THE SYMMETRIC SUBSPACE GAUSSIAN MIXTURE MODEL
Daniel Povey

Microsoft,
One Microsoft Way, Redmond, WA 98052

dpovey@i crosoft.com

ABSTRACT are “male” and “female” indexeg and these would be switched on
and off by the speaker vectors. Of course this would all beraat-

This document describes an extension of the Subspace @aussi . L
. o e ically learned from , with ny explicit labels fomger or
Mixture Model (SGMM). The extension is a symmetrization loé t (;:tie): sie(l:h ?:ctocr)s data out any explicit labels fo °

model, which makes the speaker and speech-state subsphzae b This technical report describes how we extend the fasili&ed

in the same way. The difference relates to the way the Gaussi . e : !
. L tat t t th Wotislth
weights within the substates are handled: now they deperttieon Eggﬁgezl?nnoggﬁdzzéwéadI%nErgﬁat%cil]s(g;ascnbed prevpusithe

Is_gleaker vector as ‘ll("e” as thet s;_peec;h-state vtector.t Th'“eoﬁj In Section 2 we give an overview of the issues introduced by th
ittle more per-speaker computation (to compute certaiFspeech- ., anq6 in the model and attempt to give the reader a sensavof ho

state normalizing factors), but the main cost is in addé@lanemory. e solve the resulting problems. In Section 3 we demonsthate
Tthe memory consumed by the motdtél IS aIT.?StSOUbIed a;mzzsm anipulations we use to obtain the auxiliary functions uisedur
storein r_r:emory atnebvlv p\;\?égmpu € quantl Y. (;)_/\t/ever, liket update formulas. We do not provide the detailed derivaticadldhe
gives quite respectable Improvements and it seemy fike auxiliary functions, but Section 3 does provide enough ibétat

it would give even greater WER improvemer_1ts in situ_ationse_mh the interested reader should be able to reconstruct thosetitens.
the number of Gaussians per speech-state is larger (it mare Section 4 describes the changes in the likelihood evalu&ionulas
data). that are necessary with this new model. Section 5 provides

Index Terms— Speech Recognition, SGMM, Symmetric (and altered) accumulation and update formulae that we itbehis
SGMM new model.

1. INTRODUCTION 2. OVERVIEW

We assume at this point that the reader has already read thpaGS 2.1. Likelihood evaluation
per [1] that describes the basic Subspace Gaussian MixtodeM
(SGMM). The complete version of that model, with speakepéata
tion and sub-states, can be written as follows (we omit the.Civ
adaptation since it is a feature-space transform that datesteract

The term in the likelihood that is changed versus the basefiadel

is the termlog wifr)” In order to more easily discuss this, and intro-
duce terms we will use later, we define the un-normalized hisig

directly with what we are doing here): bjmi andbgs) as follows:
M; I bjmi = exp wl-ijm (5)
p(x|j,s) = Z cjm) wimiN (x; uﬁm 3) (1) bgs) = exp uiTv<S). (6)
m=1 i=1
”E:r)“ = Mivjm + N,v® @) Defining a normalizing factor as follows:
Woimi exp WzTij . (3) bgir)b - Zbimibz('S)v 7
! ZiI’=1 €xXp WiT/ij ¢

I we can write the normalized weight as:
The modification we introduce here is quite a simple one: t&ema 9

the sub-state weights;»; a function of the speaker vector in addi- = bjmib(s)

tion to the speech-state vector, so: Wi = o) (8)
jm
T, . T (3)
s exp(W; Vjm 4 u; vi*) _ D e e ; :
w;rr)u = I . : “ Slncebz(.‘) is efficient to compute, anbi;;,)z can be computed fairly

> i1 exXp(W]vim +ufv(®) . .
efficiently as a dot-product between a vectobgf,; andbz(.s) (with
This just introduces a term that was natural but which weiptesly 1 as the vector index), we can compute likelihoods fairly effidy.
omitted because it makes things more complicated to estinTdte = We organize these computations in such a way that we doré teav
reasoning for making the effort to re-introduce it, is: ward in [1] computelog or exp functions on each frame, since these are fairly
that the sub-state weights were quite important in the pfmopart expensive functions to compute.

of the model, so they may also give a substantial improveteethie In the resulting computations, it would be most natural tinde
speaker vector adaptation. We can imagine models in whieteth the per-Gaussian normalizes,,; that we precompute, to contain

log b;m: rather than the normalized weighig w;..;. This would terms introduce difficult nonlinearities and force us to makprox-
lead to inconvenience when we compute likelihoods withpetager imations. The update process is very similar to the prooasad-
adaptation (i.e. withv(®) = 0), because we have to do the extra stepdating v;,,, except we use an iterative solution. In the estimation
of computlngb(s (with unit b{*)), which requires either extra per- for v, we just used a single iteration in the update phase, sinse iti
speaker computatlon or a small amount of extra storage. dmlav partof alarger iterative process; in the estimation of theager vec-

this we actually do the normalizations above slightly difatly: we tors v{*), since we start from zero each time we see a new speaker,
definew;,.; as the weights without speaker adaptation, i.e. as irand typically accumulate statistics just once or twices itiore im-

Equation (3), and write

din = D wimib(” ©
(s)

() _ Wimib;

Wimi = O (10)

Jgm

This has the additional advantage of keeping the computatie-
quired to computeiﬁi within a better numeric range (i.e. we are
less likely to encounter numerical overflow or underflow). hese
introduced two different forms of the speaker-specific aeigpm-
putation because, while Equation (10) represents the wagoive
ally do the computations, Equation (8) is conceptually mégand is
the way we can most easily derive some of the update formWae.
can demonstrate that when using our statistics accumuletieg)
the second version of the computation, the resulting coatjmuts
produce the same result as when using the first, more natural f

2.2. Parameter estimation

Some changes are introduced into the parameter estimatiomuf
lae by the change in the formula for the weights. There areethr
parts of the estimation formulae that are changed: the agtm
of the speaker vectoré'®) and speech-state vectovs,,, and the
speech-state weight projections. There is also a new estimation
introduced, for the speaker-space weight projectians So there
are four types of parameter estimation that we need to asidres
responding to the four parameter types appearing in Equéip
We give an overview of the issues here; in Section 5 we wik ghe
detailed accumulation and update formulae.

2.2.1. Change in speech-state vectors and weight projections esti-
mation

The estimation of the speech-state vectefd and weight projec-

tions w; are the ones that, in terms of formulae, change the Ieasf]ua“t'“eswu Ui, Vim andv(®

but at the same time they introduce the most inconveniendee T
estimation formulae for fov*) andw; described in [1] both refer
to the quantityw;.;. Using the “symmetric” model, we have to re-
place this with a quantity we calb;..; which is an appropriately

weighted average of the speaker-adapted we'rgtﬁé. The update
formulae are not changed except for this replacement. Tasore
this is inconvenient is that we need to store additionaistie$ a

in order to computed;,,;, and these statistics occupy a lot of mem-
ory: they are the same size as the per-Gaussian counts which
are typically larger than any of the other statistics typethe model
previously described. Therefore, the size of the statistis well as
the size of the model, is nearly doubled by this change.

2.2.2. Change in speaker vectors estimation

The estimation of the speaker vectors changes qualitativieén we
symmetrize the model. Our previous estimation just solvée-a

ear system of equations. In the symmetric model it becomeas mo

like the the speech-state vectors estimation, where thghiveglated

portant to iterate in the update phase.

2.2.3. Estimation of speaker-space weight projections

The estimation problem that is new for this model is that @& th
speaker-space weight projectioms This problem is essentially the
mirror-image of the problem of estimating the quantities The
difficulty is that in order to do it the same way, we need toestuer-
speaker statistics, i.e. the vectars’ and certain count-like quan-
tities (of sizel per speaker). Previously we have avoided storing
any quantities that scale with the number of speakers, secfu
very large corpora these could become large. The solutiohave
adopted is to describe two separate update methods: oné vghic
“more exact” and is a precise mirror image of the estimatiom p
cedure forw; (but which involves accumulating per-speaker statis-
tics), and one which is “less exact” and which avoids accatimg
any per-speaker statistics. The less exact method inveheesg
statistics sufficient to form a local quadratic approxiratio the
auxiliary function in eactw;,. It is equivalent to one iteration of the
more exact method, except without certain convergencekshec

3. DERIVATIONS FOR OPTIMIZATION FORMULAE

In this section we present a partial derivation for some efribw
optimization formulae. The intent is to introduce the needs used
in the optimization, but not to provide a complete derivatiarhe
main new idea described here is the way we use Jensen’s litgqua
in the reverse sense to the way it is normally used, to molkg a
function out of, rather than into, a sum. The reason we calyapp
areverse sense is that the term involved contains a negegadthm
(—log b(s))

ConS|der the formula for the weights, expressed in ternbs,f
and other quantities as in Equation (8). The numerator offtin
mula does not present any problems as its log is linear in etitte
. Any difficulties for optimization
arise from the denominator. Let us wrigd for the partial auxiliary
function containing just this problematic term:

Q= = > gty (11)
j.sm,s

= - >4 1oga]mzb< °) (12)
j.sm,s

We are going to use the convexity eflog, and Jensen’s inequality,
to push thdog to the left past the outer summations. To do this, we
need to renormalize so that, at the parameter values we ataie
with, we are taking the logarithm of 1. Let us use a bar (é;ﬁ.) to
represent a quantity considered as a constant, i.e. egdlwath all
parameters the same as they were during accumulation. Weeew
Equation (12) as follows:

mzb(S)
0 = - 3 Aeg =il 9
Jj,m,s b]m

This is the same a€;, but with a constant offset. Our use of no-
tation here is that by numbering the@ and Q», we imply the
following relationship. If we write the parameters As we will
have

Q2(A) — Q2(A) < Qi(A) —

We now also need to store in memory the quantitigs,;. These
will be used in a per-speaker phase of the computation to atemp
the normalizing factordﬁ)t.

If we are doing speaker adaptation, then for each speaker we
also need to compute the speaker-specific quantities. Natéttese

whereA is the parameter values used in accumulation; i.e. the inwould typically be computed on the fly as we see each spealer. A

crease iR will be at least as much as the increas&@in The same

would apply forQs versusQ», and so on. In order to apply Jensen’s

inequality we also need weighting factors that sum to onédinibg

v=>_ %, (15)
j,m,s
we can rewriteQ, as:
(s) (
- Yim > bimib;
Q2(A) = —y Y T log == (16)
. ¥ bt
J,m,s Jm
We can then apply Jensen’s inequality and write:
’Y m b mz
Q3(A) = —vlog Z . Z] 17
Jj,m,s]m

At this point, there are two directions we can go in, depegéihich
parameter we are optimizing. In some situations it is most/eo
nient to get rid of thelog entirely. In this case, we can use the
inequality — log(xz) > —z + 1 (with equality atz = 1), to write
(cancelling they):

AC))
QU == T o 19

Jm 5
3im,s jm

Since the quantities;,..; andbgs) are exponential in the parameters,
the next step is generally to make a quadratic approximatighe
exp function (i.e. quadratic in whatever quantity we are optiimg),
and solve the resulting linear system to get a proposed Stepwiill
generally be part of an iterative process in the udpate ph@ke
other direction we can go froms is to forget thel /~ inside thelog
(which is just a constant offset), and write:

s Z bml
)= —yiog 3 ofp Zalant”

Jm

Qu (A (19)

J,m,s

This generally appears as part of a larger auxiliary fumcttmat is
further optimized: the difference from Equation (18) istthrathe
auxiliary function that we are optimizing, we retain thg;, rather
than getting rid of it. The same quadratic approximationsiaatill
be made one each iteration.

4. CHANGES IN LIKELIHOOD EVALUATION
FORMULAE

In this section we describe how the likelihood evaluatiomfolae
change with the symmetrized model.
4.1. Global and speaker-specific pre-computation

The normalization constant;,,.; which we compute per Gaussian is
unchanged. We repeat the formula for easy reference:

log ¢jm + log wjm:

-1 (log det ; + Dlog(27) + ufmiz;lujmi) (20)

Njmi

before, we have the speaker offsets:
ol = N;v® (21)

To handle the speaker-specific weights we also need to centipeit
following quantities:

T.,(s)

bgs) = expu; v (22)
Al = b wim. (23)

It would be most convenient to first compute and sﬂO@bﬁ.s), and
then compute'*, which would then be used to comput&) via
dot products between vectors. The quantidga?% sould be stored in

the formlog dgfﬁb
The process of Gaussian selection is the same as in the previ-
ously described SGMM.

4.2. Pre-computation per frame

With the symmetric model, we change the way we compute the
quantityn;(t) (for pre-selected indices. It now contains the quan-

tity log bgs):

log | det A™)| — 1x
+log '),

ni(t) ()2 (1)

(24)

Quantities in Equation (24) that we have not separatelydhiced
are as described in [1].

4.3. Gaussian likelihood computation

We compute the contribution to the likelihood from statenixture
m and Gaussian indexas:

log p(x(t), m, ilj) = ni(t) + njmi + 2 (t) - Vjm —log dj),. (25)
The new term here is-log dg‘;{ which of course we store as a
log quantity (so we don’t have to evaluate the log functioreach
frame). Alson;(t) contains a new term which was absent in the
original model.

5. NEW ACCUMULATION AND UPDATE FORMULAE

In this section we describe the new and modified accumulaiiwh
update formulae. Section 5.1 describes how the speakersedt)
are computed. Section 5.2 introduces the new statisticsoweeed
to accumulate in order to update,, andw;. Sections 5.3 and 5.4
describe the changes in the update equations farandw; respec-
tively. Sections 5.5 and 5.6 describe the more exact, andetise
exact (but more scalable) versions of the update equatmmthé
speaker-space weight projections

5.1. Speaker vector estimation

A new element is introduced into the speaker vector estonati
through the effect of the speaker vectors on the weightsreTaee
two new terms: an easy one and a hard one. The easy one isgust
linear effect of the speaker vector on the log probabilities

+Z,YS) T,0)

We don’t need any any additional statistics to model th'rx;esiygs)
is already one of the quantities we accumulate in order tatgpthe
speaker vectors.

The other new term, the hard one, is the “normalizer” termd, an
this is of the following form, after some manipulations asa#ed

(v (26)

same places that;,,; appears in the update equations¥gy,. Note
that Whenwgs) appears in equations we will treat it as a shorthand
for the right hand of (32). It should be recomputed each tiroenf

s)
#he current values df.*

We now describe the speaker vector update. It is an iterative
process with iterations = 1. .. P. We write thep'th iteration of the
speaker vector as®?) and if we are on the first iteration of the E-M
process we would be starting from>® = 0. On each iteration we
form a quadratic approximation to the auxiliary functionefding
v =g 4 v&P~Y we approximate (28) as a quadratic, with:

oY) (d) ~ g d — Sd"F"d, (33)

whereg® andF® are defined as follows. First, we wrild®) as

above to take the log outside the sum. Note that we write thesghe quadratic term from the old equations:

equations, corresponding to the actual implementatioterims of
Wjim; and din)L instead ofb;,,; and bgn)b This harder part of the
auxiliary function is:

(s) _ _ (s) ’ij Z wgmz
7m Jm
Q:(v) 7 log Y b (28)
(s) _ ()wjml
J,m im
jmsi t)w jmsi
— Z i ((3) J , (30)
teT(s) jm djm

and note that we remove the bar fro?ﬁi in the equation fongs)
since it is obvious in accumulation equations that we aratitig
the parameters as fixed. It is the second forma/6t, as written in
Equation (30), that we actually use for accumulation. Thitess
efficient than Equation (29), but it is more convenient and fgart
of the accumulation does not dominate the computation tifvhgo
note that we would actually have to compute Equation (30preef
we have estimated the speaker vector for speakevhich means
that we would haver®) = 0 and henceig.fﬁb = 1. Therefore the
denominator of Equation (30) may seem pointless, but it dbalve

I
H® =3 2Nz (34)
i=1
Then we define
I
g(p) _ y(S) + Z(,y() ,Y(s)qj}l(s,p—l))uz
=1
_V(S;P*UH(S) (35)

where the last term is needed due to the change from an “abso-
lute” to “offset-based” representation of the auxiliarymétion, and

a:ugs’?*” is defined as in Equation (32) but wibtff) written instead
asb{*" ™Y = exp(u; - v(*?~). We defineF ™ as:

I
H® + Z ,Y(S)wz(sypfl)ulu;f

F(P) (36)
=1
The solution is then:
vEP) = y(&P=D 4 golve_vec(FW), gP)| 0, K™). (37)

There is the potential for non-convergence here, but | cemsit
so remote that | don’'t recommend to check for it, at least fidr i
tial experiments. Note that the same issue exists for thettjies

an effect if we did more than one iteration of E-M to update theV;mi, and in that case also we do not check for convergence. We do,

speaker vectors. We can write the complete auxiliary fomcts
follows:

s sT s
Qg(v(‘)) y (s) ()+Z,Y ‘u T v(®

3 Z%(S) NOK

D log 3" al b

NIs NG v
(31)

The update for *) is now mostly analogous to the update fof,,,
except that we use the following definition:

(32)

Thus,wgs) is the “normalized” version of the speaker weights (i.e.

normalized to sum to one), but normalized with respect tsthgs-

tics a{*. This quantity will appear in the update equations in the

however measure and report the changes in Equation (31)ain ea
iterationp as a diagnostic.

As regards the derivation of this update rugg? is the deriva-
tive of (31) with parameters®) = v(*>?=1_ The F” is not ex-
actly the negated second derivative of (31), but a slightestenate
of the negated second derivative, that differs only by a-f@m cor-
rection factor. The way we derive the second term of (36) ftben
last term of (31) is: first we use logz > —logZ + 1 — Z with
equality atz = z, and herez corresponds tQ , aE”bf"F*l) with
Ty (=r=1) |gnoring constant factors, that term be-

> aE s) exp u?v
> ags) exp u?v(s*T’*l)
as a scaling factor), and taking the second derivative sfihi.t. v
atv = v~ we get

b(5 P~ — expu?

comes—~(*) (corresponding te- £, with)

T, (s,p—1)

() i)expulv T

—y u;u; (38)
ZZ ' expulv(s»—1)

_ 9) Z = (s,p— 1) (39)

5.2. Additional statistics for speech-state vectors and sgch-
state weight projections

We require some additional statistics in order to updategthemn-
titites v;,,, and andw;. These are required to compute tlig,,;
guantities that appear in the update equations. The gtatsn be
defined as a sum over speakers:

(s)

’Y'm s
Ajmi — Z %bg) (40)
s djm
In fact, we compute them as a sum over time, as follows:
Yimi t s
@jmi = ey, (41)
t,7,m,1 d]m

wheres|t] is the speaker active on frameThis much less efficient
than it could be but it is more convenient, and it does not demei
the computation time of the overall accumulation process.

5.3. Speech-state vector estimation

In computing the speech-state vecteors,, we use the quantity:

Divi o WjimiAjmi (42)
o > i WimiQjmi
bjmiajmi
— bimitymi 43)
> i bimi@jms

with bjm; = exp(v},, w;), and where we use the most “updated
forms of v, andw; available to compute this, i.e. we udeg if
available (in the experiments we ran,,, was updated before; so

the actual value ofv; used was the un-updated value. This quantity!OWs: Setu;

of a!*) stored in the list would not be the same as the value used to

compute the speaker vectors®.

The second type of statistic requiredis’, the speaker vectors.
Again, these are stored as a list.

The third type of statistic required is:

si = Z 7Py,

(45)

This requires us to storg” = Dotet(s),jm Yimi(t), given the
final, speaker-adapted alignments. This quantity is ajreetded
for some of the other computations described in [1].

The auxiliary function in{u;, 1 <i < I'}is:

Q1 = Z ul's; — Z) log Z o' expuf v

In order to separate the auxiliary function over the diffénealues of
i, and thus simplify the problem, we use the inequalitfog(z) >
—x + 1 and write:

Q2(ui) = uiTSi - Z GES)

(46)

T ()

expu; v 47

To obtain this, we us&>, a!* exp(u?v¥) = 4 and the,®)

cancels. The optimization process is an iterative one wherach
iteration1 < p < P we compute linear and quadratic ter@%’)
andF”) and maximize the corresponding quadratic objective func-
tion. On each iteration we check that the auxiliary functitich not
decrease.

The optimization procedure for a particular valuei @ as fol-
©) — u, (i.e. the value at input). Fgr = 1... P (e.g.

Wjms rEplacesi;; in Equations (58) and (59) of [1]. The deriva- £ = 3), do:
J J

tion follows the general outline given in Section (3).

5.4. Speech-state weight projection estimation

In estimating the speech-state weight projectiang the same
change is made as above. In the auxiliary function, Equgt8y
of [1], w;m: replacesw;m:, and in the update equations (71) and

(72), wﬁ’zz is replaced with:
_(p) Ajmi €XP Wi Vjm
o), = W ZP T T (44)

Ajmi €XP WiTij
Again, the most “updated” values ®f;,,, andw; available should
be used in (44); this will generally correspond to the updiasdues
v;m and whatever value of; we have on the current iteration.
5.5. Update of speaker weight projections: more exact versn

As mentioned, we describe two versions of the speaker-speight

projectionsu,. We first describe the more exact version. Three types

of statistics are required for this update. Two of these arespeaker
statistics, and are required in the update phase, so thadd have
to be stored as a list. This is a qualitiatively new aspeché&up-
date procedure, as previously we were able to avoid anygeaker
quantities being needed in the update phase.

The first type of statistic required 'tsﬁs), as defined in Equa-
tion (30). We store these as a list, for all speakers. Alse twat
we would use the final, speaker-adapted alignment prokiabiind
speaker-dependent quantities to compute these statiittse value

g — s— Z a$® exp(u®™ ’ vy (48)
FO o~ 3 a;) exp(u? DT V)@ v T (49
Then the candidate new valuelmﬁ“’) is:
ut™ = P 4 p®) T g (50)
or more safely
u™P = ugpfl) + solve_vec(FEp), gl(-p), 0, K™™) (51)

with solve_vec as defined in [1], and then we do as follows: while
Q2 (u'™P) < Qg(ugpfl)), with Q» defined as in Equation (47), set

l(utmp + u(P—l)).
2

utmp —

(52)
Then (once the auxiliary function is no longer worse tharotef
setu® — u'™P,

At the end we sefi; «— u'".

i

5.6. Update of speaker weight projections: less exact vesi

For the less exact version of the computation of the speakeght
projections, we avoid storing any lists of speaker-speqgffiantities
and instead accumulate statistics sufficient to form a lgoabratic

approximation of the auxiliary function, which we directhaximize
in the update phase. In this case we store the followingssitzgi

o= > (40 —alp) v (53)

U, = Eais)bgs)v(s) MO (54)

The auxiliary function we maximize is as follows, whete is the
change inu;:

Q3(A;) = ti A — %AZTUZ‘A'L, (55)

and our update equation is;, — u; + A;, or more generally, to
handle the singular cases,

0; — u; + solve_vec(U;, t;, 0, K™), (56)

with the functionsolve_vec as defined in [1].

6. REFERENCES

[1] D.Povey, Lukas Burget, etal., “The Subspace Gauddiature
Model — a Structured Model for Speech RecognitiorGom-
puter Speech and Language (accepted), 2010.

