
The Beehive Ring and Multiring Lock Protocols

Thomas L. Rodeheffer
Microsoft Research, Silicon Valley

November 2, 2010

Beehive is an experimental many-core computer imple-
mented on a single FPGA. The system includes a number
of RISC cores that are connected to each other and to main
memory using a token ring interconnect. Among other
things, the token ring is used to maintain a set of global
hardware locks using a ring lock protocol. A multiring
extension of the Beehive token ring has been proposed
for which a more complicated multiring lock protocol is
required.

This paper describes the ring lock protocol and the mul-
tiring lock protocol, presents correctness proofs, and dis-
cusses the results of checking their formal specifications
using the TLC model checker. The formal specifications
are listed in appendices.

1 Introduction
Beehive [2, 3] is an experimental many-core computer im-
plemented on a single FPGA. The system includes a num-
ber of RISC cores that are connected to each other and to
main memory using a token ring interconnect.

In implementing a many-core computer on a single
FPGA, we found that the limiting resource was long
wires. Using a token ring for the interconnect made all
the inter-core wiring local, and hence routable.

The token ring is used for main memory access, core-
to-core messages, and to maintain global hardware locks.
In this paper we focus on the ring link protocol which
is used to maintain the locks. The ring lock protocol is
implemented in the current Beehive hardware.

The basic ideas of the ring lock protocol are (1) each
node keeps track of the locks it holds and (2) when a node
wishes to acquire an additional lock it first sends a mes-
sage around the ring to make sure no other node has it.

This can be delicate if several nodes attempt to acquire
the same lock at the same time.

Although the Beehive token ring provides a convenient
mechanism for serialization and global enquiry, the la-
tency increases linearly as the number of nodes increases.
Even though the current FPGA implementations of Bee-
hive are restricted to fewer than sixteen nodes due re-
source limitations, it would be desirable to have a design
which scaled better in latency. For this purpose, a mul-
tiring extension of the Beehive token ring has been pro-
posed, in which a large token ring is implemented as a
ring of subrings. Each subring is managed by a junction
node. The junction node either routes a train around the
subring or, when none of the nodes on the subring need
access to the train, sends the train by as a bypass train.
Ideally, most traffic bypasses the subrings. The multiring
extension can be applied recursively, producing a hierar-
chical multiring structure in which latency scales as the
logarithm of the total number of nodes.

The multiring extension uses a multiring lock protocol
to maintain the global hardware locks. The multiring lock
protocol is based on the ring lock protocol, but the ability
of a junction node to permit traffic to bypass its subring
creates a difficulty. The main idea in the multiring lock
protocol is to arrange for a junction node to act on behalf
of the user nodes on its subring.

We prove that both the ring lock protocol and the mul-
tiring lock protocol satisfy the following properties:

Mutual exclusion (safety): At no time can two different
nodes hold the same lock.

Lock acquisition (liveness): Whenever a lock is desired
infinitely often, eventually the lock is held.

Mutual exclusion is a safety propery that any locking pro-
tocol must satisfy. Lock acquisition is a liveness property

1



that ensures progress.
The remainder of this paper is organized as follows.

Section 2 describes the Beehive token ring. Section 3 de-
scribes the ring lock protocol, proves its safety and live-
ness, and presents results from model checking a for-
mal specification of the protocol. Section 4 describes
the multiring extension. Section 5 describes the mul-
tiring lock protocol, proves its safety and liveness, and
presents results from model checking a formal specifica-
tion of the protocol. Section 6 concludes. Listings of the
formal specifications are contained in Appendix A and
Appendix B.

2 The Beehive token ring
Figure 1 shows the basic idea of the Beehive token ring.
The ring is composed of a zero node, which manages the
ring, and a number of user nodes. Activity on the ring is
conceived as a train that starts from the zero node, chugs
one car per time slot through each of the user nodes, and
then ends up back at the zero node. A train consists of a
token car (its engine) followed by a number of data cars
of various types.

In the Beehive hardware implementation, the token
contains a field that explicitly denotes the number of data
cars following, but we adopt a simpler model in which the
end of the train is denoted by an idle car. Additional idle
cars follow as needed to fill time slots before the start of
the next train. In Beehive, the zero node also serves as the
main memory controller. Each RISC core is a user node
on the ring.

A user node sees the cars one at a time. It can rewrite
a data car (substituting its own contents for the former
contents of the data car) and it can add new data cars to
the end of the train. Adding a data car is the same as
rewriting the first idle car that follows the train. A user
node rewrites a data car, for example, to erase its own
request that circled the ring, as explained below.

Each car has a type and generally contains the node
id of the originating node along with perhaps some ad-
ditional information. In order for data to go all the way
around the ring, the zero node recycles most types of cars
that it receives from the current train to use as the initial
cars of the next train. The token, for example, is always
recycled. A null car, on the other hand, is never recy-

Figure 1: The Beehive token ring.

cled. When a user node receives back a data car it sent, it
rewrites the car with null so that no further node will be
concerned with it and the zero node will discard it.

Only one train is permitted on the ring at a time. The
zero node does not start the next train until it receives the
end of the current train. Hence user nodes can add as
many cars to the train as desired, up to the limit of buffer-
ing at the zero node.

In Beehive, the token ring is globally synchronous, with
each car advancing to the next node on each time slot as
controlled by a central clock. However, since nodes only
communicate with their neighbors, it would be possible
to forward the clock along the ring so that time slots oc-
curred locally at each node with a possible phase delay.
In such a design, the zero node would use its buffer to
rephase incoming slots to the original clock. From the
point of view of the protocols, everything would work ex-
actly the same as if time slots were globally synchronous,
so, for simplicity, we describe the system that way. In our
description, time is represented as an integer.

3 The ring lock protocol

Beehive provides a small number of global hardware
locks that are managed by the ring lock protocol. Each

2



lock is identified to the hardware using a small, non-
negative lock index. A lock index is a value in the range 0
through 63 for the current Beehive hardware. The mean-
ing of each lock is assigned by software.

We nexr describe the ring lock protocol, prove its safety
and liveness, and discuss how we checked the protocol
using a formal specification.

3.1 Description

The ring lock protocol manages a set of global hardware
locks. Each lock is identified by a lock index which is a
small, non-negative integer.

For simplicity, the protocol permits only user nodes to
acquire and release locks. The hardware in each node
keeps track of which locks it holds using a small array
of bits. Note that a lock does not have a concrete exis-
tence in any particular place. Instead, a lock is an abstract
concept managed via the ring lock protocol.

Initially, no nodes hold any locks. There are three ac-
tions on locks that the protocol permits the software on a
node to perform: (1) attempting to acquire a lock that is
not yet held by the node, (2) releasing a lock that the node
holds, and (3) forcing the release of a lock not held by the
node, but possibly held by some other node in the system.
The details of these actions are described below.

The ring lock protocol uses three special types of data
cars: reqp, failp, and dov. Each of these cars contains the
node id of the node that creates the car and the lock id of
a particular lock of interest. The reqp car is used when a
node attempts to acquire a lock; it is rewritten to failp if
some other node already has the lock. The dov car is used
to force the release of a lock. These cars circle the ring
and are rewritten to null when they return to the node that
created them.

Acquiring a lock. When software instructs a node n1

to attempt to acquire a lock not yet held by the node, the
node adds a reqp car to the train and waits for the car to
circle the ring. Each node n2 inspects the reqp car as it
circles the ring, and, if n2 holds the lock in question, it
rewrites the type of the car to failp. Eventually, the car
circles the ring and returns to n1. If it returns as a reqp,
then n1 has acquired the lock, and it sets the correspond-
ing lock bit in its array. If it returns as a failp, then the
attempt to acquire the lock has failed. In either case, n1

rewrites the car with a null. The software is informed of
whether the attempt was a success or failure.

Releasing a lock. When software instructs a node to
release a lock held by the node, the node merely clears
the corresponding lock bit.

Forcing the release of a lock. When software instructs
a node n1 to force the release of a lock not held by the
node, the node adds a dov car to the train and waits for the
car to circle the ring. Each node inspects the dov car as
it goes past and it clears the corresponding lock bit in its
array if set. Eventually, the car circles the ring and returns
to n1, which rewrites it with a null.

3.2 Safety and liveness
We now proceed to prove that the ring lock protocol satis-
fies the mutual exclusion and lock acquisition properties.
The proof of mutual exclusion is fairly subtle.

We define ϕc,t , the odometer of car c at time t , as the
number of forwarding steps car c has experienced from
its creation until time t . A car is created when some node
first adds it to a train, at which time its odometer is 0.
Each time the car is forwarded from one node to the next
(whether or not it is rewritten), its odometer increases by
1. Since the zero node buffers cars between trains, the car
may spend some time in the zero node while its odometer
remains the same. When the car is recycled by the zero
node and forwarded to the next node as part of the next
train, its odometer again increases by 1.

Given two cars c and d , we define c ≺ d to mean that
car c was first forwarded before car d . Since cars are only
added to the end of a train, at any time step there can only
be one car that is first forwarded during that time step.
Hence c ≺ d means that if c and d ever appear on the
same train, c will appear ahead of d .

We show two important properties about the odome-
ters of the cars in a train. Property 1 concerns all cars at
a given time and Property 2 concerns all cars at a given
node.

Property 1: non-increasing odometer along a train
at a given time. Given two cars c ≺ d on the same train
at time t , it follows that ϕc,t ≥ ϕd,t . Furthermore, if c
and d are buffered in different nodes at time t , it follows
that ϕc,t > ϕd,t .

The proof is simple. Since c ≺ d and both cars exist
on the same train at time t , it must be that c is on the train

3



ahead of d at time t . Therefore, d must have experienced
a subsequence of the forwarding steps experienced by c,
since the train pulls car d along after wherever car c has
gone. Furthermore, this subsequence is proper if c and d
are not buffered in the same node at time t . The desired
result follows immediately.

This completes the proof of Property 1.
Property 2: non-increasing odometer along a train

at a given node. Given two cars c ≺ d on the same
train present in node n at times tc and td , respectively, it
follows that ϕc,tc ≥ ϕd,td .

The proof is simple. Observe that the train pulled car
c around from its creation until time tc , when c was
buffered in node n . Similarly, the train pulled car d
around from its creation until time td , when likewise d
was buffered in node n . Since it is the same train for both
c and d , they both had to be pulled into node n via exactly
the same sequence of forwarding steps. Since c ≺ d , it
must therefore be the case that the sequence of forwarding
steps experienced by d from its creation until time td is a
suffix of the sequence of forwarding steps experienced by
c from its creation until time tc . From this, the desired
result follows immediately.

This completes the proof of Property 2.
Now we prove that the ring lock protocol guarantees

mutual exclusion. In the ring lock protocol, user node
n1 claims a lock when its unchanged reqp car c1 returns
having circled the ring. Let t1 be the time at which this
happens and let r be the number of nodes on the ring (in-
cluding the zero node). Observe that ϕc1,t1 = r .

By Property 1, no other node can have a car on the same
train whose odometer at time t1 is r . Since there is only
one train at a time, no node other than n1 can claim the
same lock—or, indeed, any lock—at time t1. So, in the
ring lock protocol, we do not have to worry about multiple
nodes claiming the same lock at the same time.

All that remains to be shown is that at time t1 no user
node n0 6= n1 already held the lock. We will assume that
such a node exists and derive a contradiction. Since by as-
sumption n0 already holds the lock at time t1, there must
be some most recent time t0 < t1 at which n0 claims the
lock. Observe that n0 holds the lock continuously from t0
through t1. Let c0 be the reqp car used by n0 in claiming
the lock at time t0. Observe that ϕc0,t0 = r .

Now, since there is only one train at a time, car c1 is
either added to the train sometime after time t0 or it was

already on the train at time t0. Let us suppose it is added
sometime after time t0. Then it would have to completely
circle the ring while n0 holds the lock. But this would
result in n0 rewriting it as a failp, which is a contradiction.

Hence car c1 must be on the train at time t0. Since at
time t0 car c0 is also on the train, car c1 is either ahead
of car c0 or behind car c0. Let us suppose it is ahead.
Then since n0 is a user node, c0 and c1 must be buffered
in different nodes at time t0 and by Property 1 we can
conclude that ϕc1,t0 > r . But ϕc1,t1 = r , which implies
t0 > t1, which is a contradiction.

Hence car c1 must be behind car c0. By Property 2, the
odometer of car c1 when it reaches node n0 cannot exceed
r . It cannot equal r because that does not happen until car
c1 reaches node n1 and by assumption n0 6= n1. There-
fore, car c1 cannot have completed circling the ring until
after having passed node n0 while n0 holds the lock. But
this is a contradiction, because in such a case n0 would
have rewritten the car as a failp.

This completes the proof that the ring lock protocol
guarantees mutual exclusion.

It is easy to establish that whenever one or more nodes
attempt to acquire a lock, eventually some node holds the
lock. If multiple user nodes attempt to acquire a lock
that is not currently held by any node, precisely one node
will manage to add its reqp car to the train first, this reqp
will be the first to circle the ring, and consequently its
node will acquire the lock. This is even stronger than the
required lock acquisition property, which only requires
that the lock eventually be held whenever it is desired in-
finitely often.

It would be nice to have an even stronger liveness prop-
erty, for example: whenever a given node tries infinitely
often to acquire a lock, eventually that node gets it. Un-
fortunately, the ring lock protocol does not satisfy this
stronger liveness property.

3.3 Checking the protocol
Appendix A contains a formal specification of the ring
lock protocol, written in TLA+ [1]. The specification
starts out by defining various data types—the node iden-
tifier, the array of lock bits, the messages (cars), the ac-
tivities that a node can be doing, the state of a node—and
builds up to definitions of what a node does in a time slot
as it receives the next message. These definitions are put

4



user
nodes locks

runtime
(sec) depth

distinct
states

2 1 4 18 230
2 2 18 25 2062
3 1 16 24 1844
3 2 470 32 38644
4 1 141 29 12789
5 1 1408 35 83119
6 1 14873 40 504876

Table 1: Model checking results for the ring lock protocol
specification. No violations were reported.

together into several next state relations: a complicated re-
lation that advances a time step at all nodes simulateously
and one relation for each of the three actions that the pro-
tocol permits a user node to perform. Then several invari-
ants are defined, followed by temporal assumptions and
temporal properties. Finally, everything is assembled into
a single formula.

We used the TLC model checker to check several mod-
els of the ring lock protocol specification, with the results
listed in Table 1. No violations of invariants or of tem-
poral properties were reported. As is typical with model
checking, the number of distinct states and the runtime of
the model checker increase enormously as the model size
increases, which makes checking feasible only for small
models.

In order to gain confidence that model checking would
actually find errors if the specification were buggy, it
helps to intentionally introduce bugs and see if the model
checker reports a violation. This is the purpose of the var-
ious Bug... definitions in the specification. A model con-
figuration file can override these definitions to introduce
the bugs.

We ran the TLC model checker on several such buggy
configurations, described as follows:

BugOmitCheckReqP A node holding a lock omits to
fail a reqp for that lock, resulting in the error that
the lock may be claimed by more than one node at
the same time.

BugContinuousDoV A node omits to process a dov it
sent that circled the ring, resulting in the error that a

request to force the release of a lock will never com-
plete.

BugOmitCheckDoV A node holding a lock omits to re-
lease the lock when it receives a dov for that lock,
resulting in the error that a request to force the re-
lease of a lock may fail to release the lock.

BugOmitClaimLock A node omits to claim a lock when
its reqp returns after circling the ring, resulting in the
error that a lock desired infinitely often may never be
acquired.

Violations were reported in every case even with very
small model sizes. Table 2 shows the results. The trace
length is the number of states in the counterexample pro-
duced by TLC. An infinite trace is required to exhibit a
counterexample of a temporal property; such a trace con-
sits of an initial i states followed by a cycle of c states,
which is listed as i + c∗. Even with the same model size,
the depth and number of distinct states differ from one
configuration to another because the buggy models act
in different ways and, furthermore, TLC does not always
need to explore the entire state space before it discovers a
violation.

4 The multiring extension

Figure 2 shows the basic idea of the multiring extension.
As in the normal Beehive token ring, the ring is managed
by a zero node. However, one or more of the user nodes on
the ring are replaced with junction nodes, each of which
manages a subring of user nodes. To simplify the descrip-
tion, we use a vector numbering scheme to identify junc-
tion nodes and the user nodes that belong to their subrings.
In Figure 2, the junction nodes are numbered 3.0 and 5.0.

As in the normal Beehive token ring, activity on the
ring is conceived as a train that starts from the zero node,
chugs one car per time slot through a sequence of nodes,
and then ends up back at the zero node. However, the idea
of the multiring extension is that usually the train will by-
pass the subrings, thus getting around the main ring with
much less latency. Only when a user node on a subring
has cars it wants to add to the train will the train take the
local tour through the subring.

5



user
nodes locks

runtime
(sec)

trace
length

distinct
states bug name violation

2 1 3 13 179 BugOmitCheckReqP InvLockMutex
2 1 3 6 + 6∗ 263 BugContinuousDoV RequestCompletion
2 1 3 16 + 7∗ 236 BugOmitCheckDoV LockForceReleasing
2 1 3 11 + 10∗ 148 BugOmitClaimLock LockAcquisition

Table 2: Model checking results for detecting intentional bugs in the ring lock protocol specification.

Figure 2: Multiring extension.

The reason for having bypass trains and local tour trains
is to keep the multiring lock protocol as similar to the ring
lock protocol as possible. Normally, trains bypass the
subrings, thus achieving lower latency. However, when
a user node on a subring wants to request a lock oper-
ation, that subring goes into local tour mode so that the
user node can add its request car to the train and then in-
spect the result when its car returns on the next train. The
tricky part in this design is that a junction node forward-
ing a bypass train has to be able to fail a reqp that would
have been failed by one of its user nodes if the train had
been sent on a local tour.

One could imagine other designs. The most obvious
alternative design would be to arrange for subring nodes
to somehow convey their new cars to the junction node,
which would add them to the end of the train when it went
by. There would be no need of local tour routing, but there

is the problem of arranging for the junction node to buffer
the new cars until they can be added to the train. We do
not further investigate this alternative design.

In the bypass and local tour routing design, the routing
of the train is controlled independently at each junction
node. In the example shown in Figure 2, no user node
on subring 3 wanted to add cars to the train, so junction
node 3.0 sent the train past on bypass routing. However,
on subring 5, some user node did want to add cars to the
train, so junction node 5.0 sent the train on the local tour
through subring 5.

There are many ways that could be used to inform a
junction node that one of its subring user nodes wants to
add cars to the train. For example, a simple wire-or signal
wire could be used.

The routing decision of bypass or local tour must be
made by the junction node no later than the time the train
engine (the token) reaches the junction node on the main
ring. Once the token has been sent in one direction, the
entire train must follow.

When a junction node sends the train past in bypass
routing, there may be cars on the train that one or more of
its subring nodes need to hear about. For example, in or-
der to force the release of a lock, whichever user node cur-
rently holds the lock needs to hear about it. For this rea-
son, when the junction node sends the train past in bypass
routing, it makes a copy of the train that it sends around
its subring. We call this copy a shadow train. When the
cars on a shadow train come back around the subring to
the junction node, they are discarded.

The subring nodes can read the cars on a shadow train,
which is of course the primary purpose of the shadow
train. However, subring nodes are not permitted to rewrite
cars on a shadow train nor are they permitted to add cars
to a shadow train.

There are many techniques that can be used to distin-

6



guish a shadow train from a real train. The simplest tech-
nique, which we adopt, is just to drop the token from a
shadow train. The cars on a shadow train should be imag-
ined as being self-propelled.

5 The multiring lock protocol

The multiring extension supports a small number of
global hardware locks that are managed using the mul-
tiring lock protocol. We describe the protocol, prove its
safety and liveness, and discuss how we checked the pro-
tocol using a formal specification.

5.1 Description

The multiring lock protocol is based on the ring lock pro-
tocol and permits the same three actions to user nodes as
described in Section 3.1. The main differences are in deal-
ing with bypass trains.

The multiring lock protocol uses five special types of
data cars: reqp, failp, dov, gotp, and didv. Each of these
cars contains the node id of the node that creates the car
and the lock id of a particular lock of interest. reqp, failp,
and dov are used as in the ring lock protocol. When a
subring user node wants to send a reqp or dov around the
ring, it requests a real train from its junction node and it
maintains this request until the real train circles the ring
and comes back a second time. It adds the reqp or dov to
the first train and rewrites it to null on the second train.

The tricky part of the multiring lock protocol is arrang-
ing for a junction node to fail a reqp on a bypass train that
would have been failed by one of its subring user nodes if
the train had been sent through its subring on a local tour.
In order to do this, the junction node has to know which
locks are held by its subring user nodes. The junction
node keeps this information in a small array of subring
lock bits. A subring user node uses the gotp and didv cars
to update this array of bits in the junction node.

The gotp and didv cars are not just an optimization, but
rather they convey information necessary for the junction
node to be able to handle bypass trains properly.

Coordinating the actions of the junction node and its
subring user nodes is essential. This is accomplished as
follows.

The junction node only fails a bypass reqp. A reqp on
a local tour train is left to be handled by the subring user
nodes.

When a user node receives a successful reqp that has
circled the ring, it claims the lock and rewrites the reqp
to gotp. In the case of a subring user node, the gotp con-
tinues along the subring and eventually comes back out to
the junction node, to inform it that the lock was claimed.

An unsuccessful reqp returns as a failp which the user
node rewrites to null as in the ring lock protocol. The
junction node does not need to be informed of failed at-
tempts to acquire locks.

When a user node releases a lock as a permitted action,
it requests a real train and adds a didv. In the case of a
subring user node, the didv continues along the subring
and eventually comes back out to the junction node, to
inform it that the lock was released.

When a user node receives a dov that causes it to release
a lock, it requests a real train an adds a didv, just as in
the case of releasing a lock as a permitted action. The
received dov can be on a real train or on a shadow train.

Between the time a user node releases a lock and adds
the resulting didv to a train, the user node continues to fail
reqp’s for that lock as if it still held the lock. Observe
that a didv results from releasing a lock whereas a gotp
results from claiming a lock. Continuing to fail reqp’s
until the didv is added to the train guarantees that the didv
will be on the train ahead of any gotp that results from a
subsequent claim of the same lock.

The junction node’s array of subring lock bits is up-
dated by gotp and didv cars written by its subring user
nodes, as these cars come out of the subring. The junction
node can tell that the cars came from one of its subring
user nodes by examining the node id recorded in the car.
Hence the cars do not have to be nullified as they continue
on through the ring.

The zero node discards any didv or gotp that it receives.
Hence these cars do not circle the ring.

5.2 Safety and liveness
We now proceed to prove that the multiring lock protocol
satisfies the mutual exclusion and lock acquisition prop-
erties. Our proof is based on the corresponding proofs in
Section 3.2 for the ring lock protocol. First we need to
adapt some of the definitions.

7



Figure 3: Internals of junction node n .

For the purpose of the proving safety and liveness, we
pretend that a junction node n is actually two nodes, n̄ and
◦n , where n̄ buffers cars that are destined for the following
node on the main ring and ◦n buffers cars that are destined
for the local tour around the subring.

See Figure 3. When junction node n is in local tour
mode, cars arriving on the main ring are forwarded into ◦n ,
then forwarded around the subring, then forwarded into n̄ ,
and finally forwarded into the next node on the main ring.
When junction node n is in bypass mode, cars arriving on
the main ring are forwarded into n̄ , and then forwarded
into the next node on the main ring.

We define the odometer for real cars only. We adapt
the definition of ϕc,t , the odometer of car c at time t , as
follows. Instead of merely counting each forwarding step,
the adapted odometer sums a weighted value as follows.
For a forwarding step that represents being forwarded by
a junction node in bypass mode (that is, from the previ-
ous main ring node directly into n̄), the weighted value
is s + 1, where s is the number of nodes in the sub-
ring, counting the junction node. For all other forward-
ing steps, the weighted value is 1. The effect of being
forwarded in bypass mode is as if the odometer counted
passing through all of the nodes in the subring instanta-
neously.

Since a junction node routes all cars on a given train
the same way, Property 1 and Property 2 of odometers in
the ring lock protocol are also true of odometers in the
multiring lock protocol. The proofs go through in exactly
the same way.

Now we prove that the multiring lock protocol guar-
antees mutual exclusion. In the multiring lock protocol,

user node n1 claims a lock when its unchanged reqp car
c1 returns having circled the ring on a real train. Let t1 be
the time at which this happens. Observe that ϕc1,t1 must
count once for every user node in the system, twice for
every junction node, and once for the zero node. Let this
value be R. We have ϕc1,t1 = R.

By Property 1, no other node can have a car on the same
train whose odometer at time t1 is R and therefore we do
not have to worry about multiple nodes claiming the same
lock at the same time. The remainder of the proof goes
through exactly as for the ring lock protocol provided
that whenever a subring user node holds a lock while its
junction node is forwarding a train in bypass mode, the
junction node indeed believes that one of its subring user
nodes holds the lock. This fact is established as follows.

A subring user node can only claim a lock while it is
receiving a real train. Hence at that time its junction node
cannot be forwarding a train in bypass mode. Further-
more, at the time the subring user node claims the lock, it
rewrites its reqp to gotp on the real train. During the time
it takes this car to chug along the real train back out to the
junction node, the junction node has to have remained in
local tour mode.

So the only place a problem could arise is with the pro-
tocol for informing the junction node when the lock has
been released. The only way to notify the junction node
that one of its subring user nodes has released a lock is
by adding a didv to a real train. Before this car has been
added, the user node in question continues to act as though
it still held the lock. So the sequence of gotp and didv cars
for a given lock that appear on the same train record ex-
actly the sequence in which the lock was claimed and re-
leased. Hence when the end of the local tour train emerges
from the subring, the junction node will know for each
lock the final state of whether or not any user node on its
subring is acting as though it holds the lock.

This completes the proof that the multiring lock proto-
col guarantees mutual exclusion.

It is easy to establish that if a lock is desired infinitely
often, eventually some node holds the lock. Assume that
no node currently holds the lock. There are only two pos-
sible impediments to successfully acquiring the lock. (1)
The last node to hold the lock is still acting as though it
holds the lock, because it has not yet added the didv to the
end of a real train. But in this case the node is requesting a
real train, and eventually one will arrive and the didv will

8



be added. (2) A junction node still believes that one of its
subring nodes holds the lock. But in this case eventually
a didv will arrive to correct this belief. So if a lock that
is not held is always eventually desired, eventually there
will be no impediments and the lock will be acquired.

It is important to observe that forcing the release of a
lock is not quite as strong an action in the multiring lock
protocol as in the ring lock protocol. In the ring lock pro-
tocol, when a user node receives back its dov, the lock
has been released and, assuming no other node has al-
ready jumped in to request the lock, a subsequent request
to acquire the lock will succeed. However, in the mul-
tiring lock protocol, when a user node receives back its
dov, the lock might not yet be released and, furthermore,
even after the lock is released, a subsequent (too prompt)
attempt to acquire the lock might not succeed. This hap-
pens because of delay in informing the junction node that
its subring user node has released a lock because of a dov.
Note that the dov might have arrived on a shadow train,
in which case the user node has to request a real train so
that it can add a didv to inform the junction node that it
released the lock.

5.3 Checking the protocol

Appendix B contains a formal specification of the multir-
ing lock protocol, written in TLA+ [1]. The structure and
much of the text is identical to the specification of the ring
lock protocol discussed in Section 3.3. The main differ-
ences are (1) vector node numbering, (2) a few additional
message types, (3) a few additional activites and changes
in the behavior of the user node, and (4) lots of definitions
related to the junction node.

The specification is parameterized by a user node con-
figuration, which is a vector that lists the number of user
nodes on the subring at each position around the main
ring. A value of zero means that a user node appears on
the main ring, instead of a junction node with a subring.
The following examples should help explain this notation:

〈2〉 describes a main ring containing one subring that
contains two user nodes.

〈2, 1〉 describes a main ring containing two subrings, the
first of which contains two user nodes and the second
of which contains one user node.

user node
configuration locks

runtime
(sec) depth

distinct
states

〈1〉 1 4 19 56
〈2〉 1 15 26 623
〈0, 1〉 1 17 26 813
〈0, 2〉 1 162 31 6421
〈1, 0〉 1 11 24 544
〈1, 1〉 1 24 30 1004
〈1, 2〉 1 277 35 7618
〈2, 0〉 1 133 31 1280
〈2, 1〉 1 359 35 10427
〈2, 2〉 1 3689 40 69035
〈0, 0, 1〉 1 170 31 7857
〈0, 0, 2〉 1 1962 37 54644
〈0, 0, 0, 1〉 1 1937 39 60375
〈0, 0, 0, 2〉 1 20050 44 398605

Table 3: Model checking results for the multiring lock
protocol specification. No violations were reported.

〈2, 2〉 describes a main ring containing two subrings,
each of which contains two user nodes.

〈0, 0, 2〉 describes a main ring containing two user nodes
followed by a subring that contains two user nodes.
Each value of zero indicates a user node that appears
on the main ring, instead of a junction node with a
subring.

We used the TLC model checker to check several mod-
els of the ring lock protocol specification, with the results
listed in Table 3. No violations of invariants or of tem-
poral properties were reported. As is typical with model
checking, the number of distinct states and the runtime of
the model checker increase enormously as the model size
increases, which makes checking feasible only for small
models.

In order to gain confidence that model checking would
actually find errors if the specification were buggy, it
helps to intentionally introduce bugs and see if the model
checker reports a violation. This is the purpose of the var-
ious Bug... definitions in the specification. A model con-
figuration file can override these definitions to introduce
the bug.

We ran the TLC model checker on such buggy config-
urations, described as follows:

9



user node
configuration locks

runtime
(sec)

trace
length

distinct
states bug name violation

〈2〉 1 8 16 269 BugOmitCheckReqP InvLockMutex
〈1〉 1 3 4 + 6∗ 48 BugContinuousDoV RequestCompletion
〈1, 1〉 1 10 17 + 9∗ 1019 BugOmitCheckDoV LockForceReleasing
〈1〉 1 4 0 + 29∗ 33 BugOmitClaimLock LockAcquisition
〈1, 1〉 1 9 17 + 9∗ 1009 BugOmitCheckShadowDoV LockForceReleasing
〈1〉 1 3 14 42 BugOmitDidV InvBypassSubhold
〈0, 2〉 1 117 22 5039 BugOmitDidvCheckReqP InvBypassSubhold

Table 4: Model checking results for detecting intentional bugs in the multiring lock protocol specification.

BugOmitCheckReqP A node holding a lock omits to
fail a reqp for that lock, resulting in the error that
the lock may be claimed by more than one node at
the same time. (Same bug as ring lock protocol.)

BugContinuousDoV A node omits to process a dov it
sent that circled the ring, resulting in the error that a
request to force the release of a lock will never com-
plete. (Same bug as ring lock protocol.)

BugOmitCheckDoV A node holding a lock omits to re-
lease the lock when it receives a dov for that lock,
resulting in the error that a request to force the re-
lease of a lock may fail to release the lock. (Same
bug as ring lock protocol.)

BugOmitClaimLock A node omits to claim a lock when
its reqp returns after circling the ring, resulting in the
error that a lock desired infinitely often may never be
acquired. (Same bug as ring lock protocol.)

BugOmitCheckShadowDoV A node holding a lock
omits to release the lock when it receives a dov for
that lock on a shadow train, resulting in the error that
a request to force the release of a lock may fail to
release the lock.

BugOmitDidV A node omits to send a didv when soft-
ware requests it to release a lock it holds, resulting in
the error that a junction node not in local tour mode
has incorrect information about what locks its sub-
ring nodes hold.

BugOmitDidvCheckReqP A node that has released a
lock but not yet sent the corresponding didv omits

to fail a reqp for that lock on a real train, resulting
eventually in the error that a junction node not in lo-
cal tour mode has incorrect information about what
locks its subring nodes hold. This bug is discussed
further in Section 5.4.

Violations were reported in every case even with very
small model sizes. Table 4 shows the results. The trace
length is the number of states in the counterexample pro-
duced by TLC. An infinite trace is required to exhibit a
counterexample of a temporal property; this consits of an
initial i states followed by a cycle of c states, which is
listed as i + c∗.

Because the number of states explodes enormously
as the model size increases, we looked for the smallest
model that would exhibit the violation in each case.

5.4 An interesting bug
BugOmitDidvCheckReqP is an interesting bug. In this
bug, a node that has released a lock but not yet sent the
corresponding didv omits to fail a reqp for that lock on a
real train. In a suitable configuration, this omission can
result in a second user node on the subring claiming the
lock and rewriting the reqp to a gotp, while later at the
end of the train the first node finally adds its didv. As the
train comes out of the subring, the junction node first sees
the gotp and then sees the didv, both for the same lock.

If the junction node were counting the number of its
subring nodes that claimed the lock, the count would go
up to 2 when it saw the gotp and then back to 1 when
it saw the didv. But we have a simpler design in which
the junction node just records one bit per lock based on
the last information it receives. So the result is that after

10



Figure 4: Counterexample for BugOmitDidvCheckReqP.

11



receiving the didv, the junction node ends up erronious
believing that none of its subring nodes holds the lock.

Figure 4 shows a detailed counterexample. The config-
uration contains user node 1 on the main ring and two user
nodes 2.1 and 2.2 on a subring. Node 1 is not necessary
to the counterexample, but it shows why the invariant is
important. First node 2.1 runs the multiring lock proto-
col and claims the lock (Figure 4(a)). Then node 2.2 de-
cides it wants the lock and sends a reqp. The reqp circles
the ring but before it arrives node 2.1 decides to release
the lock (Figure 4(b)). Node 2.1 knows it needs to send
a didv but, having the bug, it lets the reqp for node 2.2
pass by unchanged. Node 2.2 receives its successful reqp,
rewrites it to gotp, and claims the lock. Meanwhile node
2.1 adds its didv to the end of the train (Figure 4(c)). As
the train emerges from the subring, the last car junction
node 2.0 sees is the didv, so it erroniously thinks that no
node on its subring holds the lock (Figure 4(d)). Once the
train is completely out, junction node 2.0 exits local tour
mode, causing a violation of the invariant InvBypassSub-
hold (Figure 4(e)). This invariant is important, because if
user node 1 subsequently decided it wanted the lock, its
reqp could go past junction node 2.0 in bypass mode with-
out failing (Figure 4(f)). This could result in both node 1
and node 2.2 holding the lock at the same time, thus vio-
lating mutual exclusion.

5.5 Hierarchical multiring
The multiring extension can be applied recursively to
form subrings within subrings, creating a hierarchical
multiring structure as illustrated in Figure 5. In this illus-
tration, nodes 3.4, 5.4, and 5.6 have been replaced with
junction nodes 3.4.0, 5.4.0, and 5.6.0 respectively, each
of which manages a lower level subring.

In the hierarchical multiring, a junction node routes an
arriving real train on a local tour if a real train is requested
by any node within it subring hierarchy. If there is no
such request, it sends the real train past as a bypass train
and sends a shadow copy down its subring. An arriving
shadow train is always just copied down its subring as a
shadow train.

In the example in Figure 5, junction nodes 5.0 and 5.6.0
are sending the train on a local tour, while junction nodes
3.0 and 5.4.0 are sending the train on a bypass. Junction
node 3.4.0 is making a shadow copy of a shadow train.

The multiring lock protocol applies without modifica-
tion to the hierarchical multiring. Three features of the
multiring lock protocol make this possible.

First, the multiring lock protocol never makes any
change to a car on a shadow train. The cars on a shadow
train are read only. Hence it does not matter where a
shadow train goes, as long as its cars reach all user nodes
within the subring, arriving in the order they appear on the
train. The hierarchical multiring preserves this property.

Second, in the multiring lock protocol, a user node
informs its junction node that it has claimed a lock by
changing its returned reqp to gotp. The junction node
learns about this when the gotp exits the subring, by ex-
amining the car’s node id and noticing that it belongs to
a node within its subring. However, the junction node
makes no change to the gotp, leaving it on the train for
any subsequent junction node to see, such as, for example,
a superior junction node. Of course, in the basic multir-
ing structure there are no superior junction nodes, but this
works perfectly in the hierarchical multiring.

Third, in the multiring lock protocol, a user node in-
forms its junction node that it has released a lock by
adding a didv to a real train. This works in the hierarchical
multiring exactly the same as the gotp just discussed.

So the hierarchical multiring structure can use the mul-
tiring lock protocol without change.

Using the hierarchical multiring structure enables de-
creasing the latency of sending a car around a ring of n
nodes from O(n) for a basic token ring or multiring to
O(log n). The theoretical improvement can begin to be
realized even in reasonably small sizes. For example, con-
sider a system with 64 user nodes. Let us count the num-
ber time slots between when a user node adds a data car to
an emty train until that car returns, assuming no other de-
mand on the system. The Beehive token ring (described in
Section 2) requires 66 time slots. A multiring structure of
8 rings of 8 user nodes requires 19 time slots: 10 to circle
the main ring and 9 to circle the subring. A hierarchical
multiring structure of 4 rings of 4 subrings of 4 user nodes
requires 16 time slots: 6 to circle the main ring, 5 to circle
the subring, and 5 to circle the subsubring.

12



Figure 5: Hierarchical multiring.

13



6 Conclusion
The Beehive ring lock protocol was designed to exploit
the Beehive token ring by performing lock acquisition
with one cycle of the ring and lock release with no ring
traffic at all. However, the justification of why the pro-
tocol is correct is fairly subtle. In such a case, a formal
specification is useful for eliminating disagreements over
details of the protocol.

The multiring extension adds considerable complex-
ity to the lock protocol and introduces the possibility for
many exciting bugs. One interesting result of adding hi-
erarchy to the ring structure was the loss of the original
overhead-free lock release. In the multiring extension,
the superior must be informed of lock release so that it
can act properly on behalf of its inferior nodes. Given
this added complexity, using a formal specification is even
more necessary for eliminating disagreements and check-
ing correctness.

Acknowledgements
Chuck Thacker designed and implemented the Beehive
ring lock protocol, along with most of the rest of the
Beehive system, and patiently answered many questions
about the exact operation of Beehive. Lintao Zhang orig-
inally proposed the multiring extension. John Davis pro-
vided many helpful comments on this paper.

References
[1] L. Lamport. Specifying Systems: The TLA+ Lan-

guage and Tools for Hardware and Software Engi-
neers. Addison-Wesley, 2002.

[2] T. L. Rodeheffer. Code generation for the Bee-
hive ISA. Technical Report MSR-TR-2010-113, Mi-
crosoft Research, Aug. 2010.

[3] C. Thacker. Beehive: A many-core computer for FP-
GAs, Jan. 2010. Unpublished.

14



A Ring lock protocol specification

MODULE RingLock

EXTENDS Naturals, Sequences, FiniteSets, TLC

Specification of the Beehive ring lock protocol.

VARIABLE state

CONSTANT Lock set of lock identifiers
CONSTANT NumNode number of user nodes

Various bugs (for testing the model checking).

BugOmitClaimLock ∆= FALSE omit to claim an acquired lock
BugOmitCheckReqP ∆= FALSE omit to fail a reqp for held lock
BugOmitCheckDoV ∆= FALSE omit to release a lock on a dov

BugContinuousDoV ∆= FALSE forget to process returned dov

Node identifier.

A node is identified by a number. Node 0 is the zero node.

Node ∆= 0 . . NumNode node identifier

ZeroNode ∆= {n ∈ Node : n = 0} set of zero nodes
UserNode ∆= {n ∈ Node : n 6= 0} set of user nodes

Type and initial value of an array of held locks.

Hold ∆= [Lock → BOOLEAN ] map from lock id to TRUE / FALSE

InitHold ∆= [lock ∈ Lock 7→ FALSE] no locks held

Useful TLA+ definitions.

15



The sum of f [x ] for all x in DOMAIN f .

Sum(f ) ∆=
LET

DSum[S ∈ SUBSET DOMAIN f ] ∆=
LET

x ∆= CHOOSE e ∈ S : TRUE
IN

IF S = {} THEN 0 ELSE f [x ] + DSum[S \ {x}]
IN

DSum[DOMAIN f ]

MESSAGES

Define the structure of each type of message.

All messages have a type. Messages specific to the lock protocol also have a lock and a source.
type a string unique to this type of message.
lock the lock the message is about.
source the node that originally created the message.

MsgToken ∆= [type : {“token”}]
MsgNull ∆= [type : {“null”} ]
MsgIdle ∆= [type : {“idle”} ]
MsgReqP ∆= [type : {“reqp”}, lock : Lock , source : Node]
MsgFailP ∆= [type : {“failp”}, lock : Lock , source : Node]
MsgDoV ∆= [type : {“dov”}, lock : Lock , source : Node]

Msg ∆= {}
∪MsgToken
∪MsgNull
∪MsgIdle
∪MsgReqP
∪MsgFailP
∪MsgDoV

Convenience operators to construct messages.

MkMsgToken ∆= CHOOSE m ∈ MsgToken : TRUE
MkMsgNull ∆= CHOOSE m ∈ MsgNull : TRUE
MkMsgIdle ∆= CHOOSE m ∈ MsgIdle : TRUE
MkMsgReqP(l , s) ∆= CHOOSE m ∈ MsgReqP : m.lock = l ∧m.source = s
MkMsgFailP(l , s) ∆= CHOOSE m ∈ MsgFailP : m.lock = l ∧m.source = s
MkMsgDoV (l , s) ∆= CHOOSE m ∈ MsgDoV : m.lock = l ∧m.source = s

16



NODE ACTIVITIES

Define the structure of each type of activity.

All activities have a type. Activities specific to the lock protocol also have a lock.
type a string unique to this type of activity.
lock the lock the activity is about.

ActIdle ∆= [type : {“idle”}]
ActSendReqP ∆= [type : {“send reqp”}, lock : Lock ]
ActSendDoV ∆= [type : {“send dov”}, lock : Lock ]
ActWaitReqP ∆= [type : {“wait reqp”}, lock : Lock ]
ActWaitDoV ∆= [type : {“wait dov”}, lock : Lock ]

Act ∆= {}
∪ActIdle idle
∪ActSendReqP want to send a reqp

∪ActSendDoV want to send a dov

∪ActWaitReqP waiting for reqp to come back
∪ActWaitDoV waiting for dov to come back

Convenience operators to construct activities.

MkActIdle ∆= CHOOSE a ∈ ActIdle : TRUE
MkActSendReqP(l) ∆= CHOOSE a ∈ ActSendReqP : a.lock = l
MkActSendDoV (l) ∆= CHOOSE a ∈ ActSendDoV : a.lock = l
MkActWaitReqP(l) ∆= CHOOSE a ∈ ActWaitReqP : a.lock = l
MkActWaitDoV (l) ∆= CHOOSE a ∈ ActWaitDoV : a.lock = l

NODE STATE

Node state for a zero node.

buf buffers cars from one train to the next. Everything from the head of buf up to but not including a token car
is part of the current train. Everything from a token car on back is part of the next train.

ZeroNodeState ∆= type definition
[

id : ZeroNode, the id of this node
out : Msg , sending on ring
buf : Seq(Msg) buffer cars from one train to the next

17



]

InitZeroNodeState(n) ∆= initial value
[

id 7→ n,
out 7→ MkMsgToken, initially sending a token msg

buf 7→ 〈〉 empty buffer
]

MsgsInZeroNodeState(ns) ∆= set of all messages
{ns.out} ∪ {ns.buf [x ] : x ∈ 1 . . Len(ns.buf )}

CountTokensInZeroNodeState(ns) ∆= number of tokens stored
LET

Cnt(m) ∆= IF m ∈ MsgToken THEN 1 ELSE 0
IN

Cnt(ns.out) + Sum([x ∈ 1 . . Len(ns.buf ) 7→ Cnt(ns.buf [x ])])

Node state for a user node.

UserNodeState ∆= type definition
[

id : UserNode, the id of this node
out : Msg , sending on ring
intrain : BOOLEAN , received token and not yet idle
act : Act , current activity of this node
hold : Hold map of locks held by this node

]

InitUserNodeState(n) ∆= initial value
[

id 7→ n,
out 7→ MkMsgIdle, sending idle msg

intrain 7→ FALSE, not in a train
act 7→ MkActIdle, currently idle
hold 7→ InitHold no locks held

]

MsgsInUserNodeState(ns) ∆= set of all messages
{ns.out}

18



CountTokensInUserNodeState(ns) ∆= number of tokens stored
LET

Cnt(m) ∆= IF m ∈ MsgToken THEN 1 ELSE 0
IN

Cnt(ns.out)

General node state.

NodeState ∆= {} type definition
∪ ZeroNodeState
∪UserNodeState

InitNodeState(n) ∆= initial value
IF n ∈ ZeroNode THEN InitZeroNodeState(n) ELSE
IF n ∈ UserNode THEN InitUserNodeState(n) ELSE
Assert(FALSE, “impossible”)

MsgsInNodeState(ns) ∆= set of all messages
IF ns.id ∈ ZeroNode THEN MsgsInZeroNodeState(ns) ELSE
IF ns.id ∈ UserNode THEN MsgsInUserNodeState(ns) ELSE
Assert(FALSE, “impossible”)

CountTokensInNodeState(ns) ∆= number of tokens stored
IF ns.id ∈ ZeroNode THEN CountTokensInZeroNodeState(ns) ELSE
IF ns.id ∈ UserNode THEN CountTokensInUserNodeState(ns) ELSE
Assert(FALSE, “impossible”)

Given the current intrain value i , compute the new intrain value after the arrival of message m .

UpdateIntrain(i , m) ∆=
IF m ∈ MsgToken THEN TRUE ELSE start of train
IF m ∈ MsgIdle THEN FALSE ELSE end of train
i

19



The set of messages the zero node should discard, rather than recycle.

ZeroNodeDiscardMsgs ∆= {}
∪MsgIdle
∪MsgNull

On a zero node, append an arriving message m to the buffer buf if m should be recycled.

ZeroNodeAppendBuf (buf , m) ∆=
IF m ∈ ZeroNodeDiscardMsgs THEN buf ELSE Append(buf , m)

Compute the new node state resulting from receiving the indicated message on the zero node.

A train consists of consecutive slots starting with a token and ending with an idle.

The zero node is in charge of starting the train. It recycles cars from the previous train in buf . When buf is
nonempty, the head of buf is a token and the arriving message is an idle , then it is possible to start a new train.

ZeroNodeRecvMsg(ns, msg) ∆=
IF ns.id /∈ ZeroNode THEN Assert(FALSE, “not a zero node”)
ELSE

IF
∧ ns.buf 6= 〈〉
∧Head(ns.buf ) ∈ MsgToken
∧msg ∈ MsgIdle

THEN
Start a new train.

[ns EXCEPT
!.out = Head(ns.buf ),
!.buf = ZeroNodeAppendBuf (Tail(ns.buf ), msg)
]

ELSE
IF
∧ ns.buf 6= 〈〉
∧Head(ns.buf ) /∈ MsgToken

THEN
Continue sending the current train.

[ns EXCEPT
!.out = Head(ns.buf ),
!.buf = ZeroNodeAppendBuf (Tail(ns.buf ), msg)
]

ELSE
Send an idle between trains.

[ns EXCEPT
!.out = MkMsgIdle,

20



!.buf = ZeroNodeAppendBuf (ns.buf , msg)
]

Compute the new node state resulting from receiving the indicated message on a user node.

UserNodeRecvMsg(ns, msg) ∆=
IF ns.id /∈ UserNode THEN Assert(FALSE, “not a user node”)
ELSE

IF
∧msg ∈ MsgIdle
∧ ns.act ∈ ActSendReqP
∧ ns.intrain

THEN
Here is the idle at the end of the train that we need to replace with our reqp message. This extends the train
by one car so we stay in the train.

[ns EXCEPT
!.out = MkMsgReqP(ns.act .lock , ns.id), send the reqp

!.act = MkActWaitReqP(ns.act .lock), wait for its return
!.intrain = TRUE
]

ELSE
IF
∧msg ∈ MsgIdle
∧ ns.act ∈ ActSendDoV
∧ ns.intrain

THEN
Here is the idle at the end of the train that we need to replace with our dov message. This extends the train
by one car so we stay in the train.

[ns EXCEPT
!.out = MkMsgDoV (ns.act .lock , ns.id), send the dov

!.act = MkActWaitDoV (ns.act .lock), wait for its return
!.intrain = TRUE
]

ELSE
IF
∧msg ∈ MsgReqP
∧msg .source = ns.id

∧Assert(ns.act = MkActWaitReqP(msg .lock), “return reqp unexpected”)
∧Assert(ns.intrain, “return reqp not in train”)

21



∧Assert(¬ns.hold [msg .lock ], “return reqp but lock held”)
THEN

Our reqp message returns. This can only happen when we are waiting for it, hence the assert.

We own the lock. Nullify the reqp message.

[ns EXCEPT
!.out = MkMsgNull ,
!.act = MkActIdle,
!.hold = IF BugOmitClaimLock THEN @ ELSE
[@ EXCEPT ![msg .lock ] = TRUE],
!.intrain = UpdateIntrain(@, msg)
]

ELSE
IF
∧msg ∈ MsgFailP
∧msg .source = ns.id

∧Assert(ns.act = MkActWaitReqP(msg .lock), “return failp unexpected”)
∧Assert(ns.intrain, “return failp not in train”)
∧Assert(¬ns.hold [msg .lock ], “return failp but lock held”)

THEN
Our reqp message came back failed. This can only happen when we are waiting for it, hence the assert.

We failed to get the lock. Nullify the failp message.

[ns EXCEPT
!.out = MkMsgNull ,
!.act = MkActIdle,
!.intrain = UpdateIntrain(@, msg)
]

ELSE
IF
∧msg ∈ MsgReqP
∧msg .source 6= ns.id
∧ ns.hold [msg .lock ]

∧ ¬BugOmitCheckReqP
THEN

Some one else’s reqp message for a lock we hold. Fail it.

[ns EXCEPT
!.out = MkMsgFailP(msg .lock , msg .source), note: keep source
!.intrain = UpdateIntrain(@, msg)
]

ELSE
IF
∧msg ∈ MsgDoV
∧msg .source = ns.id

22



∧Assert(ns.act = MkActWaitDoV (msg .lock), “return dov unexpected”)
∧Assert(ns.intrain, “return dov not in train”)
∧Assert(¬ns.hold [msg .lock ], “return dov but lock held”)

∧ ¬BugContinuousDoV
THEN

Our dov message returns. This can only happen when we are waiting for the dov to return.

Nullify the message.

[ns EXCEPT
!.out = MkMsgNull ,
!.act = MkActIdle,
!.intrain = UpdateIntrain(@, msg)
]

ELSE
IF
∧msg ∈ MsgDoV
∧msg .source 6= ns.id
∧ ns.hold [msg .lock ]

∧ ¬BugOmitCheckDoV
THEN

Some one else’s dov message for a lock we hold. Clear our lock.

[ns EXCEPT
!.out = msg ,
!.hold = [@ EXCEPT ![msg .lock ] = FALSE],
!.intrain = UpdateIntrain(@, msg)
]

ELSE
Pass the message unchanged.

[ns EXCEPT
!.out = msg ,
!.intrain = UpdateIntrain(@, msg)
]

STATE

State ∆= [
nodes : [Node → NodeState]

]

InitState ∆= [

23



nodes 7→ [n ∈ Node 7→ InitNodeState(n)]
]

NEXT STATE RELATIONS

Compute the node from which node n0 takes its message.

FromNode(n0) ∆=
CHOOSE n ∈ Node : (n + 1)%(NumNode + 1) = n0

Advance by one step.

Each node receives the message sent by the node earlier in the ring, and updates its state, computing the message
it will send in the next step.

NextStep ∆=
LET

NN ∆= state.nodes

How to update a zero node.

zeroupd(n) ∆=
LET

ns ∆= NN [n]
msg ∆= NN [FromNode(n)].out

IN
ZeroNodeRecvMsg(ns, msg)

How to update a user node.

userupd(n) ∆=
LET

ns ∆= NN [n]
msg ∆= NN [FromNode(n)].out

IN
UserNodeRecvMsg(ns, msg)

IN
state ′ =
[state EXCEPT
!.nodes =

24



[n ∈ Node 7→
IF n ∈ ZeroNode THEN zeroupd(n) ELSE
IF n ∈ UserNode THEN userupd(n) ELSE
Assert(FALSE, “uncovered”)
]
]

Some user node decides to try to take a lock it does not hold.

NextTakeUnheldLock ∆=
∃node ∈ UserNode :
∃ lock ∈ Lock :
LET

ns ∆= state.nodes[node]
IN
∧ ns.act ∈ ActIdle
∧ ¬ns.hold [lock ]
∧ state ′ =
[state EXCEPT
!.nodes[node].act = MkActSendReqP(lock)
]

Some user node decides to release a lock it holds.

NextReleaseHeldLock ∆=
∃node ∈ UserNode :
∃ lock ∈ Lock :
LET

ns ∆= state.nodes[node]
IN
∧ ns.act ∈ ActIdle
∧ ns.hold [lock ]
∧ state ′ =
[state EXCEPT
!.nodes[node].hold [lock ] = FALSE
]

Some user node decides to release a lock it does not hold.

NextReleaseUnheldLock ∆=
∃node ∈ UserNode :
∃ lock ∈ Lock :
LET

25



ns ∆= state.nodes[node]
IN
∧ ns.act ∈ ActIdle
∧ ¬ns.hold [lock ]
∧ state ′ =
[state EXCEPT
!.nodes[node].act = MkActSendDoV (lock)
]

INVARIANTS

The state must always be of the proper type.

InvType ∆=
∧ state ∈ State

There is always exactly one token.

InvUniqueToken ∆=
LET

Total count of tokens stored over all nodes.

total ∆= Sum([n ∈ Node 7→ CountTokensInNodeState(state.nodes[n])])
IN

total = 1

No two user nodes can hold the same lock.

InvLockMutex ∆=
∀n1, n2 ∈ UserNode :
∀ lock ∈ Lock :
(
∧ state.nodes[n1].hold [lock ]
∧ state.nodes[n2].hold [lock ]

)⇒ n1 = n2

26



TEMPORAL ASSUMPTIONS

Liveness assumption.

We have to make explicit the temporal assumption that always eventually a time step happens on the ring. (Oth-
erwise, the model permits infinite suttering.) Since the step is always enabled, weak fairness is sufficient.

Liveness ∆=
∧WFstate(NextStep)

TEMPORAL PROPERTIES

For all user nodes, the node always eventually gets back to the idle state.

RequestCompletion ∆=
∀n ∈ UserNode :
LET

This user node is idle.

idle ∆= state.nodes[n].act ∈ ActIdle
IN

23idle

For all locks, some node desiring the lock leads to some node holding it.

LockAcquisition ∆=
∀ lock ∈ Lock :
LET

Some node desires this lock.

desired ∆= ∃n ∈ UserNode :
state.nodes[n].act = MkActSendReqP(lock)

Some node holds this lock.

held ∆= ∃n ∈ UserNode :
state.nodes[n].hold [lock ]

IN
desired ; held

27



For all locks, some node wanting to dov the lock leads to no node holding it.

LockForceReleasing ∆=
∀ lock ∈ Lock :
LET

Some node wants to dov this lock.

wantdov ∆= ∃n ∈ UserNode :
state.nodes[n].act = MkActSendDoV (lock)

No node holds this lock.

free ∆= ∀n ∈ UserNode :
¬state.nodes[n].hold [lock ]

IN
wantdov ; free

FINAL SPECIFICATION

Initial state.

Init ∆=
∧ state = InitState

Next state relation.

Next ∆=
∨NextStep
∨NextTakeUnheldLock
∨NextReleaseHeldLock
∨NextReleaseUnheldLock

Specification.

Spec ∆=
∧ Init
∧2[Next ]state
∧ Liveness

THEOREM Spec ⇒

28



∧2InvType
∧2InvUniqueToken
∧2InvLockMutex
∧ RequestCompletion
∧ LockAcquisition
∧ LockForceReleasing

29



B Multiring lock protocol specification

MODULE MultiringLock

EXTENDS Naturals, Sequences, FiniteSets, TLC

Specification of multiring lock protocol.

VARIABLE state

CONSTANT Lock lock id

CONSTANT NumNode map 1 . . r 7→ user nodes in subring r

0 means user node on the main ring

Various bugs (for testing the model checking).

BugOmitClaimLock ∆= FALSE omit to claim an acquired lock
BugOmitCheckReqP ∆= FALSE omit to fail a reqp for held lock
BugOmitCheckDoV ∆= FALSE omit to release a lock on a dov

BugContinuousDoV ∆= FALSE forget to process returned dov

BugOmitCheckShadowDoV ∆= FALSE omit to watch for dov on shadow train
BugOmitDidV ∆= FALSE omit sending a didv

BugOmitDidvCheckReqP ∆= FALSE omit to fail a reqp for a didv [lock ]

Node identifier.

A node is identified by a sequence v of numbers.

For the zero node the sequence is of length 1 and v [1] = 0.

For a user node on the main ring, the sequence is of length 1 and v [1] is the position of the user node on the ring.
v [1] 6= 0 because that is the zero node.

For a junction node that manages subring r , the sequence is of length 2 and v [1] = r and v [2] = 0. The junction
node is at position r on the main ring. This must not conflict with the position of the zero node nor with the
position of any user node on the main ring.

For a user node on subring r , the sequence is of length 2 and v [1] = r and v [2] is the position of the user node
on subring r . v [2] 6= 0 because that is the position of the junction node that manages subring r .

Positions on the main ring where there is a user node.

MainRingPosUserNode ∆= {r ∈ DOMAIN NumNode : NumNode[r ] = 0}

Positions on the main ring where there is a junction node.

MainRingPosJuncNode ∆= {r ∈ DOMAIN NumNode : NumNode[r ] > 0}

30



The set of all zero nodes.

ZeroNode ∆= {〈0〉}

The set of all user nodes. A user node can be on the main ring or it can be on a subring.

UserNode ∆= LET
onmain ∆= {〈r〉 : r ∈ MainRingPosUserNode}
onring(r) ∆= {〈r , i〉 : i ∈ 1 . . NumNode[r ]}

IN
onmain ∪ UNION {onring(r) : r ∈ MainRingPosJuncNode}

The set of all junction nodes.

JuncNode ∆= {〈r , 0〉 : r ∈ MainRingPosJuncNode}

The set of all nodes.

Node ∆= {}
∪ ZeroNode
∪UserNode
∪ JuncNode

Useful TLA+ definitions.

The sum of f [x ] for all x in DOMAIN f .

Sum(f ) ∆=
LET

DSum[S ∈ SUBSET DOMAIN f ] ∆=
LET

x ∆= CHOOSE e ∈ S : TRUE
IN

IF S = {} THEN 0 ELSE f [x ] + DSum[S \ {x}]
IN

DSum[DOMAIN f ]

MESSAGES

Define the structure of each type of message.

31



All messages have a type. Messages specific to the lock protocol also have a lock and a source.
type a string unique to this type of message.
lock the lock the message is about.
source the node that originally created the message.

MsgToken ∆= [type : {“token”}]
MsgNull ∆= [type : {“null”} ]
MsgIdle ∆= [type : {“idle”} ]
MsgReqP ∆= [type : {“reqp”}, lock : Lock , source : Node]
MsgFailP ∆= [type : {“failp”}, lock : Lock , source : Node]
MsgDoV ∆= [type : {“dov”}, lock : Lock , source : Node]
MsgGotP ∆= [type : {“gotp”}, lock : Lock , source : Node]
MsgDidV ∆= [type : {“didv”}, lock : Lock , source : Node]

Msg ∆= {}
∪MsgToken
∪MsgNull
∪MsgIdle
∪MsgReqP
∪MsgFailP
∪MsgDoV
∪MsgGotP
∪MsgDidV

Convenience operators to construct messages.

MkMsgToken ∆= CHOOSE m ∈ MsgToken : TRUE
MkMsgNull ∆= CHOOSE m ∈ MsgNull : TRUE
MkMsgIdle ∆= CHOOSE m ∈ MsgIdle : TRUE
MkMsgReqP(l , s) ∆= CHOOSE m ∈ MsgReqP : m.lock = l ∧m.source = s
MkMsgFailP(l , s) ∆= CHOOSE m ∈ MsgFailP : m.lock = l ∧m.source = s
MkMsgDoV (l , s) ∆= CHOOSE m ∈ MsgDoV : m.lock = l ∧m.source = s
MkMsgGotP(l , s) ∆= CHOOSE m ∈ MsgGotP : m.lock = l ∧m.source = s
MkMsgDidV (l , s) ∆= CHOOSE m ∈ MsgDidV : m.lock = l ∧m.source = s

NODE ACTIVITIES

Define the structure of each type of activity.

All activities have a type. Activities specific to the lock protocol also have a lock.
type a string unique to this type of activity.
lock the lock the activity is about.

ActIdle ∆= [type : {“idle”}]

32



ActSendReqP ∆= [type : {“send reqp”}, lock : Lock ]
ActSendDoV ∆= [type : {“send dov”}, lock : Lock ]
ActWaitReqP ∆= [type : {“wait reqp”}, lock : Lock ]
ActWaitDoV ∆= [type : {“wait dov”}, lock : Lock ]

Act ∆= {}
∪ActIdle idle
∪ActSendReqP want to send a reqp

∪ActSendDoV want to send a dov

∪ActWaitReqP waiting for reqp to come back
∪ActWaitDoV waiting for dov to come back

Convenience operators to construct activities.

MkActIdle ∆= CHOOSE a ∈ ActIdle : TRUE
MkActSendReqP(l) ∆= CHOOSE a ∈ ActSendReqP : a.lock = l
MkActSendDoV (l) ∆= CHOOSE a ∈ ActSendDoV : a.lock = l
MkActWaitReqP(l) ∆= CHOOSE a ∈ ActWaitReqP : a.lock = l
MkActWaitDoV (l) ∆= CHOOSE a ∈ ActWaitDoV : a.lock = l

Type and initial value of an array of held locks.

Hold ∆= [Lock → BOOLEAN ]
InitHold ∆= [lock ∈ Lock 7→ FALSE] no locks held

NODE STATE

Node state for a zero node.

buf buffers cars from one train to the next. Everything from the head of buf up to but not including a token car
is part of the current train. Everything from a token car on back is part of the next train.

ZeroNodeState ∆= type definition
[

id : ZeroNode, the id of this node
out : Msg , sending on ring
buf : Seq(Msg) buffer cars from one train to the next

]

33



InitZeroNodeState(n) ∆= initial value
[

id 7→ n,
out 7→ MkMsgToken, initially sending a token msg

buf 7→ 〈〉 empty buffer
]

MsgsInZeroNodeState(ns) ∆= set of all messages
{ns.out} ∪ {ns.buf [x ] : x ∈ 1 . . Len(ns.buf )}

CountTokensInZeroNodeState(ns) ∆= number of tokens stored
LET

Cnt(m) ∆= IF m ∈ MsgToken THEN 1 ELSE 0
IN

Cnt(ns.out) + Sum([x ∈ 1 . . Len(ns.buf ) 7→ Cnt(ns.buf [x ])])

Node state for a user node.

UserNodeState ∆= type definition
[

id : UserNode, the id of this node
out : Msg , sending on ring
intrain : BOOLEAN , token arrived but not yet idle
act : Act , current activity of this node
hold : Hold , locks held by this node
didv : Hold locks released but not yet sent a didv

]

InitUserNodeState(n) ∆= initial value
[

id 7→ n,
out 7→ MkMsgIdle, sending idle msg

intrain 7→ FALSE, not in a train
act 7→ MkActIdle, currently idle
hold 7→ InitHold , all locks free
didv 7→ InitHold all locks free

]

MsgsInUserNodeState(ns) ∆= set of all messages
{ns.out}

CountTokensInUserNodeState(ns) ∆= number of tokens stored

34



LET
Cnt(m) ∆= IF m ∈ MsgToken THEN 1 ELSE 0

IN
Cnt(ns.out)

Node state for a junction node.

JuncNodeState ∆= type definition
[

id : JuncNode, the id of this node
out : Msg , sending on ring
intrain : BOOLEAN , token arrived but not yet idle

subout : Msg , subring: sending on ring
subintrain : BOOLEAN , subring: token arrived but not yet idle
subhold : Hold , subring: locks held by any node on subring

localtour : BOOLEAN sending real train through subring
]

InitJuncNodeState(n) ∆= initial value
[

id 7→ n,
out 7→ MkMsgIdle, sending idle msg

intrain 7→ FALSE, not in a train

subout 7→ MkMsgIdle, sending idle msg

subintrain 7→ FALSE, not in a train
subhold 7→ InitHold , all locks free

localtour 7→ FALSE not sending real train through subring
]

MsgsInJuncNodeState(ns) ∆= all messages in a junction node state
{ns.out , ns.subout}

CountTokensInJuncNodeState(ns) ∆= number of tokens stored
LET

Cnt(m) ∆= IF m ∈ MsgToken THEN 1 ELSE 0
IN

Cnt(ns.out) + Cnt(ns.subout)

35



General node state.

NodeState ∆= {} type definition
∪ ZeroNodeState
∪UserNodeState
∪ JuncNodeState

InitNodeState(n) ∆= initial value
IF n ∈ ZeroNode THEN InitZeroNodeState(n) ELSE
IF n ∈ UserNode THEN InitUserNodeState(n) ELSE
IF n ∈ JuncNode THEN InitJuncNodeState(n) ELSE
Assert(FALSE, “impossible”)

MsgsInNodeState(ns) ∆= set of all messages
IF ns.id ∈ ZeroNode THEN MsgsInZeroNodeState(ns) ELSE
IF ns.id ∈ UserNode THEN MsgsInUserNodeState(ns) ELSE
IF ns.id ∈ JuncNode THEN MsgsInJuncNodeState(ns) ELSE
Assert(FALSE, “impossible”)

CountTokensInNodeState(ns) ∆= number of tokens stored
IF ns.id ∈ ZeroNode THEN CountTokensInZeroNodeState(ns) ELSE
IF ns.id ∈ UserNode THEN CountTokensInUserNodeState(ns) ELSE
IF ns.id ∈ JuncNode THEN CountTokensInJuncNodeState(ns) ELSE
Assert(FALSE, “impossible”)

Given the current intrain value i , compute the new intrain value after the arrival of message m .

UpdateIntrain(i , m) ∆=
IF m ∈ MsgToken THEN TRUE ELSE start of train
IF m ∈ MsgIdle THEN FALSE ELSE end of train
i

The set of messages the zero node should discard, rather than recycle.

ZeroNodeDiscardMsgs ∆= {}
∪MsgIdle
∪MsgNull

36



∪MsgGotP
∪MsgDidV

On a zero node, append an arriving message m to the buffer buf if m should be recycled.

ZeroNodeAppendBuf (buf , m) ∆=
IF m ∈ ZeroNodeDiscardMsgs THEN buf ELSE Append(buf , m)

Compute the new node state resulting from receiving the indicated message on the zero node.

A train consists of consecutive slots starting with a token and ending with an idle.

The zero node is in charge of starting the train. It recycles cars from the previous train in buf . When buf is
nonempty, the head of buf is a token and the arriving message is an idle , then it is possible to start a new train.

ZeroNodeRecvMsg(ns, msg) ∆=
IF ns.id /∈ ZeroNode THEN Assert(FALSE, “not a zero node”)
ELSE

IF
∧ ns.buf 6= 〈〉
∧Head(ns.buf ) ∈ MsgToken
∧msg ∈ MsgIdle

THEN
Start a new train.

[ns EXCEPT
!.out = Head(ns.buf ),
!.buf = ZeroNodeAppendBuf (Tail(ns.buf ), msg)
]

ELSE
IF
∧ ns.buf 6= 〈〉
∧Head(ns.buf ) /∈ MsgToken

THEN
Continue sending the current train.

[ns EXCEPT
!.out = Head(ns.buf ),
!.buf = ZeroNodeAppendBuf (Tail(ns.buf ), msg)
]

ELSE
Send an idle between trains.

[ns EXCEPT
!.out = MkMsgIdle,
!.buf = ZeroNodeAppendBuf (ns.buf , msg)
]

37



Tell if a user node wants a train.

A user node wants a train if it is not idle or if it has didv ’s to send.

UserNodeWantsTrain(ns) ∆=
IF ns.id /∈ UserNode THEN Assert(FALSE, “not a user node”)
ELSE
∨ ns.act /∈ ActIdle
∨ ∃ lock ∈ Lock : ns.didv [lock ]

Compute the new node state resulting from receiving the indicated message on a user node.

UserNodeRecvMsg(ns, msg) ∆=
IF ns.id /∈ UserNode THEN Assert(FALSE, “not a user node”)
ELSE

LET
Update intrain based on the message being sent. We apply this operator in every case below.

ITR(ns0) ∆= [ns0 EXCEPT !.intrain = UpdateIntrain(@, ns0.out)]

IN
IF ∧ ns.act ∈ ActSendReqP
∧msg ∈ MsgIdle
∧ ns.intrain
THEN

We want to send a reqp and here is the idle at the end of the train that we can rewrite to send it.

ITR([ns EXCEPT
!.out = MkMsgReqP(ns.act .lock , ns.id),
!.act = MkActWaitReqP(ns.act .lock)
])

ELSE
IF ∧ ns.act ∈ ActSendDoV
∧msg ∈ MsgIdle
∧ ns.intrain
THEN

We want to send a dov and here is the idle at the end of the train that we can rewrite to send it.

ITR([ns EXCEPT
!.out = MkMsgDoV (ns.act .lock , ns.id),
!.act = MkActWaitDoV (ns.act .lock)
])

ELSE
IF ∧ ∃ lock ∈ Lock : ns.didv [lock ]
∧msg ∈ MsgIdle
∧ ns.intrain
THEN

38



We want to send a didv and here is the idle at the end of the train that we can rewrite to send it.

LET lock ∆= CHOOSE lock ∈ Lock : ns.didv [lock ]IN
ITR([ns EXCEPT
!.out = MkMsgDidV (lock , ns.id),
!.didv [lock ] = FALSE
])

ELSE
IF ∧msg ∈ MsgReqP
∧msg .source = ns.id

∧Assert(ns.act = MkActWaitReqP(msg .lock), “unexpected return reqp”)
∧Assert(ns.intrain, “shadow return reqp”)
∧Assert(¬ns.hold [msg .lock ], “return reqp but hold[lock]”)
∧Assert(¬ns.didv [msg .lock ], “return reqp but didv[lock]”)
THEN

Our reqp returns. This can only happen when we are waiting for it. The message must be on a real train,
not a shadow train.

We own the lock. Rewrite our reqp with a gotp so that our junction node finds out we got the lock. The
junction node uses this information to fail subsequent reqp’s that may appear on bypass trains.

The return reqp must be on a real train for several reasons. (1) We have a real time slot in which to claim the
lock. (2) We can remove the circling reqp by rewriting it to a car type that will not recycle. (3) The resulting
gotp will get back to our junction node and update its information before any subsequent bypass train can
go past.

IF BugOmitClaimLock THEN
ITR([ns EXCEPT
!.out = MkMsgNull ,
!.act = MkActIdle,
!.hold [msg .lock ] = @
])

ELSE
ITR([ns EXCEPT
!.out = MkMsgGotP(msg .lock , ns.id),
!.act = MkActIdle,
!.hold [msg .lock ] = TRUE
])

ELSE
IF ∧msg ∈ MsgFailP
∧msg .source = ns.id

∧Assert(ns.act = MkActWaitReqP(msg .lock), “unexpected return failp”)
∧Assert(ns.intrain, “shadow return failp”)
∧Assert(¬ns.hold [msg .lock ], “return failp but hold[lock]”)
∧Assert(¬ns.didv [msg .lock ], “return failp but didv[lock]”)
THEN

Our reqp came back failed. This can only happen when we are are waiting for it. The message must be on
a real train, not a shadow train.

39



We failed to get the lock. Nullify the failp .

ITR([ns EXCEPT
!.out = MkMsgNull ,
!.act = MkActIdle
])

ELSE
IF ∧msg ∈ MsgReqP
∧msg .source 6= ns.id
∧ ns.hold [msg .lock ]

∧ BugOmitCheckReqP ⇒ FALSE

∧Assert(ns.intrain, “hold[lock] but shadow reqp”)
THEN

Some one else’s reqp for a lock we hold. Fail it.

If it is a shadow train, it would be ineffective for us to fail it, because the bypass train already passed our
junction node. To handle this case, our junction node is supposed to know about the locks we hold and fail
the reqp for us on bypass trains, so we should never see it on one. Hence the assert.

ITR([ns EXCEPT !.out = MkMsgFailP(msg .lock , msg .source)])
ELSE

IF ∧msg ∈ MsgReqP
∧msg .source 6= ns.id
∧ ns.didv [msg .lock ]

∧ BugOmitDidvCheckReqP ⇒ FALSE

∧Assert(ns.intrain, “didv[lock] but shadow reqp”)
THEN

Some one else’s reqp for a lock we recently released but have not yet managed to send a didv about. Fail it.

If it is a shadow train, it would be ineffective for us to fail it, because the bypass train already passed our
junction node. To handle this case, our junction node is supposed to know about the locks we hold and fail
the reqp for us on bypass trains, so we should never see it on one. Hence the assert.

This is an exceedingly tricky case. It could be that the reqp was created by a user node following us on our
subring. If we let it go through without failing it, then that user node will claim the lock and rewrite the reqp
to a gotp in order to inform our common junction node that the lock is held on the subring. But meanwhile
we are are waiting to send a didv to inform the junction node that we have released the lock. Since we add
the didv to the end of the train, it would arrive at the junction node after the gotp , which would mean that
the junction node would see a gotp for a lock that it thought was already held by a subring user node.

ITR([ns EXCEPT !.out = MkMsgFailP(msg .lock , msg .source)])
ELSE

IF ∧msg ∈ MsgDoV
∧msg .source = ns.id

∧ BugContinuousDoV ⇒ FALSE

∧Assert(ns.act = MkActWaitDoV (msg .lock), “unexpected return dov”)
∧Assert(ns.intrain, “shadow return dov”)
∧Assert(¬ns.hold [msg .lock ], “return dov but hold[lock]”)

40



∧Assert(¬ns.didv [msg .lock ], “return dov but didv[lock]”)
THEN

Our dov returns. This can only happen when we are waiting for it. The message must be on a real train, not
a shadow train.

Nullify the message.

ITR([ns EXCEPT
!.out = MkMsgNull ,
!.act = MkActIdle
])

ELSE
IF ∧msg ∈ MsgDoV
∧msg .source 6= ns.id
∧ ns.hold [msg .lock ]

∧ BugOmitCheckDoV ⇒ FALSE
∧ BugOmitCheckShadowDoV ⇒ ns.intrain

∧Assert(¬ns.didv [msg .lock ], “double didv”)
THEN

Some one else’s dov for a lock we hold. Clear our lock and remember to send a didv for it, so that our
junction node finds out that we cleared our lock.

Note: this can be on a real train or on a shadow train.

We cannot rewrite the dov as null for several reasons. (1) The dov might be on a shadow train, for which
rewriting is not permitted by design. (2) The original sender is waiting for the dov to return.

ITR([ns EXCEPT
!.out = msg ,
!.hold [msg .lock ] = FALSE,
!.didv [msg .lock ] = TRUE
])

ELSE
Pass the message unchanged.

ITR([ns EXCEPT !.out = msg ])

Compute the new node state resulting from receiving the indicated message on a junction node. The junction
node also needs to know what message it is receiving from its subring (submsg) and whether any of its subring
user nodes want to get the real train (wantreal).

JuncNodeRecvMsg(ns, msg , submsg , wantreal) ∆=
IF ns.id /∈ JuncNode THEN Assert(FALSE, “not a junction node”)
ELSE

LET
If we are in local tour mode and a real train is coming out of our subring, then we have to update our subhold
based on the message coming out. Compute our new subhold for this case.

41



newsubhold ∆=
LET

h ∆= ns.subhold our current subhold
m ∆= submsg the message coming out of our subring
mine ∆= m.source[1] = ns.id [1] was created on our subring

IN
IF m ∈ MsgGotP ∧mine THEN [h EXCEPT ![m.lock ] = TRUE] ELSE
IF m ∈ MsgDidV ∧mine THEN [h EXCEPT ![m.lock ] = FALSE] ELSE
h

If we are processing a train in bypass mode, then we have to fail any reqp that conflicts with a lock held by
our subring. Compute the output message for this case.

bypassmsg ∆=
LET

h ∆= ns.subhold our current subhold
m ∆= msg the message coming along the main ring
held ∆= h[m.lock ] our subring holds the lock

IN
IF m ∈ MsgReqP ∧ held THEN MkMsgFailP(m.lock , m.source) ELSE
m

IN
IF
∧msg ∈ MsgToken
∧ wantreal

∧Assert(¬ns.subintrain, “multiple real trains”)
∧Assert(¬UpdateIntrain(ns.subintrain, submsg), “multiple real trains”)

THEN
Train arrives and our subring wants a real train.

[ns EXCEPT
!.out = MkMsgIdle,
!.subout = msg , send the real train down subring
!.localtour = TRUE, sending the train on a local tour
!.intrain = UpdateIntrain(@, msg),
!.subintrain = UpdateIntrain(@, submsg)
]

ELSE
IF
∧msg ∈ MsgToken
∧ ¬wantreal

∧Assert(¬ns.localtour , “multiple real trains”)
∧Assert(¬ns.subintrain, “multiple real trains”)
∧Assert(¬UpdateIntrain(ns.subintrain, submsg), “multiple real trains”)

THEN

42



Train arrives and our subring would be happy with a shadow train.

[ns EXCEPT
!.out = msg , bypass the real train
!.subout = MkMsgIdle, shadow train does not have a token
!.localtour = FALSE, sending the train on a bypass
!.intrain = UpdateIntrain(@, msg),
!.subintrain = UpdateIntrain(@, submsg)
]

ELSE
IF
∧UpdateIntrain(ns.subintrain, submsg)

∧Assert(ns.localtour , “wrong configuration”)
THEN

Train is coming out of subring. This can only happen if we are sending the train on a local tour, hence the
assert.

This is the only case in which we update our subhold .

[ns EXCEPT
!.out = submsg , train comes out
!.subout = msg , train (if any) going in
!.intrain = UpdateIntrain(@, msg),
!.subintrain = UpdateIntrain(@, submsg),
!.subhold = newsubhold
]

ELSE
IF
∧ ns.subintrain
∧ ¬UpdateIntrain(ns.subintrain, submsg)

∧Assert(ns.localtour , “wrong configuration”)
∧Assert(msg ∈ MsgIdle, “impossible finish”)
∧Assert(submsg ∈ MsgIdle, “impossible finish”)
∧Assert(¬ns.intrain, “impossible trains”)

THEN
Train just finished coming out of subring.

[ns EXCEPT
!.out = MkMsgIdle,
!.subout = MkMsgIdle,
!.localtour = FALSE, end of the local tour
!.intrain = UpdateIntrain(@, msg),
!.subintrain = UpdateIntrain(@, submsg)
]

ELSE
IF
∧ ns.localtour

43



∧Assert(¬ns.subintrain, “impossible trains”)
∧Assert(¬UpdateIntrain(ns.subintrain, submsg), “impossible trains”)

THEN
Train is or has gone into subring, but is not coming out yet.

[ns EXCEPT
!.out = MkMsgIdle, nothing coming out yet
!.subout = msg , train (if any) going in
!.intrain = UpdateIntrain(@, msg),
!.subintrain = UpdateIntrain(@, submsg)
]

ELSE
IF
∧ ¬ns.localtour

∧Assert(¬ns.subintrain, “impossible trains”)
∧Assert(¬UpdateIntrain(ns.subintrain, submsg), “impossible trains”)

THEN
If there is a train, we are processing it in bypass mode.

[ns EXCEPT
!.out = bypassmsg ,
!.subout = bypassmsg ,
!.intrain = UpdateIntrain(@, msg),
!.subintrain = UpdateIntrain(@, submsg)
]

ELSE
Assert(FALSE, “impossible”)

STATE

State ∆= [
nodes : [Node → NodeState]

]

InitState ∆= [
nodes 7→ [n ∈ Node 7→ InitNodeState(n)]

]

44



NEXT STATE RELATIONS

Advance by one step.

Each node receives the message sent by the node to its left, and updates its state, computing the message it sends
in the next step.

NextStep ∆=
LET

NN ∆= state.nodes

Given a node id n , find the node id of the previous node on the main ring.

PrevMainRingNode(n) ∆=
CHOOSE fn ∈ Node :
∧ (fn[1] + 1)%(Len(NumNode) + 1) = n[1] prev on main ring
∧ Len(fn) = 2⇒ fn[2] = 0 junc if a subring

Given a node id n , compute the node id of the previous node on the same subring.

PrevSubringNode(n) ∆=
CHOOSE fn ∈ Node :
∧ Len(fn) = 2 on a subring
∧ fn[1] = n[1] same as n

∧ (fn[2] + 1)%(NumNode[n[1]] + 1) = n[2] prev position

How to update a zero node.

zeroupd(n) ∆=
LET

ns ∆= NN [n]
msg ∆= NN [PrevMainRingNode(n)].out

IN
ZeroNodeRecvMsg(ns, msg)

How to update a user node.

userupd(n) ∆=
LET

ns ∆= NN [n]
msg ∆= IF Len(n) = 1 THEN NN [PrevMainRingNode(n)].out
ELSE

LET fn ∆= PrevSubringNode(n)IN
IF fn[2] = 0 THEN NN [fn].subout ELSE NN [fn].out

IN
UserNodeRecvMsg(ns, msg)

How to update a junction node.

45



juncupd(n) ∆=
LET

ns ∆= NN [n]
msg ∆= NN [PrevMainRingNode(n)].out
submsg ∆= NN [PrevSubringNode(n)].out
wantreal ∆= ∃ un ∈ UserNode :
∧ un[1] = n[1] same subring
∧UserNodeWantsTrain(NN [un]) wants a train

IN
JuncNodeRecvMsg(ns, msg , submsg , wantreal)

IN
state ′ =
[state EXCEPT
!.nodes =
[n ∈ Node 7→
IF n ∈ ZeroNode THEN zeroupd(n) ELSE
IF n ∈ UserNode THEN userupd(n) ELSE
IF n ∈ JuncNode THEN juncupd(n) ELSE
Assert(FALSE, “uncovered”)
]
]

Some user node decides to try to take a lock it does not hold.

NextTakeUnheldLock ∆=
∃node ∈ UserNode :
∃ lock ∈ Lock :
LET

ns ∆= state.nodes[node]
IN
∧ ¬UserNodeWantsTrain(ns) must not want train
∧ ¬ns.hold [lock ] lock not currently held
∧ state ′ =
[state EXCEPT !.nodes[node] =
[@ EXCEPT
!.act = MkActSendReqP(lock)
]
]

Some user node decides to release a lock it holds.

NextReleaseHeldLock ∆=
∃node ∈ UserNode :
∃ lock ∈ Lock :

46



LET
ns ∆= state.nodes[node]

IN
∧ ¬UserNodeWantsTrain(ns) must not want train
∧ ns.hold [lock ] lock currently held

∧ state ′ =
[state EXCEPT !.nodes[node] =
[@ EXCEPT
!.hold [lock ] = FALSE,
!.didv [lock ] = IF BugOmitDidV THEN @ ELSE
TRUE
]
]

Some user node decides to release a lock it does not hold.

NextReleaseUnheldLock ∆=
∃node ∈ UserNode :
∃ lock ∈ Lock :
LET

ns ∆= state.nodes[node]
IN
∧ ¬UserNodeWantsTrain(ns) must not want train
∧ ¬ns.hold [lock ] lock not currently held
∧ state ′ =
[state EXCEPT !.nodes[node] =
[@ EXCEPT
!.act = MkActSendDoV (lock)
]
]

INVARIANTS

The state must always be of the proper type.

InvType ∆=
∧ state ∈ State

There is always exactly one token.

47



InvUniqueToken ∆=
LET

Total count of tokens stored over all nodes.

total ∆= Sum([n ∈ Node 7→ CountTokensInNodeState(state.nodes[n])])
IN

total = 1

No two user nodes can hold the same lock.

InvLockMutex ∆=
∀n1, n2 ∈ UserNode :
∀ lock ∈ Lock :
(
∧ state.nodes[n1].hold [lock ]
∧ state.nodes[n2].hold [lock ]

)⇒ n1 = n2

When a junction node is not in local tour mode, it is correct about what locks are (effectively) held by its subring
user nodes.

InvBypassSubhold ∆=
LET

Compute what the subhold of junction node jn for lock k should be, assuming that the junction node is not
in local tour mode.

calcsubhold(jn, k) ∆=
∃ un ∈ UserNode :
∧ un[1] = jn[1] same subring and
∧ ∨ state.nodes[un].hold [k ] either lock held
∨ state.nodes[un].didv [k ] or waiting to send didv

IN
∀ jn ∈ JuncNode :
¬state.nodes[jn].localtour ⇒
∀ lock ∈ Lock :
state.nodes[jn].subhold [lock ] = calcsubhold(jn, lock)

TEMPORAL ASSUMPTIONS

Liveness assumption.

48



We have to make explicit the temporal assumption that always eventually a time step happens on the ring. (Oth-
erwise, the model permits infinite suttering.) Since the step is always enabled, weak fairness is sufficient.

Liveness ∆=
∧WFstate(NextStep)

TEMPORAL PROPERTIES

For all user nodes, the node always eventually gets back to the idle state.

RequestCompletion ∆=
∀n ∈ UserNode :
LET

This user node is idle.

idle ∆= state.nodes[n].act ∈ ActIdle
IN

23idle

For all locks, always, if the lock is always eventually desired, then eventually the lock is held.

LockAcquisition ∆=
∀ lock ∈ Lock :
LET

Some node desires this lock.

desired ∆= ∃n ∈ UserNode :
state.nodes[n].act = MkActSendReqP(lock)

Some node holds this lock.

held ∆= ∃n ∈ UserNode :
state.nodes[n].hold [lock ]

IN
2(23desired ⇒ 3held)

For all locks, some node wanting to dov the lock leads to no node holding it.

LockForceReleasing ∆=
∀ lock ∈ Lock :
LET

Some node wants to dov this lock.

49



wantdov ∆= ∃n ∈ UserNode :
state.nodes[n].act = MkActSendDoV (lock)

No node holds this lock.

free ∆= ∀n ∈ UserNode :
¬state.nodes[n].hold [lock ]

IN
wantdov ; free

SPECIFICATION

Initial state.

Init ∆=
∧ state = InitState

Next state relation.

Next ∆=
∨NextStep
∨NextTakeUnheldLock
∨NextReleaseHeldLock
∨NextReleaseUnheldLock

Specification.

Spec ∆=
∧ Init
∧2[Next ]state
∧ Liveness

THEOREM Spec ⇒
∧2InvType
∧2InvUniqueToken
∧2InvLockMutex
∧2InvBypassSubhold
∧ RequestCompletion
∧ LockAcquisition
∧ LockForceReleasing

50



51


