
Accelerating Iterations Involving Eigenvalue or Singular Value
Decomposition by Block Lanczos with Warm Start

Siming Wei tobiawsm@gmail.com

Zhejiang University

Zhouchen Lin zhoulin@microsoft.com

Microsoft Research Asia

Abstract

Many machine learning problems are solved
by algorithms that involve eigenvalue decom-
position (EVD) or singular value decompo-
sition (SVD) in each iteration. Therefore,
these algorithms suffer from the high com-
putation cost of multiple EVD/SVDs. To
relieve this issue, we introduce the block
Lanczos method to replace the original exact
EVD/SVD in each iteration by solving it ap-
proximately, yet still at a high precision. We
also propose to utilize the subspace obtained
in the previous iteration to start the block
Lanczos procedure. Examples of three popu-
lar problems are presented to show how our
block Lanczos with warm start (BLWS) tech-
nique can be adopted to accelerate its host
algorithms. Experimental results show that
our BLWS technique usually accelerates its
host algorithms by at least two times.

1. Introduction

In machine learning community, a large family of
problems are formulated as optimization models.
Some of them, such as Linear Discriminate Anal-
ysis (Wang et al., 2007), Robust Principle Compo-
nent Analysis (Wright et al., 2009), Matrix Comple-
tion (Cai et al., 2008) and other nuclear norm mini-
mization problems, are often solved by iterative meth-
ods which involve eigenvalue decomposition (EVD) or
singular value decomposition (SVD) in each iteration.
The EVD/SVDs are usually the most expensive part
of those algorithms. Hence it is valuable to find a way
to accelerate the iterations.

Microsoft Technical Report #MSR-TR-2010-162.

To make the acceleration possible, a key observation
is that it may be unnecessary to solve the EVD/SVD
in each iteration exactly. A naive way is that one
computes the EVD/SVD at low precision at the be-
ginning and increase the precision steadily when the
iteration goes on. However, this is not the optimal
way to acceleration, because EVD and SVD are of
O(p3) complexity, where p = min(m,n) and m × n
is the size of the matrix. Although sometimes the full
EVD/SVD can be replaced by partial EVD/SVD, i.e.,
only the leading or tailing eigenvalue/vectors or singu-
lar value/vectors are computed (e.g., by using laneig

or lansvd (Larsen, 1998)), this strategy still does not
fully exploit the properties of iterations. To proceed,
we had better introduce the Lanczos method for par-
tial EVD/SVD first.

1.1. Lanczos Method for Partial EVD/SVD

The Lanczos method is to find the optimal lead-
ing/tailing eigen-subspace of a matrix A in a Krylov
subspace (Golub & Loan, 1996):

K(A, q1, k) = span{q1, Aq1, · · · , Ak−1q1}. (1)

The orthonormal basis Qk of K(A, q1, k) can be effi-
ciently computed via the Lanczos procedure shown in
Algorithm 1. Accordingly, A can be approximated as
A ≈ QkTkQ

T
k , where Tk is a tridiagonal matrix:

Tk =


α1 β1 · · · 0

β1 α2
. . .

...
...

. . .
. . . βk−1

0 · · · βk−1 αk

 . (2)

The Lanczos procedure is actually derived by compar-
ing the left and right hand sides of AQk ≈ QkTk (cf.
Section 2.1).

An important property of the Lanczos method is that
the leading/tailing eigenvalues of Tk (called the Ritz



Title Suppressed Due to Excessive Size

Algorithm 1 The Lanczos Procedure

Input: m×m symmetric matrix A, k.
1. Initialization: r0 = q1; β0 = 1; q0 = 0; l = 0.
2.
for l = 1 : k − 1 do

ql+1 = rl/βl; l = l + 1; αl = qTl Aql;
rl = Aql − αlql − βl−1ql−1;
βl = ∥rl∥2;

end for
Output: Qk = (q1, · · · , qk) and Tk as (2).

values of A) converge to those of A quickly when
k grows, while QkV (called the Ritz vectors of A)
also converges to the leading/tailing eigenvectors of A
quickly, where V consists of the leading/tailing eigen-
vectors of Tk. As the Lanczos method only requires
solving the EVD of a relatively small tri-diagonal ma-
trix Tk, partial EVD is usually faster than full EVD
when the required number of eigenvectors is relatively
small.

The Lanczos method can also be applied to compute
the partial SVD (Larsen, 1998) of a matrix A. It is
based on implicitly applying the Lanczos procedure to
the following matrix (cf. Section 2.2)

Ã =

(
0 A
AT 0

)
. (3)

Accordingly, A can be approximated as A ≈ UkBkV
T
k ,

where columns of Uk and Vk are orthonormal and Bk

is bi-diagonal. The convergence of Ritz values/vectors,
obtained by computing the SVD of a relatively small
bi-diagonal matrix Bk, to the singular values/vectors
of A is also fast when k increases. For more details,
please refer to (Larsen, 1998).

1.2. Ideas to Improve

One can see that the Lanczos procedure starts from
an initial vector q1, which is usually randomly cho-
sen if no apriori information is available, making the
size k of Tk unpredictable. If q1 is not good, k can
be relatively large in order for the Ritz values/vectors
to achieve prescribed precision, making the partial
EVD/SVD inefficient. Actually, during the iterations
of optimization, as the matrices Ai and Ai+1 to com-
pute the EVD/SVDs in successive iterations are close
to each other, any of the leading/tailing Ritz vectors
of Ai should be good for initializing the Lanczos pro-
cedure of Ai+1. However, a risk of this way is that
the Lanczos procedure may terminate quickly by out-
putting a small invariant subspace containing the pre-
vious Ritz vector because the previous Ritz vector is
close to be an eigenvector of Ai+1 and the Lanczos

procedure terminates when an invariant subspace is
found (Golub & Loan, 1996). So the current Lanc-
zos procedure may fail and has to restart with an-
other initial vector. Moreover, this strategy neglects
the fact that we are seeking an optimal subspace. As
the computed subspaces in successive iterations should
be close to each other, we should fully utilize the in-
formation provided by the previous subspace. This
motivates us to adopt the block Lanczos method for
partial EVD/SVD.

1.3. Our Contributions

The block Lanczos method is a natural generaliza-
tion of the standard Lanczos method by replacing the
Krylov space with

K̃(A,X1, k) = span{X1, AX1, · · · , Ak−1X1}, (4)

where X1 is an orthonormal basis of an initial sub-
space. Accordingly, the Lanczos procedure is general-
ized to the block Lanczos procedure (see Algorithm 2).

We propose the following ways to accelerate the itera-
tions with EVD/SVDs:

1. introduce the block Lanczos method for partial
EVD/SVD.

2. initialize X1 with the subspace obtained in the
previous iteration.

3. keep k in the block Lanczos procedure small such
that EVD/SVD is only computed at high enough
precision.

The intuition behind our method is that the block
Lanczos method operates on subspaces. So it is a nat-
ural way to update eigen-subspaces. As subspaces in
successive iterations should be close to each other, the
subspace obtained in the previous iteration should be a
good initialization for the current block Lanczos proce-
dure. Although we do not compute EVD/SVD exactly
in each iteration, as the initialization is good, a small k
can still result in a high-precision eigen/singular sub-
space, considering that the leading/tailing Ritz vectors
converge fast to the true leading/tailing eigen/singular
vectors. Note that a small k leads to much smaller
computation load in computing EVD/SVD. With such
a warm start, compared with the standard Lanczos
method, the risk of terminating with a small invariant
subspace is gone, and the subspace can be updated
more efficiently. As a result, the whole optimization
process can be sped up a lot.

As examples, we apply our block Lanczos with warm
start (BLWS) technique to two popular problems: Ro-
bust PCA (RPCA) (Wright et al., 2009), and matrix



Title Suppressed Due to Excessive Size

completion (MC) problems (Candès & Recht, 2008).
For both the RPCA and Matrix Completion problems,
using BLWS can result in at least two or three times
speedup.

The rest of paper is organized as follows. In Section
2, we introduce our block Lanczos with warm start in
more detail. In Section 3, we introduce two exemplar
problems, the RPCA and MC problems, that involve
SVD in each iteration. In Section 4, we present some
implementation details of adopting BLWS in different
algorithms for the exemplar problems and show the
speed up effect of applying BLWS. In Section 5, we
gives more detailed discussions on BLWS. Finally, we
conclude the paper in Section 6.

2. Block Lanczos with Warm Start

2.1. Block Lanczos with Warm Start for
Partial EVD

The block Lanczos procedure is to find an approxi-
mation of A: A ≈ QkTkQ

T
k , where Tk is a block tri-

diagonal matrix (Golub & Loan, 1996):

Tk =


M1 BT

1 · · · 0

B1 M2
. . .

...
...

. . .
. . . BT

k−1

0 · · · Bk−1 Mk

 (5)

and columns of Qk = (X1, · · · , Xk) are orthonormal.
By comparing the left and right hand sides of QkA =
QkTk, we have

AXl = Xl−1B
T
l−1+XlMl+Xl+1Bl, l = 1, · · · , k−1,

(6)
where B0 is defined to be 0. From the orthogonality
of Q, we have that

Ml = XT
l AXl, l = 1, · · · , k. (7)

Moreover, if we define Rl = AXl −XlMl −Xl−1B
T
l−1,

thenXl+1Bl is the QR decomposition ofRl. This leads
to the block Lanczos procedure in Algorithm 2.

After the approximationA ≈ QkTkQ
T
k is obtained, one

may further compute the EVD of Tk: Tk = UkΛkU
T
k ,

where the eigenvalues λi are ordered from large to
small. Then the leading d eigenvalues and eigenvectors
of A is approximated by λ1, · · · , λd, and QkUk(:, 1 : d),
respectively. The tailing eigenvalue/vectors are ob-
tained similarly. The whole process is summarized as
Algorithm 3.

If we denote the block Lanczos for EVD (Algorithm 3)
as BL EVD(A,X1, k), then our BLWS can be written

Algorithm 2 Block Lanczos Procedure

Input: m×m symmetric matrix A, m× d orthog-
onal matrix X1, k.
1. Initialization: M1 = XT

1 AX1; B0 = 0.
2.
for l = 1 : k − 1 do

Rl = AXl −XlMl −Xl−1B
T
l−1;

(Xl+1, Bl) = qr(Rl); (The QR decomposition)
Ml+1 = XT

l+1AXl+1;
end for
Output: Qk = (X1, · · · , Xk) and Tk as in (5).

Algorithm 3 Block Lanczos for EVD

Input: m×m symmetric matrix A, m× d orthog-
onal matrix X1, k.
1. Compute Qk and Tk by Algorithm 2.
2. Compute EVD of Tk: Tk = UkΛkU

T
k , where the

eigenvalues on the diagonal of Λ are in a decreasing
order.
Output: X = QkUk(:, 1 : d), Σ = Λ(1 : d, 1 : d).

as:

(BLWS) (Uj ,Σj) = BL EV D(Aj , Uj−1, kj).

2.2. Block Lanczos with Warm Start for
Partial SVD

The block Lanczos can also be applied to Ã in (3) to
compute the partial SVD of A. This is based on the
following theorem (Larsen, 1998):

Theorem 2.1. If the SVD of an m×n (m ≤ n) matrix
A is A = UΣV T , then the EVD of Ã is

Ã = Ũ

 Σ 0 0
0 −Σ 0
0 0 0

 ŨT , (8)

where

Ũ =
1√
2

(
U1 U1

√
2U2

V −V 0

)
and (U1, U2) = U.

(9)

So by computing the EVD of Ã, the SVD of A can
be obtained. Thus the BLWS for EVD can be triv-
ially extended to BLWS for SVD, by using X̃1 =
1√
2
(UT , V T )T as the initial subspace, where U and V

are the estimated left and right singular spaces ob-
tained in the previous iteration. Note that Ã is of
special structure. So the block Lanczos procedure can
be done efficiently by identifying the zero sub-matrices
of A.



Title Suppressed Due to Excessive Size

If one starts the block Lanczos procedure for Ã from
X̃1 = (UT , 0)T or X̃1 = (0, V T )T , s/he can obtain
a more compact recursive relationship that resembles
that in lansvd (Larsen, 1998). However, such an ini-
tialization only utilizes half of the information pro-
vided by the previous iteration. So the precision of
obtained subspace is not as high as the one obtained
by initializing with X̃1 = 1√

2
(UT , V T )T .

3. Exemplar Problems that Can Use
BLWS

In this section, we introduce two popular problems in
machine learning: the robust PCA and matrix com-
pletion problems, which need multiple SVDs.

3.1. The Robust PCA Problem

The Robust PCA is a variant of traditional PCA.
RPCA is modeled as the following convex optimiza-
tion problem (Wright et al., 2009):

min
A,E

∥A∥∗ + λ ∥E∥1, subject to D = A+ E, (10)

where ∥ · ∥∗ denotes the nuclear norm of a matrix (i.e.,
the sum of its singular values), ∥ · ∥1 denotes the l1-
norm of a matrix computed as the sum of the absolute
values of matrix entries, and λ is a positive weighting
parameter. RPCA is to decompose a matrix D into
a low-rank matrix A and a sparse matrix E. It has
found wide applications in computer vision, such as
background extraction and face shadow and highlight
removal (Wright et al., 2009).

Many algorithms (Wright et al., 2009; Yuan & Yang,
2009; Tao & Yuan, 2009; Lin et al., 2009) have been
proposed to solve (10). One of the fastest algorithms
is Lin et al.’s inexact augmented Lagrangian multiplier
(IALM) method (Lin et al., 2009). The method works
on the augmented Lagrangian function of (10):

L(A,E, Y, µ) = ∥A∥∗ + λ ∥E∥1
+⟨Y,D −A− E⟩+ µ

2
∥D −A− E∥2F .

(11)

The iteration goes as follows:

1. Ak+1 = argminA L(A,Ek, Yk, µk);

2. Ek+1 = argminE L(Ak+1, E, Yk, µk);

3. Yk+1 = Yk + µk(D −Ak+1 − Ek+1);

4. µk+1 = ρµk.

where ρ ∈ [1, 1.5] is a parameter. Step 1 requires an
SVD to update A:

Ak+1 = UΘµ−1
k
(Σ)V T , (12)

where UΣV T is the SVD of D−Ek + µ−1
k Yk and Θ is

a shrinkage operator:

Θε(x)
.
=

 x− ε, if x > ε,
x+ ε, if x < −ε,
0, otherwise,

(13)

We will apply BLWS to accelerate step 1.

3.2. The Matrix Completion Problem

The matrix completion problem is to recover a low
rank matrix when only a few entries of the ma-
trix is observed. It is ubiquitous in a lot of areas
such as machine learning, control and computer vi-
sion (Abernethy et al., 2006). A famous example is
the Netflix problem1. Recently, Candès and Recht
(Candès & Recht, 2008) proved that the low rank ma-
trix can be exactly recovered with high probability un-
der some probability model. Its optimization model is
as follows:

min
A

∥A∥∗, subject to Aij = Dij , ∀(i, j) ∈ Ω. (14)

There are many algorithms in this line of work. Among
them, singular value thresholding (SVT) by Cai et al.
(Cai et al., 2008) is a famous one. Although the IALM
for the MC problem is faster than SVT (Lin et al.,
2009), we have presented the IALM for the RPCA
problem in Section 3.1. So here we choose the SVT
algorithm. The iterations of SVT goes as follows:

Ak = UΘε(Σ)V
T ;

Yk = Yk−1 + δkPΩ(D −Ak);
(15)

where UΣV T is the SVD of Yk−1, PΩ is an operator
that keeps the values in Ω and fills those outside Ω
zeros, and δk is the step size. We will apply BLWS to
accelerate the first step of the iterations.

4. Implementation and Experimental
Results

In this section, we show details of implementing BLWS
on the RPCA and MC problems. For each problem,
we compare the original algorithms introduced in Sec-
tion 3 and their BLWS improved versions in the aspect
of computation time. Accuracy of obtained solutions
is also shown in order to ensure that the correct so-
lutions are approached. All experiments are run on
the same workstation with Intel Xeon E5540 2.53GHz
with 4 cores, running Windows Server 2008 and Mat-
lab (Version 7.7).

1http://www.netflixprize.com/



Title Suppressed Due to Excessive Size

4.1. BLWS for RPCA

The implementation of BLWS for the IALM method
(Lin et al., 2009) for the RPCA problem (10) is not
straightforward, for the intrinsic rank r of A is un-
known. However, the rank prediction mechanism in
(Lin et al., 2009) can provide a dynamic estimate on
r and it turns out that the estimated rank stablizes
quickly. When the predicted rank is larger or smaller
than the current block size d, we simply use more or
less Ritz vectors. As the estimated rank converges fast
(usually less than 7 iterations), such adaption does not
affect the effectiveness of BLWS.

For the RPCA problem, we generate the synthetic data
in the same way as that in (Lin et al., 2009). A is
generated according to the independent random or-
thogonal model, E is a sparse matrix whose support is
independent and uniformly distributed in [−500, 500],
and D = A + E. For simplicity, we only focus on
m × m square matrices and the parameter λ is fixed
at 1/

√
m. The m is chosen in {500, 1000, 2000, 3000}.

The rank of A is chosen as 10%m, and the number of
corrupted entries (i.e., ∥E∥0) is 10%m2. In the IALM
method (see Section 3.1), ρ is set to be 1.3. It termi-

nates when ∥D−Ak−Ek∥F

∥D∥F
≤ 10−6, where ∥ · ∥F denotes

the Frobenius norm.

Table 4.1 shows detailed comparison between IALM
and BLWS accelerated IALM. We can see that BLWS-
IALM roughly costs less than 1/3 time of IALM,
achieving the same accuracy, and the total number
of iterations only increases slightly.

4.2. BLWS for MC

The implementation of BLWS for the SVT algorithm
for the matrix completion problem is similar to that for
RPCA, where a rank prediction mechanism for matrix
completion (Lin et al., 2009) is used. The SVT algo-
rithm can be efficiently implemented by using low-rank
representation of Ak and sparse representation for Yk.
Adopting BLWS does not affect such efficiency.

The data for MC is generated in the same way in
(Cai et al., 2008). The m × m matrices of rank r is
generated by sampling two m× r factors ML and MR

independently, each having i.i.d. Gaussian entries, and
then setting M = MLM

∗
R. Finally, the set of observed

entries is sampled uniformly at random among all sets
of cardinality m.

The comparison results are shown in Table 4.2. We
can see that the time of BLWS accelerated SVT is
usually much less than half of that of SVT and the
total number of iterations hardly changes.

5. Discussions

In the last two sections, we have presented three exam-
ples to show how BLWS works. These three problems
are typical representatives for those algorithms who
may take advantage of BLWS. They can involve EVD
or SVD. The block size d can be known or unknown.
The matrices can be sparse or non-sparse. And BLWS
can be used all the way or only partly. Nonetheless,
they all have some properties in common. Actually,
BLWS is suitable for algorithms having the following
properties:

1. The algorithm is iterative;

2. Each iteration involves an EVD or SVD that uses
information from the previous iteration;

3. Let Z be the limit of the solutions {Z1, Z2, · · · } of
iterations. Only the d largest eigenspace/singular
space of Z is used to determine the optimal solu-
tion of the optimization problem.

In the BLWS scheme, we usually set a relatively small
integer k of the blocks in Tk (see (5)). Though a larger
k gives more precise estimation of the eigen/singular
space, it is more expensive to compute the EVD of Tk.
Besides, when k is large there will be loss of orthogo-
nality among Lanczos blocks and reorthogonalization,
which is expensive, is needed to guarantee enough pre-
cision (Golub & Loan, 1996).

The BLWS can be further sped up. In our current
implementation, the EVD of matrix Tk is computed
directly by treating Tk as a general dense matrix. Ac-
tually, it is block tri-diagonal and there are fast meth-
ods to compute the EVD of such matrices (Schwartz,
1968).

6. Conclusions

In this paper, we introduce the block Lanczos tech-
nique to accelerate iterative algorithms involving
EVD/SVD in each iteration. Since the block Lanc-
zos method is much cheaper than EVD/SVD when the
size of matrix is large, and the warm start takes full
advantage of the information from last iteration, the
total time for optimization can be greatly reduced. A
large family of algorithms may benefit from our BLWS
technique. Three typical examples are selected to show
how BLWS works. The extensive experimental results
indicate that our BLWS technique usually makes its
host algorithm at least twice faster.

Although the convergence of BLWS accelerated algo-
rithms to the true solution is testified by our exper-
iments, we still have to investigate its convergence



Title Suppressed Due to Excessive Size

Table 1. BLWS-IALM vs. IALM on different synthetic data. Â and Ê are the computed low rank and sparse matrices
and A is the ground truth.

m method ∥Â−A∥F

∥A∥F
rank(Â) ∥Ê∥0 #iter time(s)

500 IALM 5.27e-006 50 25009 30 4.07
500 BLWS-IALM 9.64e-006 50 25008 30 2.07
1000 IALM 3.99e-006 100 100021 29 23.09
1000 BLWS-IALM 6.05e-006 100 100015 30 9.25
2000 IALM 2.80e-006 200 400064 28 154.80
2000 BLWS-IALM 4.30e-006 200 400008 30 53.37
3000 IALM 2.52e-006 300 900075 28 477.13
3000 BLWS-IALM 3.90e-006 300 900006 30 149.19

Table 2. BLWS-SVT vs. SVT on different synthetic data. Â is the recovered low rank matrix and A is the ground truth.
m is the size of matrix and n is the number of sampled entries. dr = r(2m− r) is the number of degrees of freedom in an
m×m matrix of rank r.

m r n/dr n/m2 algorithm time(s) #iter ∥Â−A∥F

∥A∥F

5000 10 6 0.024 SVT 72.57 123 1.73e-004
5000 10 6 0.024 BLWS-SVT 20.02 123 1.74e-004
5000 50 5 0.1 SVT 438.81 107 1.63e-004
5000 50 5 0.1 BLWS-SVT 279.08 108 1.55e-004
5000 100 4 0.158 SVT 1783.26 122 1.73e-004
5000 100 4 0.158 BLWS-SVT 1175.91 122 1.74e-004
10000 10 6 0.012 SVT 135.90 123 1.68e-004
10000 10 6 0.012 BLWS-SVT 42.80 123 1.70e-004
10000 50 5 0.050 SVT 1156.25 110 1.58e-004
10000 50 5 0.050 BLWS-SVT 736.01 110 1.60e-004
20000 10 6 0.006 SVT 251.13 123 1.74e-004
20000 10 6 0.006 BLWS-SVT 101.47 124 1.68e-004
30000 10 6 0.004 SVT 449.34 124 1.75e-004
30000 10 6 0.004 BLWS-SVT 171.40 125 1.69e-004



Title Suppressed Due to Excessive Size

properties and carry out a rigorous theoretical anal-
ysis. Moreover, we will also implement the further
acceleration technique mentioned in Section 5 to make
BLWS even faster.

References

Abernethy, J., Bach, F., Evgeniou, T., and Vert, J.-
P. Low-rank matrix factorization with attributes.
Technical report, 2006.

Cai, J., Candès, E., and Shen, Z. A singular
value thresholding algorithm for matrix completion.
Preprint, 2008.

Candès, E.J. and Recht, B. Exact low-rank matrix
completion via convex optimization. In Communi-
cation, Control, and Computing, 46th Annual Aller-
ton Conference on, pp. 806–812, Sept. 2008.

Golub, G. and Loan, C. Matrix computations. The
Johns Hopkins University Press, 1996.

Larsen, R.M. Lanczos bidiagonalization with
partial reorthogonalization. Department of
Computer Science, Aarhus University, Techni-
cal report, DAIMI PB-357, code available at
http://soi.stanford.edu/∼rmunk/PROPACK/, Sep
1998.

Lin, Z., Chen, M., Wu, L., and Ma, Y. The augmented
lagrange multiplier method for exact recovery of cor-
rupted low-rank matrices. UIUC Technical Report
UILU-ENG-09-2215, 2009.

Schwartz, H.R. Tridiagonalization of a symetric band
matrix. Numerical Mathematics, 12:231–241, 1968.

Tao, M. and Yuan, X. Recovering low-rank and sparse
components of matrices from incomplete and noisy
observations. Preprint, 2009.

Wang, H., Yan, S., Xu, D., Tang, X., and Huang, T.
Trace ratio vs. ratio trace for dimensionality reduc-
tion. In Computer Vision and Pattern Recognition,
2007.

Wright, J., Ganesh, A., Rao, S., Peng, Y., and Ma,
Y. Robust principal component analysis: Exact re-
covery of corrupted low-rank matrices via convex
optimization. In Advances in Neural Information
Processing Systems 22, pp. 2080–2088, 2009.

Yuan, X. and Yang, J. Sparse and low-rank ma-
trix decomposition via alternating direction meth-
ods. Preprint, 2009.


