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A Comprehensive Approach to Image Spam
Detection: From Server to Client Solution
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Abstract—Image spam is a type of e-mail spam that embeds
spam text content into graphical images to bypass traditional
text-based e-mail spam filters. To effectively detect image spam,
it is desirable to leverage image content analysis technologies.
However, most previous works of image spam detection focus
on filtering the image spam on the client side. We propose a
more desirable comprehensive solution which embraces both
server-side filtering and client-side detection to effectively mitigate
image spam. On the server side, we present a nonnegative sparsity
induced similarity measure for cluster analysis of spam images
to filter the attack activities of spammers and fast trace back the
spam sources. On the client side, we employ the principle of active
learning where the learner guides the users to label as few images
as possible while maximizing the classification accuracy. The
server-side filtering identifies large image clusters as suspicious
spam sources and further analysis can be performed to identify
the real sources and block them from the beginning. For those
spam images which survived the server-side filter, our active
learner on the client side will further guide the users to interac-
tively and efficiently filter them out. Our experiments on an image
spam data-set collected from the e-mail server of our department
demonstrate the efficacy of the proposed comprehensive solution.

Index Terms—Active learning, clustering, image recognition,
image spam, spam filtering, sparse representation.

1. INTRODUCTION

LOBAL spam volume increased very fast over the past
G five years. E-mail spam accounted for 96.5% of incoming
e-mails received in businesses by June 2008 [1], and cost more
than $70 billion in management expenses for the U.S. Gov-
ernment annually. The success of text document classification
techniques on e-mail spam detection [2]-[4] has driven spam-
mers to explore new variations of spam e-mails, among which
image spam e-mail has become a new popular weapon, which
accounts for approximately 30% of all e-mail spams, as reported
by McAfee [5] in 2007.
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Fig. 1. Example of spam images: spammers usually generate a set of vari-
eties from a single image source using image processing and manipulation al-
gorithms.

Image spam stands for those spam e-mails which embed the
spam text messages into the graphical content of image attach-
ments. Unlike image attachment such as company logos, the
embedded text messages are intended for massive distribution,
such as advertising cheap VIGRA. Since most e-mail clients
will render a graphics image automatically, image spam can suc-
cessfully deliver the intended message to the end users.

To avoid being traced by an exact Hash signature such as
MD?5 and to avoid the embedded text message to be recognized
robustly by an optical character recognition (OCR) system,
when the spammers render the textual content into an image,
they impose various image processing and manipulation tech-
niques on the image, such as those tricks utilized in CAPTCHA
(Completely Automated Public Turing Test to Tell Computers
and Humans Apart). These different tricks include, but are by
no means limited to, adding speckles and dots in the image
background, varying borders, randomly inserting subject lines,
and rotating the images slightly and so on. Fig. 1 shows some
examples of image spams.

Although a large amount of end users receive different image
spams, these images are substantially visual variations from a
small number of spam image sources. By appending texts con-
taining randomly generated words based on normal natural lan-
guage statistics in the text body of the e-mail or subject lines
with the spam images, the image spam can successfully bypass
text-based spam filters and make it perform practically no func-
tion. Therefore, we have to leverage image content analysis or
computer vision algorithms to visually recognize these spam
images.

Some early work such as SpamAssassin [6] has tried to pull
out the embedded texts in the spam images by using optical char-
acter recognition (OCR), and then applying text-based spam fil-
tering techniques. However, highly accurate OCR on spam im-
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ages may be by itself a more difficult problem than spam image
classification, especially when the spammers are performing the
aforementioned adversarial manipulation of the image content.
This is probably the reason why many recent works have been
focusing on directly classifying e-mail image attachments as ei-
ther spam or nonspam, such as the different image spam hunters
[7], [8], fast image spam classifiers [9], and near duplicate image
spam detection [10]. A supervised or semisupervised learning
machinery is usually leveraged in these image spam classifiers.

Although supervised learning algorithms have achieved good
accuracy for the task of image spam detection, getting suffi-
cient labeled images for robust training is always expensive, es-
pecially for the adversarial classification problem in which re-
training the model needs to be done quite often. One possible so-
lution might be utilizing semisupervised learning to save some
labeling cost, such as the semisupervised image spam hunter
proposed by Gao et al. [8]. However, neither a fully supervised
classifier nor semisupervised classifier can guarantee 100% ac-
curacy, so human intervention is still needed from time to time
to avoid erroneously discarding valuable e-mail messages with
image attachments.

Because it is unavoidable to have human interaction, in order
to further save the labeling cost, we propose to leverage active
learning [11]—[15] for guiding the users to label as few spam im-
ages as possible while maximizing high classification accuracy
for the users. This way, we can drastically reduce the labeling
cost by identifying the most informative examples for users to
label. This has largely motivated our work on employing active
learning for image spam filtering [16].

However, all these direct classification algorithms, whether it
is a supervised learner [7], [9], a semisupervised learner [8], or
an active learner [9], largely focus on classifying each individual
image attachment on the client side. It lacks, however, more
global analysis of the corpus of image attachments as a whole. It
is obvious that such holistic analysis of the image spam corpus
can only be carried out on the e-mail server. More specifically,
unsupervised cluster analysis of the image corpus on the server
side may provide more information on the sources of the spam
images. For example, if a majority of e-mail users of an e-mail
server received image attachments from the same cluster, then it
is highly likely that they are spam images. Further analysis can
then be performed to identify the source senders and block them
from the server side directly in the future.

Nevertheless, to effectively cluster images, it is essential to
have a good visual similarity measure for different images. Pre-
vious work has designed different image signatures from diverse
image features to define either L1 or L2 norm, weighted, or un-
weighted, in the feature space as the similarity measures [10],
[17]. However, they are not able to adapt to the manifold struc-
ture of the image features, as pointed out by Cheng et al. [18].

We propose a nonnegative sparsity induced similarity mea-
sure and apply it for the task of cluster analysis of spam im-
ages. The basic proposition we make is that an image should be
able to be effectively reconstructed by a small number of other
images from the same cluster. This is especially true for spam
images because many spam images are generated from a lim-
ited number of source images. We design a quadratic program

827

to calculate such nonnegative sparse representation and a simi-
larity measure is further derived from such a representation.

It is easy to understand that server-side spam filtering is
largely complementary to client-side spam filtering. Therefore,
we proposed a comprehensive approach, which combines both
server-side cluster analysis of spam images and client-side
active learning spam classification. On the server-side cluster
analysis, we employ the nonnegative sparsity induced similarity
measure discussed above and use a spectrum clustering algo-
rithm proposed by Song et al. [19]. Those large image clusters
are highly suspicious ones which can be further analyzed by
the administrator. If a common source is identified, the spam
source will be blocked on the server side from the beginning.
For spam images which survived the server-side filtering,
we further utilize our active learning image spam hunter to
effectively deal with them in an interactive and efficient way.
We present and compare two active learning classifiers in our
system. One is based on an SVM and the other is based on a
Gaussian process classifier, respectively.

The remainder of the paper is organized as follows. In
Section II, we present the whole system design of the proposed
comprehensive approach to image spam filtering, including
both server-side and client-side components. The algorithmic
design of our server-side image spam detection system is
presented in Section III. We present the detailed algorithms
for client-side image spam filtering system in Section IV. We
further introduce the dataset as well as evaluation criteria we
used for experiments in Section V. Extensive experimental
evaluations of the system are presented and discussed in
Section VI. We conclude the paper and discuss possible future
work in Section VIIL.

II. FROM SERVER TO CLIENT: A COMPREHENSIVE
SYSTEM DESIGN

Fig. 2 presents the overall system flowchart of the proposed
comprehensive solution. Given a batch of image attachments
from an e-mail server, our system would first extract invariant
visual features to represent each image. The visual representa-
tion we finally adopted and some analysis and visualization of
the goodness of the adopted visual feature representation is dis-
cussed in detail in Section V-B. After that, for server-side filter,
cluster analysis is performed on the image set. Since spam im-
ages are usually sent in bulk, larger clusters are more suspicious
to be spam image groups and can be further analyzed to identify
the sources. For example, the adminstrator can further identify
the spam sources so that we can block them from the server side
in a very early stage. We shall remark here that this is hard to
achieve if we only do client-side spam filtering. In this paper, we
solely focus on how to identify these suspicious larger clusters.
We will present our detailed algorithmic design of our cluster
analysis system in Section III.

Those image attachments which can pass the cluster anal-
ysis on the server side will be sent to the end users. Then on
the client side, we further design an active learning classifica-
tion system where the learner will guide the users to efficiently
and interactively classify the spam images which have survived
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Fig. 3. System flowchart of a server-side image spam detection system by
cluster analysis.

the server-side filtering. Detailed algorithmic design of the pro-
posed active learning classification system will be presented in
Section IV, in which we also explore and compare the different
learning algorithms to design the active learning classifier. To
the best of our knowledge, we are the first to have proposed to
use active learning for the task of image spam detection.

III. SERVER-SIDE IMAGE SPAM FILTERING

In this section, we will present our server-side image spam
filtering subsystem. We first present the flowchart of the sub-
system in Section III-A, followed by the details of a nonnega-
tive sparsity induced similarity measure for cluster analysis of
spam images.

A. System Flowchart

Fig. 3 presents the flowchart of a server-side image spam
detection system by cluster analysis. Given a set of image at-
tachments extracted from the e-mail server, we cluster them by
leveraging a nonnegative sparsity induced similarity measure,
which we shall discuss in more detail in Section III-B. With
server-side cluster analysis and source blocking, we hope that
the spam e-mails received by end users are minimized. Those
smaller clusters are most often normal images so that they will
be passed to the client users in the end. There may be false
negatives, but they are in small bulk and less annoying to the
end users. Moreover, the client-side spam image filters would
be able to further capture them.

B. Nonnegative Sparsity Induced Similarity Measure for
Clustering

Any cluster analysis relies on a good similarity measure. We
proceed to present our nonnegative sparsity induced similarity
measure in this section. Assume X = [x1, X2, ...,Xy] is the
feature vectors of the [V images obtained from a batch of e-mails

in an e-mail server, where Vi, x; € R™. Our nonnegative spar-
sity induced similarity is based on a basic assumption. That is,
any data sample or feature vector in the corpus can be well repre-
sented by the nonnegative linear combination of a small number
of samples from the same cluster. Nevertheless, for x;, we do
not know beforehand which samples are in the same cluster, not
to mention which small set of samples would reconstruct it well.

To successfully identify the potential small sample
set to nonnegatively linear reconstruct x;, let X; =
[X1,...yXi—1,Xi41,--.,XN], We propose to solve the fol-
lowing optimization problems:

1
min - o[jxi = X -cf” + HdP+A§:% M

st. Vj=1...N,¢; >0 2)

where ¢ = [c1,...,¢i—1,Cit1,---,cn]T are the reconstruction
coefficients, and ﬁ is a small constant to weight the ridge regres-
sion cost to penalize ¢ with large L2 norm.! Since we constrain
each ¢; to be nonnegative, f(c) = Z?zl ¢; is equivalent to an
L1 norm Lasso penalty [20]. Therefore, solving the above con-
strained optimization problem would naturally resultin c to be a
sparse vector, i.e., a vector with only a small number of nonzero
entries. A is the control parameter of the Lasso penalty, which
directly determines how sparse ¢ will be.

After easy mathematic derivation, it is straightforward to ob-
serve that the above formulation (1) can be rearranged as

min ¢”(X7X; 4+ BI)c + (M1 —x!X;)"c 3)
st. Vj=1...N,¢;>0 4)

where I is the identity matrix and 1 is a vector with all elements
being 1. This is a standard quadratic program with linear con-
straints and can be solved by a standard active set method. We
employ the MINQ [21] Matlab library in our implementation to
solve it. Notice that the difference of our formulation compared
with those of Benaroya [22] is the additional ridge regression
term, which is to regularize the solution of linear regression to
be more stable.

Naturally, after we have identified the sparse vector c, we
define the similarity of x; to all the other data samples to be

Wi = — . (5)

Since the w;; induced above may not be symmetric, i.e., w;; #
wj;, our final similarity measure s;; is forced to be symmetric
by setting s;; = (w;; + w;i)/(2). After we have successfully
identified the similarity matrix S = [s;;], we may run any spec-
tral clustering algorithm [19] or a simple hierarchical agglom-
erative clustering algorithm to cluster the data.

I'We fix 3 = 0.01 in our experiments.
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We remark here that our nonnegative sparsity induced simi-
larity measure is partly motivated by the work of Cheng et al.
[18]. The most obvious difference is that we introduce the non-
negative constraints into the formulation, while their formula-
tion allows the reconstruction coefficients to be negative, which
may not be desirable since it is in conflict with one of the two
assumptions the authors made, i.e., a sample can be linearly re-
constructed from a small set of samples from the same cluster.
This is probably the reason that the negative coefficients have
to be forcefully set to zero in their algorithm when defining the
final distance measure. Similar to [18], one may also pick up
the k nearest neighbors of x; to form X instead of using all the
other n — 1 data samples, to save the expensive computational
cost.2

With this nonnegative sparsity induced similarity measure,
many different clustering algorithms can be employed. In par-
ticular, we leverage a spectrum clustering algorithm proposed
by Song et al. [19] to obtain the clustering results from the sim-
ilarity matrix calculated from a set of images.

Last but not least, based on our current algorithmic design, it
may be difficult to adapt the clustering results with the adding
of new images without recalculating all the affected similarities.
Fortunately in our system design the server-side cluster analysis
only need to run in a batch mode. In other words, the cluster
analysis will be performed on a set of image attachments re-
ceived in an e-mail server within a period time. It is not neces-
sary to regroup the cluster results when the next batch of e-mails
are received.

IV. CLIENT-SIDE IMAGE SPAM DETECTION

We present our client-side image spam detection subsystem
based on active learning in this section. In particular, we present
the system framework in Section IV-A. Then in Section IV-B,
we present two candidate active learning algorithms for our sub-
system, one based on a support vector machine (SVM) and the
other based on a Gaussian process classifier. Their performances
will be compared in our experiments.

A. System Framework

The system diagram of our client-side filtering sub-
system is shown in Fig. 4. To differentiate spam images
from normal image attachments, the whole dataset is split
into two: the labeled dataset and unlabeled dataset. The la-
beled dataset is denoted as X, = {x;|i € L}, with labels
Yr = {y; € {-1,+1}|i € L}, where 1 represents the spam
image and —1 represents the nonspam image, respectively.
The unlabeled dataset is denoted as Xy = {x;|i € U}. We
assume L = [1,n]and U = [n+ 1, N]. Let ¥ = X, U Ap.
When the system is first used, X7, is an empty set ¢ and Ay
may cover the full dataset X'. We randomly choose a few (< 10)
spam images and nonspam images to label and take them as the
initial labeled dataset for training the first round classifier.

The core of this prototype system is an active learning algo-
rithm with a data sample choosing criterion AL(y(x)), where
y(x) is the classifier induced from the learning algorithm.

2We fix & = 100 in our experiments.
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Fig. 4. Prototype system diagram of active learning image spam detection.

As long as an appropriate mathematic quantity AL(y(x)) is
defined, we can make any supervised learning algorithm to
be an active learning algorithm. The active learning criterion
AL(y(x)) efficiently guides the users to label as few images as
possible while maximizing the recognition performance of the
classifier.

More formally, at each step of the active learning algorithm,
we first perform the supervised learning algorithm with the cur-
rent X7, and build the image spam classifier y(x). Next we se-
lect

x* = arg max AL(y(x)) (6)
xEXy
to label and get
X, < Xp, +x* (7)
Xy < Xy — x*. (8)

With the new X'z, the above active learning step is iterated until
the recognition accuracy of the classifier reaches a satisfactory
level. We will discuss the selection of iteration times in our ex-
periments in Section VI-B. In this way, the continuously adap-
tive classifier is generated and ready to filter the incoming batch
of new e-mails with image attachment.

B. Active Learning Algorithms

We present two different active learning algorithms in this
section. One is adapted from the probabilistic output of an SVM
[23], [24]. The other is built on top of a Gaussian process (GP)
classifier [25], [26]. We shall remark here that in this active
image classification problem, it is extremely important that all
the operations be running in real-time. Meanwhile the active
learning process need to quickly achieve very high true positive
rate and maintain extremely low false positive rate at the same
time. From the users’ perspective, it is even more annoying to
dig a misclassified e-mail with normal image attachment out of
the trash box. On the other hand, the users will not bear delayed
responses from the active learner so it is extremely important
that the computing of the visual representation and the learning
algorithm be very efficient.
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1) Active Learning SVM: Given the labeled data set X, =
{xi,yi}"_,, the primal problem of a linear SVM solves the fol-
lowing quadratic program for obtaining the maximum margin
linear classifier [27], [28], i.e.:

w

2
min @ DI ©)

s.t. yi(xi -W + b) <1-¢ and & <0Vi (10)
where w is the linear projection, and each ¢; is a slack variable
to deal with the situation when the data set is not completely
separable. The solution of the above constrained optimization

problem is usually obtained by solving the Wolfe dual problem

1
max E oy — 5 E QX4 - X
i irj

st. 0<a; <CVi and Zaiyizo (12)

(1)

where each «; is corresponding to a Lagrangian multiplier. It
shows that the solution is given by

N
W = E QiYiX4
i=1

where V, indicates the number of support vectors for the clas-
sifier. Therefore, the classification result of a new data vector x
is

(13)

(14)

N,
y = sign {Z oYX - X+ b} .

i=1

It is easy to observe that in both the Wolfe dual problem (11)
and the final classifier (14), the data vectors only present in the
form of dot product. This enables us to construct nonlinear SVM
by leveraging the kernel tricks [28], i.e., to solve the following
problem:

1
max Z @ =5 Zaiajk(xi,xj) (15)
i i,
st 0<a; <CVi (16)
(17

Z%’yz’ =0

where k(x;,x;) is a kernel function which defines the dot
product of the nonlinear transformed data vectors ¢(x;) and
¢(x;) in a reproducing kernel Hilbert space (we use Gaussian
radial basis kernel in our experiments), i.e.,

k(xi,x;) = ¢(xi) - p(x;)- (18)
Similarly, the final nonlinear SVM classifier is
N,
yZSigﬂ{Zaiyik(XuX)‘*‘b}- (19)
i=1

Note that we do not need to explicitly define the nonlinear trans-
formation ¢(x) since both the optimization problem in (15) and
the solution in (19) only involve the kernel function. As shown

by Madevska-Bogdanova et al. [23], we could transform the
function output from an SVM to be a posterior distribution by
applying a Sigmoid function, i.e.,

1
1+ exp {a (ZZN:H ayik(xi, x) + b)}
(20)

ply =1[x) =

where a is a constant quantity which could be estimated from
the training data. With this posterior probability of the predicted
label given the data point, a natural active learning criterion
would be based on the uncertainty of the predicted label given
a data point. Let p; = p(y = 1|x). The uncertainty is naturally
defined by an entropy term

H(y(x)) = —p1logpr — (1 — p1)log(1 — p1). (21)
Therefore, for this active learning SVM, we define
AL(f(x)) = H(y(x)) (22)

The rationale behind the criterion is that the active learning al-
gorithm should guide the users to label the image for which the
classifier is least confident to recognize.

2) Active Learning Gaussian Process Classifier: Given the
labeled dataset X7, an unlabeled data x,,, and Xr,, = X1 + X,
we introduce a latent variable z;, which is the soft label of the
data point x;. We denote Zy,,, = {z; |i € L+ u}.In a Gaussian
process classifier, the joint distribution of Z7,, is assumed to be
a joint Gaussian with zero mean and covariance defined by a
kernel function k(-, -) applied to x; and x;, i.e.,

P(Zru| Xru) ~ N(0,K) (23)
where K is an N x N matrix with the element k;; = k(x;,X;).
We denote K1, to be the submatrix of K that is induced by A..
Following Kapoor et al. [26], we assume p(y | z) is a Gaussian
distribution N (y, o). We immediately have

P(Zru | Xows Vi) X p(Zru | Xow)p(Ve | Z0a)  (24)

= p(Zru | X1a) [[ p(yil2:). (29)
1€L

Denoting y,, to be the label of x,, we would like to predict, we
are interested in inferring the following quantity:

p(yu | XLu; yL) = / p(yu | ZLu)p(ZLu | XL’U? yL)dZLu-

Zru
(26)
Denoting k(x,) = [k(Xu,X1), k(Xu,X2), ..., k(Xu, Xn)]7,
and I to be the identity matrix, by following [26], we have
Py | X0 V1) = N (9u, 77) 27)
where
gu = k(xu)T(UzI + KLL)_lyL (28)
52 = k(xu, xu) — k(x) 7 (* T+ Kp1) 7 'k(x,) 4+ 02
(29)
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Denoting p1 = p(yy = 1| Xru, V1), we can define the entropy
by using (21), and the active learning criterion would exactly
take (22). It is worth noticing that Kapoor et al. [26] defined
their active learning criterion with this GP classifier to be

AL(y(0) = — 2l

0-“,

(30)

In this binary classification problem, it is easy to verify that this
is equivalent to our entropy uncertain measure.

V. DATASET, FEATURE REPRESENTATION,
AND EVALUATION CRITERIA

A. Data Set

We collected an image dataset which contains 1190 spam im-
ages and 1760 normal images. The spam images are extracted
from real spam images received by ten graduate students in
our department between January 2006 and March 2009. These
spam images were extracted from the original spam e-mails and
all of them are converted to JPEG format. For normal image at-
tachments, we collect photo images by either downloading from
photo sharing sites such as Flikr.com, or fetching the photo
images from popular image search engines such as Microsoft
Bing search (http://www.bing.com/images?FORM=Z9LH4).
This dataset was first utilized and reported in [8].

B. Image Features

We extract an effective set of 23 discriminant image statis-
tical features [29] for our image spam filter tasks, both on the
server and client side. They cover the properties of color, tex-
ture, shape, and appearance.

For color statistics, we first build a 103-dimension color his-
togram in the joint RGB space by quantizing each color band
into 10 different levels. The entropy of this histogram is com-
puted as the first statistics. We further set up one 100-dimen-
sional histogram for each of the three color channels. Then the
discreteness, mean, variance, skewness, and kurtosis for each of
the three histograms are calculated, which adds another 5 x 3 =
15 statistics. Here the discreteness is the summation of all the
absolute differences between any two consecutive bins. So alto-
gether we collect 16 color statistics.

A local binary pattern (LBP) [30] is used to analyze the tex-
ture statistics. We extract a 59-dimensional texture histogram,
including 58 bins for all the different uniform local binary pat-
terns, i.e., the pattern of at most two 0-1 transitions in a 8-bit
stream, and an additional bin for all other nonuniform local bi-
nary patterns. The entropy of the LBP histogram is calculated
as | texture statistics.

Shape information is also considered as an important feature
in our system. A 40 x 8 = 320 dimensional gradient magni-
tude-orientation histogram is built to describe the shape infor-
mation. The entropy of the histogram is the first shape feature,
and the second feature is the difference between the energies in
the lower frequency band and the higher frequency band. Then
we use the total amount of edges and the average length of the
edges as another two shape feature by running a Canny edge de-
tector [31]. Thus there are four shape statistics in total.
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Last but not least, we use the spatial correlogram [32] of the
gray level pixels within 1-neighborhood to represent appearance
information. The first feature is the average variance ratio of all
the slices of the correlogram, which is the ratio between the vari-
ance of the slice and the radius of the symmetric range over the
mean of the slice that accounts for 60% of the total counts of the
slice. Then histograms are built from each slice of the correlo-
gram, and the average skewness of the histograms is calculated
as the second feature.

These features are motivated by the fact that spam images
usually present different visual statistics when compared with
natural or normal images. Therefore, adopting them as visual
representations may naturally discriminate spam images from
normal or natural images. To illustrate this well, we randomly
pick up a set of images from our data collection. It contains
200 spam images and 200 nonspam images. We can then plot
the two distributions of each of the 23 feature values in the two
classes to visualize how discriminative each feature is. Due to
the space limitation, we present four such figures, as shown in
Fig. 5. Itclearly presents that the adopted statistic visual features
can separate the normal images from spam images very well. As
we can clearly observe, there is clear modes separation between
normal and spam images from all the feature distributions we
plotted.

As we have discussed, it is very important that the visual com-
puting part, i.e., the calculation of these image statistics, to be
efficient. As a matter of fact, in our experiments, the average
computing time for extracting these 23 visual statistics from an
320 x 240 image is less than 10 ms.

C. Evaluation Criteria

1) Server-Side Evaluation Criterion: Assume we have
ground truth cluster labels of our data collection; we use two
criteria to evaluate the performance of all the clustering results
[33]. The first criterion is the average clustering accuracy CAC,
which is defined as

CAC = %; s(m(cl;) — 1) (31)

where n is the total number of data points, é( -) is the Dirac-
Delta function, cl; and [; are the cluster id and the labeled cluster
id of data point i, respectively, and m( - ) is the best map of ¢l;
to the ground truth cluster id, which can be optimally resolved
by the Kuhn-Munkres algorithm [34].

The second evaluation criterion we adopt is the normalized
mutual information [33] between the cluster results C’ and the
ground truth clusters C, which is defined as

MI(C, C")
max(H(C), H(C"))

pMI = (32)

where H(-) represents the entropy of the cluster set and
MI(C, C") is the mutual information between the two cluster
sets, i.e.,

p (ci7 CS)

p(ci./c;-)log I’(TP(CQ)

MI(C,C") =

>

CiGC,C; eC’

(33)
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Fig. 5. Feature distributions of normal images and spam images. From left to right, top to bottom, we present the distributions on feature dimension #1, #17, #19,
and #22, respectively. All figures present clear separations between normal and spam images.

It is easy to figure out that pMT € [0, 1], with pMT = 0 if the
two cluster sets are independent and MI = 1 if the two cluster
sets are identical.

2) Client-Side Evaluation Criterion: To evaluate our active
learning classifier, we follow the tradition of the literature in
evaluating classification algorithms, and hence adopt a set of
criteria such as false positive rate (FPR), which refers to the
percentage of the normal images being erroneously classified
as spam images, and true positive rate (TPR), which refers to
the percentage of spam images that are classified correctly by
the classifier.

VI. EXPERIMENTS

A. Server-Side Evaluation: Cluster Analysis

We compare the proposed similarity measure with two other
competitive measures. The first one is the sparsity induced sim-
ilarity measure without posing the nonnegative constraint, i.e.,
we simply remove the nonnegative constraints in (2), set 5 = 0,
and change ) ; a; to >~ |a;| in (1). Then the problem becomes

a standard Lasso regression problem.3 This similarity measure
is first proposed in [18].4 The other one is a baseline similarity
measure which is induced from the Euclidean distance by ap-
plying a Gaussian radial basis function (RBF). For each of the
similarity measures, we build the similarity graph matrix and
use a spectral cluster algorithm [19] to generate the clustering
results.

1) Comparison Results: To evaluate the performance of the
proposed nonnegative similarity measure for cluster, we first
manually labeled a set of clusters out of the collected 1190 spam
images. More specifically, we labeled 37 clusters which covers
756 of the spam images. The number of images in a cluster
could be as high as 160, and as low as just 1, as shown in Fig. 6.
These 37 clusters of spam images composed the evaluation data
set in our experiments. We summarize the cluster performance
using three different distance measures in Table I. We name the
results of three different similarity measures as NonNegSparse

3We solve it with Gaussian—Seidel method using the Matlab code provided at
http://people.cs.ubc.ca/schmidtm/Software/lasso.html.

4Cheng et al. [18] cast it in a slightly different optimization problem, but it
should essentially achieve very similar results.
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Fig. 6. Number of images in each of the 37 clusters.

TABLE I
CLUSTERING PERFORMANCE OF THREE DIFFERENT SIMILARITY
MEASURES
NonNegSparse Sparse Euclidean
CAC 0.635+ 0.006 | 0.559+ 0.032 | 0.485+ 0.019
uM I 0.7344+ 0.005 | 0.6714+ 0.006 | 0.471+ 0.025
A=0.1 A=0.7 -

(our proposed one), Sparse (Cheng et al. [18]), and Euclidean
(Gaussian RBF baseline). Since the final step of the spectral
clustering algorithm [19] is running a k-means, each run of the
spectral cluster will result in slightly different clustering results
due to different initialization of the k-means iterations. There-
fore, we run the spectral clustering 500 times for each case and
the results reported in the table are the mean value plus/minus
the standard deviation over all the runs.

As we can clearly observe, the proposed nonnegative sparsity
induced similarity measure achieves the best clustering perfor-
mance with CAC = 0.635 and pMI = 0.734, with a param-
eter setting A = 0.1. This significantly improves the best results
achieved by Cheng et al. [18], which obtains CAC = 0.559 and
uMI = 0.671 with A = 0.7. Nevertheless, both algorithms lead
the baseline Gaussian RBF similarity by a significant margin
(CAC = 0.485 and uMI = 0.471), as shown in the table. The
standard deviations of the performance quantities of the pro-
posed approach also seem to be smaller than those of the com-
petition methods, which is an indication that the proposed sim-
ilarity measure is more preferable since the clustering results
from it are less sensitive to the initialization of k-means after
spectral embedding.

We shall remark here that the weight factor A in (1) has an
impact on both the nonnegative sparsity induced similarity mea-
sure and the sparsity induced similarity measure. Therefore, we
run the above cluster analysis with different settings of A for
both algorithms, and plot the changes of the cluster performance
criteria w.r.t. A (in log scale) in Fig. 7. It again demonstrates
the better performance of the proposed nonnegative sparsity in-
duced similarity measure.
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Fig. 7. Changes of cluster performance criteria w.r.t. the A (in log scale).

We notice that the two evaluation criteria, CAC and pMI,
are not always strictly tied with each other. That is, when CAC
achieves the optimal value, the MI may not achieve the best
simultaneously, and vice versa. We regard CAC as a more direct
criterion, so we pick up the working parameter A based on it in
Table I.

B. Client-Side Evaluation: Active Learning Classification

In our experiments, we report the recognition accuracy on
both the active learning pool X = X1 U Xy, and a hold-out
data-set Xp,. We keep track of the recognition accuracy with
the progress of active learning. We also compare with a base-
line setting where at each step we randomly choose an image
sample from &, for the users to label. We call the active learning
process to be active supervision and the baseline setting to be
random supervision. We adopt the Gaussian radial basis kernel
for both the SVM and the GP classifier.

1) Results Comparison: Since typical users usually deal with
hundreds of e-mails in a one-day batch, we randomly extract a
subset of 10% images from the whole data corpus as the test
subset in each experiment. To test the generalization perfor-
mance of the classifiers induced from active learning, each time
we randomly sample 20% data from the test subset as a hold-out
dataset A},. The rest 80% is adopted as the active learning pool
X. We randomly select ten samples from active learning pool to
initialize the system. Fig. 8 presents the experimental results av-
eraged over 100 runs. Fig. 8(a) presents the progressive changes
of the overall recognition accuracy, false positive and true pos-
itive rates on X with the human adding more and more labels,
while (b) shows the results on A7

In general, the classifiers induced form active supervision
achieve much better results than those from random supervision;
in other words, much less labels are needed for active supervi-
sion to achieve the same recognition accuracy as random super-
vision. In particular, the active learning SVM only requires us to
label less than 50 images in & to achieve over 99% recognition
accuracy. This is also observed in the holdout dataset where the
recognition accuracy quickly approaches to the saturation point
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Fig. 9. Recognition accuracy of running active learning SVM on an initialized classifier.

than the algorithms with random supervision. Moreover, with
our feature setting and the selected kernel function, the active
learning SVM consistently shows better performance than the
active learning GP classifier.

The recognition performance on A}, also shows that the in-
duced classifier generalizes well so that it may be employed for
fully automated image spam filtering. But it is preferred to al-
ways run in the active learning mode as we can ensure more than
99% accuracy by the end of the learning process. If not consid-
ering the initialization process of the system, the amount of la-

bels required to adapt the classifier to the next batch of e-mails is
even less. Fig. 9 presents the recognition performance of contin-
uously running the active SVM algorithm on a second subset of
data, initialized from the SVM classifier obtained from the first
subset. The reported results are also averaged over 100 different
runs. As we can clearly observe, with a well-trained initial SVM,
the active learning SVM only requires us to label 20 (<7%) im-
ages in order to achieve over 99% recognition accuracy. That is
to say, our client-side active learning image spam hunter only
needs <7% label data to get the ideal high detection rate. This
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ratio may further reduce with the increase of the dataset. In our
experiment, on average adapting the SVM classifier in each step
of the active learning process is always less than 0.5 s.

In our previous work [7], [8], we have explored the purely
supervised classifier [7] such as probabilistic boosting tree [35],
as well as the semisupervised learning algorithm [8] for classi-
fying the the image spams. It is beyond the scope of this paper to
have an extensive discussion of results from these two previous
works, and interested readers may refer to them for detailed dis-
cussion. Nevertheless, although an automated system is always
our dream goal, we shall argue that none of these classifier could
achieve 100% accuracy if it is achievable at all. Hence, the users
need to make the final check on the automated system anyway,
such as manually checking the spam folder for potential false
positives. Therefore, it may be desirable to involve the users
from the beginning in the proposed active learning framework.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a comprehensive solution to image
spam filtering, which combines cluster analysis of spam images
on the server side and active learning classification on the client
side for effectively filtering image spams.

For server-side mitigation, we propose a nonnegative sparse
representation induced similarity measure to be used together
with spectral clustering algorithm for clustering analysis of
spam images. Then relatively larger groups of images are sus-
pected to be spams, which can be further analyzed to identify
the spam sources. The spam sources can then be blocked on
the server side directly without reaching e-mail users. For
those spam images that survived this server-side filtering and
reached the client of e-mail users, we propose a prototype
active learning spam hunter to enable the users to efficiently
and interactively filter out the spam images.

Extensive experimental evaluations of both server-side algo-
rithms and client-side algorithms on a real image spam dataset
collected from an e-mail server demonstrated the efficacy of
the proposed comprehensive solution. Our future works may in-
clude, but not necessarily limited to, 1) further combining our
server-side system with IP tracing techniques to identify the
source IP or e-mail account of the spammer; 2) exploring em-
bedded UI/UX designs to fit in our client-side active learning
spam hunter with mainstream e-mail clients such as Office Out-
look; 3) investigating more discriminative image features for
dealing with spam images even more effectively.
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