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Abstract—Carrying out science at extreme scale is the next
generational challenge facing the broad field of scientific
research. Cloud computing offers to potential for an increasing
number of researchers to have ready access to the large
scale compute resources required to tackle new challenges in
their field. Unfortunately barriers of complexity remain for
researchers untrained in cloud programming. In this paper we
examine how cloud based architectures can be used to solve
large scale research experiments in a manner that is easily ac-
cessible for researchers with limited programming experience,
using their existing computational tools. We examine the top
challenges identified in our own large-scale science experiments
running on the Windows Azure platform and then describe
a Cloud-based parameter sweep prototype (dubbed Cirrus)
which provides a framework of solutions for each challenge.
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I. INTRODUCTION

Before the advent of cloud computing, solving interest-
ing scientific research questions that required large scale
computation was reserved mainly for a small echelon of
well-funded researchers. The hardware, maintenance, and
development costs of local clusters can be prohibitively high
for the majority of researchers. At the same time recent
advances and cost reductions in sensor networks, devices,
and electronic storage have brought in huge quantities of
data to researchers in every field. With the emerging option
of cloud based computing [1] more and more researchers
now have access to the computational tools necessary to
process and analyze the vast amounts of data they have
been collecting. This opening of resources has been re-
ferred to as the “democratization of research” and an ever
increasing number of researchers are seeking how to best
make use of these new capabilities. While access to compute
resources is now readily available, there are still obstacles
facing researchers looking to move to cloud computing. One
obstacle is the high learning curve required to make use of
the new technology. Currently, cloud users need to be either
well versed in Virtual Machine management or be a skilled
programmer to implement even the simplest of cloud solu-
tions. In addition, the challenges to convert old computation
methods to distributed platforms with separate storage and
computation mechanisms are not well understood, even to
those familiar with working in the cloud.

Herein we show an approach to solve the problems faced
by researchers moving over to cloud architecture, in this
case the Windows Azure platform [2]. We first describe an

experiment running the common BLAST algorithm against
an input data set of a size never before attempted. We
faced several challenges in moving this common and highly
parallel application to the cloud. We describe in detail these
challenges. With these challenges in mind we introduce
a new service within Windows Azure that we believe
generalizes the procedure of conducting large-scale science
experiments on the cloud. Our platform supports parametric
sweep/task farm across elastic cloud compute resources.
It also implements predictive sampling runs on provided
applications, which offers cost estimations before running
applications at scale. Finally, we examine the benefits of
this approach and some of the challenges remaining to offer
cloud based computing to the general research community.

The structure of this paper is as follows. In Section II
we briefly discuss the Windows Azure cloud platform and
the AzureBLAST application. In Section III we introduce a
large-scale science experiment we have conducted and the
pitfalls we have identified. In Section IV we present our
Azure-based general parameter sweeping service and solu-
tions for each pitfall identified in Section III. In Section V
we carry out a detailed performance analysis.

II. AZUREBLAST

Biology was one of the first scientific fields to embrace
computation to solve problems that would otherwise be
intractable. This early development, which created the field
of bioinformatics, led to the authoring of many applications
which are now widely used and widely available for general
research. One of the most common of these tools is the
BLAST program [3], which allows researchers to compare
DNA or protein sequences against large databases of known
sequences to find similar structures. Fortunately, BLAST
lends itself well to parallelization as many researchers have
noted [4]. Unfortunately, for the most part ready access to
parallelized versions of BLAST have only been available to
researchers with large grants, able to fund the purchase of
a compute cluster, or with relatively small problems able
to use free (and limited) public web services. This made
BLAST an important target for us in analyzing how scientific
applications could be moved to the cloud. Our earlier work,
AzureBlast [5], is a parallel BLAST engine on Windows
Azure. To understand the implementation of AzureBLAST,
a basic understanding of Azure is necessary.

The Window Azure platform resides on large clusters
of rack mounted computers hosted in industrial sized data



centers across the world. The clusters of computers are
separated into two roles. One is controlled by the Com-
pute Fabric and one is controlled by the Storage Fabric.
The Compute Fabric allows access to VMSs running inside
data center computers. The VMs are generally categorized
into two types as well: worker roles and web roles. Web
roles provide a platform for hosting web services and
web page requests via HTTP or HTTPS, while worker
roles are generally used for data fetching and the actual
algorithm computation. The Storage Fabric hosts various
data storage services, including blobs (binary large objects),
row-column based tables and reliable message queues. The
queue service needs to be elaborated on here because of its
critical role in task distribution and fault tolerance. When
retrieving a message from one queue the user can specify
the visibilityTimeout and the message will remain
invisible during this timeout period then reappear in the
queue if it has not been deleted by the end of the timeout
period. This feature ensures that no message will be lost
even if the instance which is processing the message crashes,
providing fault tolerance for the application.

In AzureBLAST a job is parallelized in the typical “fork-
join” fashion. The user input is provided via an external
facing web page hosted by a web role, and will be divided
into number of small partitions which are distributed as
task messages through an Azure queue. The computation is
performed by controlling a variable number of worker nodes
executing NCBI’s publicly available BLAST program [6].
Each worker polls the message queue and receives messages
(i.e., tasks) corresponding to a small partition of the input
sequences being worked on. The worker will execute the
BLAST application against the partition it receives. Once the
application has completed the worker collects the resulting
data and places it into blob storage. Finally, a merging task
is issued to aggregate all the partial results.

III. CHALLENGES INTRODUCED BY THE CLOUD

Running a science application at the scale of several
compute years over hundreds of GBs of data on any cloud
computing platform is still a very new endeavor. While we
feel comfortable with our AzureBLAST design, we noticed
several areas of concern that need to be addressed in future
runs. Characteristic of Cloud infrastructure and its program-
ming model as well as that of large scale applications both
contributed to the challenges we identified, and we believe
these are generalizable to many pleasingly parallel data-
intensive computations on the cloud as well.

Our task, with guidance from researchers at Children’s
Hospital in Seattle, was to take the 10 million protein
sequences (4.2GB size) in NCBI’s non-redundant protein
database and BLAST each one against the same database.
This sort of experiments is known as an “all-by-all” compar-
ison which can identify the interrelationship of all protein
sequences in this database. We conducted this large BLAST

experiment on AzureBLAST. We used the largest available
VM size provided by Azure, which is an 8 core CPU with
14GB RAM and a two TB local disk, to allow the executable
access to large system memory and multiple computation
cores. Our initial evaluations showed this would take on the
order of six to seven CPU years, even on an optimized
computer system. It is so computationally intensive that
we allocated approximately 3,700 weighted instances (475
extra-large VMs) from three datacenters. Each datacenter
hosted three AzureBLAST deployments, each with 62 extra-
large instances. The 10 million sequences are then divided
into multiple segments, each of which was submitted to one
AzureBLAST deployment for execution. The entire job took
14 days to complete and the output produced 260 GBs of
compressed data spread across over 400,000 output files.

Machine name Event

RDO00155D3611B0 | Executing task 251523...
RDO00155D3611B0 | Execution of task 251523 is done, it
takes 10.9 mins

Executing task 251553...

Execution of task 251553 is done, it
takes 19.3 mins

Timestamp
3/31/2010 06:14
3/31/2010 06:25

3/31/2010 06:25
3/31/2010 06:44

RD00155D3611B0
RD00155D3611B0

3/31/2010 08:22
3/31/2010 09:50
3/31/2010 11:12

RD00155D3611B0
RD00155D3611B0
RD00155D3611B0

Executing the task 251774...
Executing the task 251895...
Execution of task 251895 is done, it
takes 82 mins

able T
LOGS OF AZUREBLAST

In order to understand how Azure performed during
this experiment, we visualized the log data generated by
AzureBLAST. When executing one task, each AzureBLAST
instance simply logs the start time and the completion
time of the task execution. As each instance executes tasks
sequentially, the logs of a normal run should look like
the upper part in Table I where each task start event and
completion event are paired. Conversely, the logs listed in
the lower part of Table I illustrate an unmatched task start
event, which indicates that a task execution was lost. The
loss of a task further implies an abnormality in the execution,
for example an instance is restarted due to a system failure.
In th visualization we depict blue dots for the matched two
events and red dots for any unmatched event.

A. Failures

The Cloud is a multi-tenant environment with potentially
millions of machines in a datacenter, where the failures of
individual units are inevitable. We identified various types
of failures from our logs. For example, the instance progress
diagram in Figure 1 visualizes the run of one blast job,
which contains about 30,000 tasks executed by 62 extra-
large instances in Microsoft West Europe datacenter in six
days. It was selected as it is representative of the most
common errors observed in the all-by-all experiment.

« Instance physical failure: Instance 48 stopped working

at 03/26/2010 1:54 PM when it completed the last task.
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Figure 1.

After 2 hours, instance 41 started and kept working till
the end. Notice that we allocated only 62 instances for
this job, but the figure shows a total of 63 instances. A
reasonable conjecture is that instance 48 experiences
some unrecoverable fatal error. As a result of the
failover mechanism the Azure fabric controller started
a new instance, namely instance 41, as its replacement.
Storage exception: starting at 03/27/2010 22:53 34
instances encountered a blob write timeout exception
and stopped working; at around 0:38 all of the effected
instances began executing tasks again at the same time.
Although we have little clue about what caused this
failure, we conjecture the Azure fault domain [2] played
a critical role. By default, Azure divides all instances of
one deployment into at least two groups, called fault do-
mains, and places each group in different failure zones
(e.g., rack, power supply, etc.) in the datacenter to avoid
a single point failure. As we observed, about half of our
active instances lost connection to the storage service
while another half successfully accessed the storage
service. Notice that unlike the previous instance failure
these failed instances were automatically recovered by
the fabric controller.

System update: in the evening of 03/31/2010, all 62
instances experienced the loss of a task on two oc-
casions, one at 22:00, followed by the second one at
3:50. From a zoomed visualization, not shown in this
paper due to limited space, we identified a pattern
for the first occurrence. The 62 instances are divided
into 10 groups; each group of instances got restarted
sequentially; the complete group restart took around 30
minutes and the entire duration was about five hours.
It turns out that a system update caused the entire
ensemble to restart, and due to in-place update domain
mechanism Azure restarts and updates all instances
group by group to ensure system availability during
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Various failures observed in a large experiment

the update. In contrast, the second failure took place
much more quickly: all instances get restarted in about
20 minutes for some unknown reason.

As we can see, failures are to be expected in the cloud. While
only one instance failure occurred during the 6 days, most
exceptions are essentially caused by datacenter maintenance,
thus being automatically recoverable. The most important
design principle of cloud programming is to design with
failure in mind [7] and other design tips are well-known
today, such as being stateless, avoid in-memory sessions
and so on. In such long-running massive-computation job,
however, one very important challenge is how best to handle
failures in term of cost-effectiveness.

B. Instance Idle Time & Load imbalance

In our post-analysis we also discovered that a large portion
of our paid compute time was actually wasted with our VMs
idling. One obvious source of potential waste comes from
the gap time between two consecutive jobs. Once a job has
completed, all the worker instances will sit idle waiting for
next job, which may arrive hours later. Furthermore, we
assume all jobs have similar parallelism and computation
complexity. However, in practice the complexity of science
experiments can vary significantly. Having all jobs use the
same set of instances leads to either over usage or under
usage of the costly resource.

Another source of waste is caused by a considerable
degree of load imbalance. In AzureBLAST, we allocated
the number of instances statically before the job was ex-
ecuted and never change that number until we bring the
entire deployment down. The static allocation, especially
for long running large scale jobs, will most likely lead to a
significant waste of instance hours when the load distribution
becomes imbalanced. Load imbalance comes primarily from
one source: the complexity of each individual task. We
observed that even though we tried to create an equal
partition scheme in which each task would take a similar



e
3

9%
9 008930,
o130 ebes

e iSeststitovactes

2
8
-
o’:‘o

¢
o,

w
]
ot
R

Instance ID
Rook?
S
"} ot

5
3

3
6.3;‘::
B

Throughput (Seq/min)

4/47:12 4/419:12 4/57:12 4/519:12 4/67:12

56975 Task 56823 was executed eight times

4/a7:12 4/419:12 4/57:12 4/519:12 4/67:12

Figure 2. Load imbalance observed in one small experiment

amount of time to compute, there were several outliers that
took considerably longer time to complete. To illustrate,
Figure 2 visualizes the instance progress of one small job
which contains only 2058 tasks. While the majority of tasks
complete in less than one day the entire job takes more
than three days, the final two days with ultra-low resource
usage. To identify those tasks which took the most time, we
convert the instance progress diagram into a task progress
diagram (a.k.a. swimming pool diagram). It turned out that
task 56823 is the only exceptional task that required more
than 18 hours to complete, while the average processing time
for all other tasks in the job is only 30 minutes. Estimating
the complexity of individual BLAST calls turns out to be
very difficult to predict. We have little recourse to prevent
this imbalance and consequence of load imbalance is that
the user has to pay for all idle instance hours.

C. Limitation of Current Azure Queue

The current Azure queue service has two limitations for
running large-scale science experiments. The first limitation
is that the visibilityTimeout of a message has to
be less than 2 hours [8], which is often insufficient for
science experiments. This means that if the execution time
of a task is more than 2 hours, the task message will
automatically reappear in the queue no matter whether it is
being processed by some active instance(s), thus leading to
repeated computation. To mitigate this problem, a simple
workaround is that before executing a task the instance
first check if its result has been generated. For example,
in Figure 2, the long-tail task 56823 actually has been

simultaneously executed by 8 instances until the result was
finally generated by one of them.

The second limitation is the maximum lifetime of an
Azure message, which is limited to seven days. That means
if one message stays in the queue for more than seven days it
will be automatically deleted. However, it is not uncommon
that a science run will require weeks to complete. This
lifetime limit requires that we build ancillary functions to
support long-lived experiments.

D. Performance/Cost Estimation

Most scientific programs allow for tuning the application
via setting various parameters of the executable. In the case
of BLAST, the user can tune the algorithm by setting a
dozen such parameters, such as the search-word size (-W),
alignment threshold expectation (-e) or using MegaBlast
optimization (-n). The settings on these parameters have
subtle effect on the degree of accuracy or number of hits to
record and thus have a considerable impact on the cost when
multiplied at scale. The cost required to run the entire job to
identify the optimal parameters setting is prohibitive. Hence
it is very useful to help the user quickly estimate the cost for
a given parameter setting so they can identify correlations
between parameters and computation and determine the
tradeoff before consuming a large number of instance hours.

Another example of tunable parameters comes from the
elastic nature of the cloud. The user can select the number
of instances to spin up as well as the size of those instances
(e.g., small, medium, large or extra-large VM sizes). A
scientist usually has only a vague idea about how long their
experiment may take with large scale resources, resulting
in inaccurate estimates on how much an experiment will
cost. A quick estimate on compute cost with varied resource
configurations can help decide whether to scale in/out the
number of instance or scale up/down the instance size to
meet the budget limitation.

E. Minimizing the needs for programming

The last, but not the least observed problem is less
empirical in nature and yet is likely the largest impedi-
ment to running research in the cloud. Quite simply, most
researchers do not have the technical and/or programming
experience necessary to move their work to a cloud based
platform. From a range of BLAST experiments in which
we cooperated with biologists, we realized a complete
science experiment usually consists of multiple steps and
each step may need to run different binaries. This creates
a data driven workflow that needs to be executed in the
cloud. Unfortunately, most researchers do not possess the
programming experience to translate these workflows into an
operational cloud application. Requiring them to learn cloud
programming techniques is both impractical and untenable.
Therefore we need to provide a method to enable researchers



to run their binaries and simple but lengthy workflows on
the Cloud with minimal need for coding.

IV. CIRRUS: A GENERAL PARAMETER SWEEP SERVICE
ON AZURE

We believe that each of the challenge we have encoun-
tered, as outlined in the previous section, can readily gener-
alize to a large number of science applications when run in
the cloud. We thus transformed our AzureBLAST experience
into a general platform for executing any legacy Windows
executable in a distributed fashion on the cloud. The result
is Cirrus, an Azure-based parametric sweep service.

A. Parameter Sweep Job Script

A Cirrus job is described in a simple declarative scripting
language derived from Nimrod [9] for expressing a para-
metric experiment. Every job definition has three parts: i)
prologue, ii) commands and iii) a set of parameters. In the
prologue the user can define the script to be executed by
the instance when it executes a task of this job the first
time. The prologue is usually used to setup the running
environment (e.g., staging the data) for the task execution.
The commands part contains a sequence of the shell script,
which is going to be materialized and executed as tasks.
In the script, besides most regular shell commands, the
user can invoke Azure-storage-related commands, such as
AzureCopy which transfers the data between Azure blob
storage and the instance. Also the user can refer to a
parameter variable by $parameter% in the script, which
will be materialized with the real value by the parametric
engine. The parameter variable is declared in the parameter
section. We support most parameter types in Nimrod, such as
Range and Select. In addition, we provide Azure-related
parameter types, such as SelectBlobs, which iterates
each blob under one container as the parameter space. The
example below illustrates a blast job that queries all query
sequences stored in the blob container “partitions” against
the subject database (i.e. uniref).
<job name="blast">

<prolog>

<!-- staging the database -->
azurecopy http://.../uniref.fasta uniref.fasta
</prolog>

<cmd>

<!-- download the partition -->
azurecopy %partition$% input
<!-- run the NCBI blast binary -->

blastall.exe -p blastp -d uniref.fasta
-i input -o output

<!-- upload the partial results -->
azurecopy output S%$partition%.out

</cmd>

<parameter name="partition">
<selectBlobs>

<prefix>partitions/</prefix>

</selectBlobs>

</parameter>

</job>
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Figure 3. Overall Architecture of Cirrus

In addition to the job definition each job also can has its
configuration, that specifies how the job will be executed in
the Cloud. For example, in the job configuration the user can
specify the minimum and maximum number of instances to
run the job.

B. Overall Architecture

As shown in Figure 3, Cirrus consists of the following
roles. The web role instance hosts the job portal. The user,
authenticated via Windows Live ID service, submits and
tracks his job through the portal. Once the job is accepted, all
job-related information will be promptly stored in an Azure
table, called the job registry, to prevent loss by a possible
instance failure.

The job manager instance manages the execution of each
parameter sweep job. The scheduler picks the candidate job
from the job registry according to the scheduling policies
(e.g., FCFS ). Given a selected job, the manager will first
scale the size of worker instances according to the job
configuration. The parametric engine starts exploring the
parameter space as a cross-product of the defined parameter
variables. If the job is marked as a fest-run, the parameter
sweeping result is sent to the sampling filter for sampling.
For each spot in the parameter space one task is generated
and appended into one Azure queue called dispatch queue
for execution. As the Azure Queue can store a large number
of messages efficiently, we can easily handle a very large
parameter sweep job. Each task is also associated with a
state record in an Azure table called the task table and this
state record is updated periodically by the worker instance
running the task. The manager can monitor the progress of
the execution by checking the task table. Moreover, with
the task state information the manager can identify the tasks
which has existed for 7 days and then circumvent the 7-day
lifetime limitation by recreating the task messages for them.

The dispatch queue is connected to a farm of worker
instances. Each worker instance keeps polling the dispatch
queue for a message (i.e., task) and executes the task by
running the materialized commands. During the execution
it periodically updates the task state in the task table and
listen for any control signals (e.g. abort) from the manager.



C. Job Reconfiguration and Resumption

In order to benefit from the elastic nature of the Cloud,
in Cirrus we allow a running job to be suspended and
resumed at a later time with an altered job configuration
(mainly on the number of instances required). The manager
suspends the running job by simply aborting all currently
processing tasks that are marked as incomplete and then
snapshot the task state table of this job. Consequently, the
manager resumes the job by restoring its task state table
and only re-executes the incomplete tasks. Without loss of
generality we assume the results of all completed tasks have
been stored in the Blob storage, therefore it is unnecessary
to repeat the computation.

One application of this feature is fault handling for a long-
running job. When the manager receives any fault message,
it has at least two choices. The pessimistic choice is to
abort the execution of all tasks followed by marking the
job as failed. Although this solution seems to be intuitive,
as we have shown in Figure 1 a large number of faults
caused by the datacenter maintenance are automatically
recoverable and aborting the entire job will interrupt all
other instances as well and the intermediate results, which
required potentially hundreds or thousands of instance hours,
will be discarded, leading to a costly expense. The optimistic
choice is that the manager ignores the fault and simply marks
the task as incomplete. All running instances keep working
without incurring any waste or context switch overhead.
Once every task of the job either succeeds or is marked
incomplete the manager terminates job execution as an
incomplete one. Then the user can reconfigure it with a
reduced instance number and retry the incomplete tasks. In
this way, we can minimize the cost caused by failures.

Another application of this feature is using it as a solution
to the load imbalance which will be explained in the next
subsection.

D. Dynamic Scaling

In Cirrus there are three scenarios that will trigger the
scaling engine. The first scenario is scaling an individual
job. As previously mentioned, before executing a job the
scaling engine will decide to scale out or in for this job based
on the values of maximum/minimum instance number in its
job configuration. The scaling engine conducts the scaling
operation by sending a ConfigurationChange request
to the Windows Azure management API. For each operation
request, Azure will return a ticket with which we can use
to check the result of the operation. The job manager can
poll the status of the operation before dispatching the job
tasks. This synchronous method guarantees that all needed
instances have been instantiated before job execution. The
overall progress of the job, however, may be delayed un-
necessarily, particularly in the case of scaling-out due to
the nontrivial overhead of instantiating new instances which
also forces existing instances be idle-wait. Alternatively,

the manager can start the job execution right way without
waiting for the scaling operation, enabling the scaling and
the job execution to be performed simultaneously. Appar-
ently the asynchronous scaling-out minimizes job execution
delay. However, the asynchronous scaling-in may cause
some abnormalities which incur even more overhead. We
will elaborate on this scenario late in Section V.

The second scenario is when the load imbalance is de-
tected. In most load imbalanced runs, only a few instances
are busy while most instances are idle. This situation can be
detected by simply checking the aforementioned task state
table. That is if most tasks are complete while a couple have
been running for a long period of time, the job manager will
automatically suspended the running job and reconfigure the
job with a reduced instance number which can be set as
same as the number of incomplete tasks. The suspended job
is sent back to the job registry for re-scheduling and these
long-tail tasks, which caused the load imbalance, will be
re-executed using less worker instances. Notice that since
that Windows Azure doesn’t currently allow the user to
specify the instance to shutdown in the scaling-in operation,
our suspend-reconfigure-resume approach which may not be
most efficient is actually quite effective.

The last scenario is when the manager has not received
new jobs after a period of time. In order to save unnecessary
instance idle time between two jobs, the scaling engine will
automatically decrease the number of worker instances to a
minimal size. The user also can mark a job as “shutdown-
when-done” for which the scaling engine will immediately
shutdown instances once the job is done. This is useful when
the user submits a sequence of long-running experiments
with the last one marked as “shutdown-when-done”.

E. Performance Estimation through Sampling

To provide a reasonable estimate for the overall job
execution time on the Windows Azure cloud, we adopt
an observation based approach. That is the job manager
randomly samples the parameter space according to the sam-
pling percentage specified by the user and conducts a sample
experiment. Since this observation based approach requires
little in-depth knowledge of the experimental programs, it
makes the estimation both general and independent. As the
size of the sample set is supposed to be much smaller than
the entire parameter space, the sample experiment can be
conducted on a small instance set to save the cost. For
most pleasingly parallel workloads where the tasks represent
individual work items, the overall execution time shows a
linear relationship to the number of independent tasks and
the number of computation instances. Suppose the sampling
percentage is « and the elapsed time of the sample run on
n/ instances is t/, the running time of the entire job on n
instances then can be estimated as:

t'n’/

te = —— (D

an
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Figure 4. Accuracy of Sampling Execution

When the tasks are uniform in execution times, estimation
by sampling will be highly accurate. On the other hand
when individual tasks yield non-uniform execution times,
the sampling percentage has to be increased to get a good
estimate. Since the rate of the instance hour is generally
much higher than other resources (e.g., storage) and most
science experiments are computation intensive, the user can
roughly estimate the cost from this performance estimate.

V. EXPERIMENTS & EVALUATION

We first evaluated our sampling-based estimation with two
experiments. The first is the BLAST job whose script is
listed in Section IV. This job will query about 5000 protein
sequences, evenly divided and stored into 200 blob files,
against a large protein database. The second application is
the AsianOption simulation program, a Monte Carlo simula-
tion on the stock market price [10]. The variable parameter
of this job is the risk-neutral probability, which is defined
as a range of double numbers. We first run two experiments
completely with 16 instances and recorded the elapsed time
as the reference time. Then we partially run them on two
worker instances with varied sampling percentages several
times to estimate the overall execution times. The median of
estimation error together with the associated error bars are
plotted in Figure 4.

In general, our estimate using sampling execution yields
accurate results at a low cost. In case of the BLAST
experiment, a complete run takes 2 hours with 16 instances,
while a 2%-sampling-run which achieves 96% accuracy only
takes about 18 minutes with 2 instances. In this case, the
overall cost for the sampling run is only 1.8% of the cost of
the complete run. The Asian option simulation experiment
generated better estimate accuracy. A 1% sampling run can
achieve 96% accuracy. Compared with the BLAST exper-
iment, the AsianOption experiment is also less sensitive.
That is because the choice of the parameter value has little
impact on the computation complexity of the Monte Carlo
simulation while the complexity of a BLAST query is much

Instance ID

“ees 4000 s sesr s
sedesreserares o
B ey

P R
Seseessetthse
494 444000000 4000

B R R
e

B R P
Go4eeesetrserres

R s
s00000 4 40s00s
wesesessssbesees
“eessssssstectee

6:36 7:48 9:00 10:12 11:24 12336 1348 15:00 16:12 17:24 18:36

Figure 5. Synchronous Dynamic Scaling

more intricate and less uniform.

Next we evaluated the behavior of dynamic scaling on
Windows Azure by conducting an “accordion” scaling ex-
periment. That is we submit the aforementioned BLAST
job to the Cirrus service multiple times; two consecutive
submissions alter the required instance number between
8 and 16. The size of worker role instance used in this
experiment is extra-large for the best throughput of the
BLAST run. The job script is optimized to avoid repeating
database staging by consecutive jobs. We first conduct this
experiment in a synchronous scaling manner. The entire job
log is visualized in Figure 5. As we see, with 16 instances the
effective job execution time is about 75 minutes and with 8
instances the execution time is 140 minutes, thus the system
provides good scalability. However, during the synchronous
scale-out operation, all instances including those existing
ones have to sit idle for roughly 80 minutes, which is a
considerable waste of resources. From the view of the user
the job actually took 155 minutes, which is even more than
the time required by 8 instances, not to mention that the user
will be charged more for the 16 instances. In contrast, the
synchronous scale-in operation takes place promptly.

In the next experiment we conduct the same experiment,
but in an asynchronous scaling manner. From the log vi-
sualization in Figure 6, we can see that during the scale-
out all existing instances keep working as usual while new
instances join the ensemble. These newly-created instances
start their execution at different times, ranging from 20
minutes to 85 minutes after the scaling operation is issued.
Nevertheless, the asynchronous scale-out clearly minimizes
instance idle time. The execution time with the dynamically
scaled 16 instances is 100 minutes, 1.4 times faster than
the run with 8 instances. For a job that requires longer
execution time; this constant overhead can be mitigated.
For the asynchronous scale-in operation, however, we found
there is a red dot which identifies a task loss at the end
of the log of each instance that is going to be shut down
by the scale-in operation. This is because the tasks are
dispatched at the same time when the scaling-in request is
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sent, those instances which will be shut down by the scaling-
in request have got the task messages from the queue.
As a result, these retrieved messages are lost. Although
these lost messages will re-appear in the queue after the
visibilityTimeout period, these existing instances may need
to idle-wait for the visibilityTimeout period until the lost
messages are once again visible. Figure 7 shows this worst
case in which the same BLAST job but with a smaller input
data is executed. As we can see, 8 existing instances finish all
visible tasks in 60 minutes; however these lost tasks have not
reached the visibilityTimeout, which was set as two hours,
so all instances have to sit idle for one more hour until the
lost tasks came back in the queue.

Based on the above observation, we conclude that best
practices are that instance scale-out is best done asyn-
chronously to minimize idle instance time while instance
scale-in is best done synchronously to avoid the unnecessary
message loss as well as the potential idle instance time.

VI. RELATED WORK

Running parameter sweeping/task farming applications on
computational grids has a large body of prior work. The
most related one to our work is Nimrod/G [11], which
is a parameter sweeping runtime for Grids with special
focus on the computational economy. Unlike Cloud, Grids
are basically the federation of shared, heterogeneous and

autonomous computational resources. Thus in order to meet
the economy requirement (e.g. budget) for running an ex-
periment on Grids, Nimrod/G introduced several deadlines
and budget constrained scheduling algorithms for resource
discovery, trade and allocation. The scheduling algorithm
relies on a modeling-based performance/cost estimation, in
which the costs of grid resources are artificially assigned
into the so called Grid dollars. AppLes [12] is another
highly cited parameter sweep system for the Grids. Instead
of focusing on cost/deadline, AppLes is more interested in
maximizing the throughput on Grids. Since the Grid resource
could be scattered across the entire Internet, the remote data
transferring cost can be the dominant performance issue.
Therefore one important consideration of AppLes scheduler
is the efficient data collocation. AppLes optimized that by
adaptively scheduling the task into a hosts-network Gantt
chart which relies on the performance estimates collected
by NEWS (Network Weather Service).

Compared with those Grid-based systems, Cirrus is much
more straightforward as on Cloud many concerns become
unnecessary. For example thanks to the homogeneous and
exclusive virtual computational resource provided in Cloud
the resource modeling, discovery and matching are needless.
Further since the resource cost has been quantified in a
normalized way, there is no need to model the resource
cost in an artificial way. Also due to the pay-as-you-go
model and the resource elasticity the job scheduling has
more flexibility to meet various constraints, especially the
deadline and budget ones.

A large number of science applications have been success-
fully run on Cloud. Some noticeable examples include the
biology sequence alignment [13], high-energy and nuclear
physics simulation [14] and geology data processing [15].
We have realized most of them present a very similar
architecture and thus can be generalized in the parameter
sweep pattern. Simmhan et al. propose a general worker
solution [16] which eases the migration of the desktop
application onto cloud. But their solution focuses on the
sequential execution of a single executable.

VII. CONCLUSION

In this paper we examined how cloud based architectures
can be made to perform large-scale science experiments.
Starting from an analysis of our long-running BLAST ex-
periment on Windows Azure we identified the top chal-
lenges (e.g., failure, load imbalance), which generalize to
a large number of science applications when running in the
cloud. We introduce Cirrus, a parameter sweep service on
Azure designed to address these challenges. When compared
with parameter sweep engines on Grids the implementa-
tion of Cirrus is quite simple due to the homogeneous
virtual resources and automatic fail-over feature provided
by Windows Azure. And, with the dynamic scaling feature
Cirrus offers a more flexible way to optimize the resource



allocation. Cirrus is also highly attuned to cost-effectiveness
because of the unique Cloud ’pay-as-you-go” model. The
job reconfigure-resume pattern is a cost-effective solution to
handle these situations, such as failures and load imbalance,
which are inevitable when running such large-scale experi-
ments. And sampling-based performance estimation enables
users to make informed decision, thus greatly improving the
overall cost-effectiveness of Cloud usage.

(1]

(2]

(3]

(4]

(5]

(6]
(71

(8]

(9]

(10]

(11]

[12]

(13]

REFERENCES

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the clouds: A berkeley view of cloud
computing,” Feb 2009.

D. Chappell, “Introducing windows azure,” DavidChappel &
Associates, Tech. Rep., 2009.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman, “Basic local alignment search tool,” Journal of
Molecular Biology, vol. 215, no. 3, pp. 403 — 410, 1990. [On-
line]. Available: http://www.sciencedirect.com/science/article/
BO6WK7-4N0J174-8/2/37c69feb1cd9b63368705c2f5f099c5b

R. C. Braun, K. T. Pedretti, T. L. Casavant, T. E. Scheetz,
C. L. Birkett, and C. A. Roberts, ‘“Parallelization of local blast
service on workstation clusters,” Future Generation Computer
Systems, vol. 17, no. 6, pp. 745 — 754, 2001.

W. Lu, J. Jackson, and R. Barga, “Azureblast: A case study
of cloud computing for science applications,” in The Ist
Workshop on Scientific Cloud Computing, Chicago, Illinois,
2010.

NCBI, “Ncbi-blast,” http://blast.ncbi.nlm.nih.gov/Blast.cgi.

J. Varia, “Architecting for the cloud: Best practices,” Amazon,
Tech. Rep., 2010.

Microsoft, “Windows azure queue,” Microsoft, Tech. Rep.,
2008.

D. Abramson, R. Sosic, J. Giddy, and B. Hall, “Nimrod: A
tool for performing parametised simulations using distributed
workstations,” in 4th IEEE Symposium on High Performance
Distributed Computing, 1995.

S. Benninga, Financial Modeling. The MIT Press, 2008.

R. Buyya, D. Abramson, and J. Giddy, “Nimrod/g: An archi-
tecture for a resource management and scheduling system in
a global computational grid,” in Proceedings of the 4th High
Performance Computing in Asia-Pacific Region, 2000.

H. Casanova, G. Obertelli, F. Berman, and R. Wolski, “The
apples parameter sweep template: User-level middleware for
the grid,” Sci. Program., vol. 8, no. 3, pp. 111-126, 2000.

J. Wilkening, A. Wilke, N. Desai, and F. Meyer, “Using
clouds for metagenomics: A case study,” Proceedings IEEE
Cluster, 2009.

[14]

[15]

[16]

K. R. Jackson, L. Ramakrishnan, R. Thomas, and K. Runge,
“Seeking supernovae in the clouds: A performance study,”
in Ist Workshop on Scientific Cloud Computing, Chicago,
Illinois, 2010.

J. Li, M. Humphrey, D. Agarwal, K. Jackson, C. van Ingen,
and Y. Ryu, “escience in the cloud: A modis satellite data
reprojection and reduction pipeline in the windows azure
platform,” apr. 2010, pp. 1 —10.

Y. Simmhan, C. van Ingen, G. Subramanian, and J. Li,
“Bridging the gap between desktop and the cloud for escience
applications,” in IEEE Cloud, 2010.



