order.

8 Experimental Results

8.1 Experimental Setup

We implemented our CPU-based PHAST with all optimizations from Section 4 in C++ and
compiled it with Microsoft Visual C++ 2010. For parallelization, we use OpenMP. CH queries use
a binary heap as priority queue; we tested other data structures, but their impact on performance
is negligible because the queue size is small.

As already mentioned, we run most of our evaluation on an Intel Core-i7 920 running Windows
7 Enterprise. It has four cores clocked at 2.67 GHz and 12 GB of DDR3-1066 RAM. Our standard
benchmark instance is the European road network, with 18 million vertices and 42 million arcs,
made available by PTV AG [29] for the 9th DIMACS Implementation Challenge [8]. The length
of each arc represents the travel time between its endpoints.

PHAST builds upon contraction hierarchies. We implemented a parallelized version of the
CH preprocessing routine, as discussed in [14]. For improved efficiency, we use a slightly different
priority function for ordering vertices. The priority of a vertex u is given by 2 ·ED(u)+CN (u)+
H(u) + 5 · L(u), where ED(u) is the difference between the number of arcs added and removed
(if u were contracted), CN(u) is the number of contracted neighbors, H(u) is the total number of
arcs represented by all shortcuts added, and L(u) is the level u would be assigned to. With this
priority term, preprocessing takes about five minutes (on four cores) and generates upward and
downward graphs with 33.8 million arcs each. The number of levels is 140, with half the vertices
assigned to the lowest level, as shown in Figure 1. Note that the lowest 20 levels contain all but
100 000 vertices, while all but 1 000 vertices are assigned to the lowest 66 levels. We stress that
the priority term has limited influence on the performance of PHAST. It works well with any
function that produces a “good” contraction hierarchy (leading to fast point-to-point queries),
such as those tested by Geisberger et al. [14].
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8.2 Single Tree

We now evaluate the performance of Dijkstra’s algorithm and PHAST when computing a single
tree. We tested different priority queues (for Dijkstra’s algorithm) and different graph layouts (for
both algorithms). We start with a random layout, in which vertex IDs are assigned randomly, to
see what happens with poor locality. We also consider the original layout (as given in the input
graph as downloaded); it has some spatial locality. Finally, we consider a DFS layout, with IDs
given by the order vertices are discovered during a DFS from a random vertex. The resulting
figures are given in Table 1. For reference we also include the running time of a simple BFS.

We observe that both the layout and the priority queue have an impact on Dijkstra’s algorithm.
It is four times slower when using the binary heap and the random layout than when using a
bucket-based data structure and the DFS layout. For single-core applications, the smart queue
implementation [15] (based on multi-level buckets) is robust and memory-efficient. In our setup,
however, Dial’s implementation [10], based on single-level buckets, is comparable on a single
core and scales better on multiple cores. For the remainder of this paper, all numbers given for
Dijkstra’s algorithm executions refer to the Dial’s implementation with the DFS layout.

The impact of the layout on PHAST is even more significant. By starting from the DFS
ordering and then ordering by level, the average execution time for one source improves from
1479 to 195 ms, a speedup of 7.6. For all combinations tested, PHAST is always faster than
Dijkstra’s algorithm. The speedup is about a factor of 17 for sequential PHAST, while this
number increases to 77 if we use four cores to scan the vertices within one level in parallel, as
explained in Section 5.

To evaluate the overhead of PHAST, we also ran a lower bound test. To test the memory
bandwidth of the system, we sequentially and independently read from all arrays (first, arclist,
and the distance array) and then write a value to each entry of the distance array. On our test
machine, this takes 76.4 ms; PHAST is only 2.5 times slower than this.
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Table 1: Performance of various algorithms on the European road network. Three graph layouts are
considered: random, as given in the input, and DFS-based.

time per tree [ms]
algorithm details random input DFS
Dijkstra binary heap 12683 6562 5804

Dial 8996 4087 3355
smart queue 9298 4157 3290

BFS — 6978 2844 2212
PHAST original ordering 1479 803 783

reordered by level 460 201 195
reordered + four cores 153 54 51

Note that this lower bound merely iterates through the arc list in a single loop. In contrast,
most algorithms (including PHAST) loop through the vertices, and for each vertex loop through
its (few) incident arcs. Although both variants visit the same arcs in the same order, the second
method has an inner loop with a very small (but varying) number of iterations, thus making it
harder to be sped up by the branch predictor. Indeed, it takes 171 ms to traverse the graph
exactly as PHAST does, but storing at d(v) the sum of the lengths of all arcs into v. This is only
24 ms less than PHAST, which suggests that reducing the number of cache misses (from reading
d(u)) even further by additional reordering is unlikely to improve the performance of PHAST
significantly.

8.3 Multiple Trees

Next, we evaluate the performance of PHAST when computing many trees simultaneously. We
vary both k (the number of trees per linear sweep) and the number of cores we use. We also
evaluate the impact of SSE instructions. The results are given in Table 2.

Table 2: Average running times per tree when computing multiple trees in parallel. We consider the impact
of using SSE instructions, varying the number of cores, and increasing the number of sources per sweep
(k). The numbers in parentheses refer to the execution times when SSE is activated; for the remaining
entries we did not use SSE.

sources/ time per tree [ms]
sweep 1 core 2 cores 4 cores

1 195.3 97.4 49.2
4 140.7 (78.1) 70.4 (41.2) 35.2 (26.2)
8 121.5 (59.3) 60.8 (32.0) 30.5 (21.7)
16 113.3 (43.0) 56.8 (25.1) 28.5 (19.5)

Without SSE, we observe perfect speedup when using four cores instead of one, for all values
of k. With SSE, however, we obtain smaller speedups when running on multiple cores. The more
cores we use, and the higher k we pick, the more data we have to process in one sweep. Still,
using all optimizations (SSE, multi-core) helps: the algorithm is 10 times faster with k = 16 on
four cores than with k = 1 on one core.
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For many cores and high values of k, memory bandwidth becomes the main bottleneck of
PHAST. This is confirmed by executing our lower bound test on all four cores in parallel. For
k = 16 and four cores, it takes 13.3 ms per “tree” to traverse all arrays in optimal (sequential)
order. This is more than two thirds of the 19.5 ms needed by PHAST. This indicates that PHAST
is approaching a barrier. This observation was the main motivation for our implementation of
PHAST on a GPU, whose performance we discuss next.

8.4 GPHAST

To evaluate GPHAST, we implemented our algorithm from Section 6 using CUDA SDK 3.1 and
compiled it with Microsoft Visual C++ 20083. We conducted our experiments on an NVIDIA
GTX 480 installed in our benchmark machine. The GPU is clocked at 701 MHz and has 1.5 GB
of DDR5 RAM. Table 3 reports the performance when computing up to 16 trees simultaneously.

Table 3: Performance and GPU memory
utilization of GPHAST in milliseconds per
tree, depending on k.

trees / memory time
sweep [MB] [ms]

1 395 9.70
2 464 4.97
4 605 3.85
8 886 3.22
16 1448 2.90

As the table shows, the performance of GPHAST is
excellent. A single tree can be built in only 9.7 ms. When
computing 16 trees in parallel, the running time per tree
is reduced to a mere 2.9 ms. This is a speedup of more
than three orders of magnitude over plain Dijkstra’s al-
gorithm. On average, we only need 161 picoseconds per
distance label, which is roughly half a CPU clock cy-
cle. On four cores, CH preprocessing takes 317 seconds,
but this cost is amortized away after only 278 trees are
computed if one uses GPHAST instead of Dijkstra’s al-
gorithm (also on four cores).

8.5 Hardware Impact

In this section we study the performance of PHAST on different computer architectures. Although
GPHAST is clearly faster than PHAST, GPU applications are still very limited, and general-
purpose servers usually do not have high-performance GPUs. Table 4 gives an overview of the
five machines we tested. It should be noted that M2-1 and M2-4 are older machines (about 5 and
3 years old, respectively), whereas M1-4 (our default machine) is a recent commodity workstation.
M2-6 and M4-12 are modern servers costing an order of magnitude more than M1-4. Note that
M4-12 has many more cores than M2-6, but has worse sequential performance due to a lower
clock rate. With the exception of M1-4, all machines have more than one NUMA node (local
memory bank). For these machines, access to local memory is faster than to memory assigned to
a different NUMA node. M4-12 has more NUMA nodes (eight) than CPUs (four). M4-12 and
M2-6 run Windows Server 2008R2, M2-4 runs Windows Server 2008, and M2-1 runs Windows
Server 2003.

We tested the sequential and parallel performance of Dijkstra’s algorithm and PHAST on these
machines. By default, the operating system moves threads from core to core during execution,
which can have a significant adverse effect on memory-bound applications such as PHAST. Hence,
we also ran our experiments with each thread pinned to a specific core. This ensures that the
relevant distance arrays are always stored in the local memory banks, and results in improved

3CUDA SDK 3.1 is not compatible with Microsoft Visual C++ 2010 at the time of writing.
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Table 4: Specifications of the machines tested. Column |P | indicates the number of CPUs, whereas |c|
refers to the total number of physical cores in the machine. NUMA nodes refers to how many local memory
banks the system has. The given memory bandwidth refers to the (theoretical) speed with which a core
can access its local memory.

CPU memory
clock size clock bandwidth NUMA

name brand type [GHz] |P | |c| type [GB] [MHz] [GB/s] nodes
M2-1 AMD Opteron 250 2.40 2 2 DDR 16 133 6.4 2
M2-4 AMD Opteron 2350 2.00 2 8 DDR2 64 266 12.8 2
M4-12 AMD Opteron 6168 1.90 4 48 DDR3 128 667 42.7 8
M1-4 Intel Core-i7 920 2.67 1 4 DDR3 12 533 25.6 1
M2-6 Intel Xeon X5680 3.33 2 12 DDR3 96 667 32.0 2

locality at all levels of memory hierarchy. For the same reason, on multi-socket systems, we also
copy the graph to each local memory bank explicitly (when running in pinned mode). Table 5
shows the results. Running single-threaded, PHAST outperforms Dijkstra’s algorithm by a factor
of approximately 19, regardless of the machine. This factor increases slightly (to 21) when we
compute one tree per core. The reason for this is that cores share the memory controller(s) of a
CPU. Because PHAST has fewer cache misses, it benefits more than Dijkstra’s algorithm from
the availability of multiple cores.

The impact of pinning threads and copying the graph to local memory banks is significant.
Without pinning, no algorithm performs well when run in parallel on a machine with more than
one NUMA node. On M4-12, which has four CPUs (and eight NUMA nodes), we observe speedups
of less than 6 (the number of cores of a single NUMA node) when using all 48 cores, confirming
that non-local memory access is inefficient. However, if the data is properly placed in memory,
the algorithms scale much better. On M4-12, using 48 cores instead of a single one makes PHAST
34 times faster. Unsurprisingly, pinning is not very helpful on M1-4, which has a single CPU.

Computing 16 trees per core within each sweep gives us another factor of 2, independent of
the machine. When using all cores, PHAST is consistently about 40 times faster than Dijkstra’s
algorithm.

Table 5: Impact of different computer architectures on Dijkstra’s algorithm and PHAST. When running
multiple threads, we examine the effect of pinning each thread to a specific core or keeping it unpinned
(free). In each case, we show the average running time per tree in milliseconds.

Dijkstra [ms] PHAST [ms]
single 1 tree/core single 1 tree/core 16 trees/core

machine thread free pinned thread free pinned free pinned
M2-1 6073.5 3967.3 3499.3 315.4 184.4 158.3 99.5 85.0
M2-4 6497.5 1499.0 1232.2 330.5 104.0 56.6 49.0 31.4
M4-12 5183.1 417.3 168.5 272.7 49.1 8.0 18.4 4.0
M1-4 3355.7 1143.2 1103.5 195.3 50.2 49.2 19.6 19.5
M2-6 2321.7 413.7 288.8 134.9 21.2 14.5 14.5 7.2
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Table 6: Dijkstra’s algorithm, PHAST, and GPHAST comparison. Column memory used indicates how
much main memory is occupied during the construction of the trees (for GPHAST, we also use 1.5 GB of
GPU memory).

per tree n trees
memory time energy time energy

algorithm device used [GB] [ms] [J] [d:h:m] [MJ]
Dijkstra M1-4 2.8 1103.52 179.87 230:00:41 3237.73

M2-6 8.2 288.81 95.88 60:04:51 1725.93
M4-12 31.8 168.49 125.86 35:02:55 2265.52

PHAST M1-4 5.8 19.47 3.17 4:01:24 57.12
M2-6 15.6 7.20 2.39 1:12:13 43.03

M4-12 61.8 4.03 3.01 0:20:09 54.19
GPHAST GTX 480 2.2 2.90 1.13 0:14:33 20.36

8.6 Comparison: Dijkstra vs. PHAST vs. GPHAST

Next, we compare Dijkstra’s algorithm with PHAST and GPHAST. Table 6 reports the best
running times (per tree) for all algorithms, as well as how long it would take to solve the all-pairs
shortest-paths problem. We also report how much energy these computations require (for GPU
computations, this includes the entire system, including the CPU).

On the most powerful machine we tested, M4-12, the CPU-based variant is almost as fast
as GPHAST, but the energy consumption under full work load is much higher for M4-12 (747
watts) than for M1-4 with installed GPU (390 watts). Together with the fact that GPHAST still
is faster than PHAST on M4-12, the energy consumption per tree is about 2.5 times worse for
M4-12. M1-4 without GPU (completely removed from the system) consumes 163 watts and is
about as energy-efficient as M4-12. Interestingly, M2-6 (332 watts) does a better job than the
other machines in terms of energy per tree. Still, GPHAST is more than two times more efficient
than M2-6.

The graphics card itself costs half as much as the M1-4 machine on which it is installed, and
the machine supports two cards. With two cards, GPHAST would be twice as fast, computing
all-pairs shortest paths in about 7 hours (1.45 ms per tree), at a fifth of the cost of M4-12 or
M2-6. In fact, one could even buy some very cheap machines equipped with 2 GPUs each. Since
the linear sweep is by far the bottleneck of GPHAST, we can safely assume that the all-pairs
shortest-paths computation scales perfectly with the number of GPUs.

8.7 Other Inputs

Up to now, we have only tested one input, the European road network with travel times. Here, we
evaluate the performance of our algorithm if applied to travel distances instead of travel times. CH
preprocessing takes about 41 minutes on this input, generating upwards and downwards graphs
with 410 levels and 38.8 millions arcs each. Moreover, we evaluate the road network of the US
(generated from TIGER/Line data [30]), also made available for the 9th DIMACS Implementation
Challenge [8]. It has 24 million vertices and 58.3 million arcs. For travel times (distances), the
CH preprocessing takes 10 (28) minutes, and the search graphs have 50.6 (53.7) million arcs and
101 (285) levels.
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Table 7: Performance of Dijkstra’s algorithm, PHAST, and GPHAST on other inputs.
Europe USA

algorithm device time distance time distance
Dijkstra M1-4 1103.52 618.18 1910.67 1432.35

M2-6 288.81 177.58 380.40 280.17
M4-12 168.49 108.58 229.00 167.77

PHAST M1-4 19.47 23.01 28.22 29.85
M2-6 7.20 8.27 10.42 10.71

M4-12 4.03 5.03 6.18 6.58
GPHAST GTX 480 2.90 4.75 4.49 5.69

Table 7 presents the results. All algorithms are slower on the US graph, which has about 6
million more vertices than Europe. More interestingly, switching from travel times to distances
has a positive effect on Dijkstra’s algorithm (there are fewer decrease-key operations), but makes
PHAST slower (it has more arcs to scan). However, the differences are relatively small. PHAST
is always much faster than Dijkstra’s algorithm, and GPHAST yields the best performance on all
inputs.

8.8 Arc-Flags

Our last set of experiments deals with the computation of arc flags (as described in Section 7).
The purpose of this test is to show that additional information (besides the distance labels) can
indeed be computed efficiently. As input, we again use the road network of Western Europe with
travel times. First, we use SCOTCH [28] to create a partition of the graph into 128 cells and 20240
boundary vertices in total. This takes less than a minute. Next, we remove the so-called 1-shell
(attached trees) of the graph, which has roughly 6 million vertices. Optimal flags for arcs within
these trees can be set easily [3, 19]. This step takes 10 seconds. We then start the computation
of the remaining arc flags. We compute for each boundary vertex two shortest path trees with
GPHAST (one forward, one backward) and set the corresponding flags accordingly. We do this
by copying G to the GPU, together with an array with 32-bit integers representing 32 flags for
each arc. Since we need to compute 128 flags per arc, we copy this array to the main memory
after computing 32 flags and reinitialize it. We do so due to memory constraints on the GPU;
we set k = 8 for the same reason. Overall, with this approach the GPU memory is almost fully
loaded.

The last step, tree construction and setting of arc flags, takes 201 seconds. This is 4.95 ms
per boundary vertex (and direction) on average, of which 2.45 ms are spent computing the 12
million distance labels. Hence, reconstructing the parent pointers and setting the flags takes
exactly as much time as computing the tree. This is expected, since we have to look at almost the
same amount of data as during tree construction. On four cores we reduce the overall time for
computing flags from 12.3 hours with Dijkstra’s algorithm to 10 minutes (including partitioning
and the CH preprocessing).
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9 Concluding Remarks

We presented PHAST, a new algorithm for computing shortest path trees in graphs with low
highway dimension, such as road networks. Not only is it faster than the best existing sequen-
tial algorithm, but it also exploits parallel features of modern computer architectures, such as
SSE instructions, multiple cores, and GPUs. The GPU implementation can compute a shortest
path tree about three orders of magnitude faster than Dijkstra’s algorithm. This makes many
applications on road networks, such as the exact computation of centrality measures, practical.

A previously studied parallel algorithm for the NSSP problem is ∆-stepping [25]. It performs
more sequential operations than Dijkstra’s algorithm, its parallel implementation requires fine-
grained synchronization, and the amount of parallelism in ∆-stepping is less than that in PHAST.
Thus, for a large number of NSSP computations, PHAST is a better choice. For a small number of
computations (e.g., a single computation) PHAST is not competitive because of the preprocessing.
However, it is not clear if on road networks ∆-stepping is superior to Dijkstra’s algorithm in
practice. The only study of ∆-stepping on road networks [24] has been done on a Cray MTA-2,
which has an unusual architecture and requires a large amount of parallelism for good performance.
The authors conclude that continent-size road networks do not have sufficient parallelism. It would
be interesting to see how the ∆-stepping algorithm performs on a more conventional multi-core
system or a small cluster. Another interesting project is an MTA-2 implementation of PHAST.

Future research includes studying the applicability of PHAST to other networks. A possible
approach would be to stop the construction of the contraction hierarchy as soon as the average
degree of the remaining vertices exceeds some value. PHAST then has to explore more vertices
during the CH upwards search and would only sweep over those vertices that were contracted
during preprocessing.

Finally, it would be interesting to study which kinds of map services are enabled by the ability
to compute full shortest path trees instantaneously, and by the fact that preprocessing based on
all-pairs shortest paths is now feasible.
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