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Abstract

One of the central issues in learning to rank for Information Retrieval (IR) is to develop algo-
rithms that construct ranking models by directly optimizing evaluation measures used in informa-
tion retrieval, such as Mean Average Precision (MAP) and Normalized Discounted Cumulative
Gain (NDCG). In this paper, we aim to conduct a comprehensive study on the approach of di-
rectly optimizing evaluation measures in learning to rank for IR. We focus on the methods that
minimize loss functions upper bounding the basic loss function defined on the IR measures. We
first provide a general framework for the study, which is based on upper bound analysis and
two types of upper bounds are discussed. Moreover, we make theoretical analysis the two types
of upper bounds and show that we can derive new algorithms on the basis of this analysis and
present two new algorithms called AdaRank and PermuRank. We make comparisons between
direct optimization methods of AdaRank, PermuRank, and SVMmap, using benchmark datasets.
We also compare them with conventional methods of Ranking SVM and RankBoost. Experimen-
tal results show that the methods based on direct optimization of ranking measures can always
outperform these conventional methods. However, no significant difference exists among the
performances of the direct optimization methods themselves.
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1. Introduction

Learning to rank for Information Retrieval (IR) is a problem as follows: In learning, a ranking
model is constructed with training data that consist of queries, their corresponding retrieved
documents, and relevance levels provided by human annotators. In ranking, given a new query,
the retrieved documents are ranked by using the trained ranking model.

In IR, ranking results are generally evaluated in terms of evaluation measures, such as Mean
Average Precision (MAP) [1] and Normalized Discounted Cumulative Gain (NDCG) [16]. Ide-
ally, a learning algorithm would train a ranking model by optimizing the performance in terms of
a given evaluation measure. In this way, higher accuracy in ranking is expected. However, this is
usually difficult due to the non-continuous and non-differentiable nature of IR measures.

Many learning to rank algorithms proposed typically to minimize a loss function loosely
related to the IR measures. For example, Ranking SVM [15] and RankBoost [12] minimize
loss functions based on errors in the ordering of document pairs. Recently, researchers have
developed several new algorithms that manage to directly optimize the performance in terms of
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IR measures. The effectiveness of these methods have also been verified. For example, [25] has
given a theoretical justification to the approach of directly optimizing IR measures.

From the viewpoint of loss function optimization, these methods fall into three categories.
First, one can minimize upper bounds of the basic loss function defined on the IR measures
[33, 19]. Second, one can approximate the IR measures with functions that are easy to handle
[9, 27, 25]. Third, one can use specially designed techniques for optimizing the non-smooth IR
measures [3, 10].

There are still open questions regarding the direct optimization approach. (1) Is there a
general theory that can guide the development of new algorithms? (2) What is the relationship
of existing methods? (3) Which direct optimization method empirically performs best?

In this paper, we try to conduct a comprehensive study on direct optimization of IR measures
in learning to rank and answer the questions above. Specifically, we focus on the first category
of methods that minimize loss functions upper bounding the basic loss function defined on the
IR measures.

(1) We conduct a general analysis of the approach. We indicate that direct optimization of IR
measures amounts to minimizing different loss functions based on the measures. We first intro-
duce one basic loss function, which is directly defined on the basis of IR measures, and indicate
that there are two types of upper bounds on the basic loss function. We refer to them as type
one bound and type two bound, respectively. Minimizing the two types of upper bounds leads
to different learning algorithms. Relations between the two types of bounds are also analyzed.
With this analysis, different algorithms can be studied and compared. Moreover, new algorithms
can be easily derived. As examples, we propose new algorithms of AdaRank and PermuRank.

(2) We show that the existing algorithms SVMmap and PermuRank manage to minimize type
two bound. In contrast, AdaRank tries to minimize type one bound.

(3) We compare the performances of the direct optimization methods using benchmark datasets.
Experimental results show that the direct optimization methods of SVMmap, AdaRank, and Per-
muRank can always improve upon the baseline methods of Ranking SVM and RankBoost. Fur-
thermore, the direct optimization methods themselves can work equally well.

This paper is an extension of our previous papers of [30] and [31]. Contributions of the paper
include the following points. 1) Theoretical analysis on the relationship between type one bound
and type two bound is provided; 2) simulation experiments have been conducted to further verify
the theoretical results; 3) experiments have been newly performed, so that all of the experiments
are based on publicly available benchmark data.

The rest of the paper is organized as follows. After a summary of related work in Section
2, we formally describe the problem of learning to rank for Information Retrieval in Section 3.
In section 4, we propose a general framework for directly optimizing evaluation measures. Two
new algorithms (AdaRank and PermuRank) and an existing algorithm SVMmap are analyzed and
discussed respectively in Section 5. Section 6 reports our experimental results with discussions
in Section 7, and Section 8 concludes this paper.

2. Related Work

The key problem for document retrieval is ranking, specifically, to create a ranking model
(function) that can sort documents based on their relevance to the given query. It is a common
practice in IR to tune the parameters of a ranking model using some labeled data and an evalua-
tion measure [1]. For example, the state-of-the-art methods of BM25 [26] and LMIR (Language
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Models for Information Retrieval) [18, 24] all have parameters to tune. As the ranking models
become more sophisticated (with more features) and more labeled data becomes available, how
to tune or train a ranking model becomes a challenging issue.

In recent years, methods of learning to rank have been applied to ranking model construction
and promising results have been obtained. For example, Joachims [17] applies Ranking SVM to
document retrieval. He utilizes click-through data to deduce training data for the model creation.
Cao et al [5] adapt Ranking SVM to document retrieval by modifying the Hinge Loss function
to better meet the requirements of IR. Specifically, they introduce a Hinge Loss function that
heavily penalizes errors on the top of ranking lists and errors from queries with fewer retrieved
documents.

In our view, there are two major approaches to learning to rank for IR: the pairwise approach
and listwise approach. The pairwise approach transforms the ranking problem into binary clas-
sification on document pairs. Typical methods include Ranking SVM [15, 17], RankBoost [12],
and RankNet [4]. The pairwise approach minimizes loss functions that are loosely related to the
evaluation measures, such as MAP and NDCG. The listwise approach considers the retrieved
document list as a unit for learning. One can either define a probability model on the document
list, or perform direct optimization of IR measures. ListNet [6] and ListMLE [29] are typical
methods for the formmer, and the latter is the major interest of this work.

There are three ways for directly optimizating IR measures. First, one can minimize loss
functions upper bounding a loss function defined upon an IR measure. For example, SVMmap

[33] minimizes a hinge loss function, which upper bounds a loss function based on Average
Precision. (See also [19, 7, 8].)

Second, one can approximate the IR measures with easy-to-handle functions. For example,
in [27] a smoothed approximation to NDCG [16] is proposed. The work in [25] addresses the
task by approximating the IR measures (MAP [1] and NDCG) and optimizing the approximated
surrogate functions. (See also [9, 20].)

Third, one can use specially designed techniques for optimizing non-smooth IR measures.
For example, LambdaRank [3] implicitly minimizes a loss function related to IR measures.
Genetic Programming (GP) is also employed to optimize IR measures [2]. For example, [10]
proposes a specifically designed GP to learn a ranking model for IR. (See also [32, 11, 23]).

In this paper, we focus on the first category. For other methods of learning to rank, please
refer to the comprehensive survey on learning to rank for IR [21].

3. Learning to Rank

Learning to rank for Information Retrieval is a problem as follows. In retrieval (testing),
given a query, the system returns a ranked list of documents in descending order of their rel-
evance scores. In learning (training), a number of queries and their corresponding retrieved
documents are given. Furthermore, the labels of the documents with respect to the queries are
also provided. The labels represent ranks (i.e., categories in a total order). The objective of
learning is to construct a ranking model that achieves the best result on test data in the sense of
minimization of a loss function. Ideally the loss function is defined directly on the IR measure
used in testing.

Suppose that Y = {r1, r2, · · · , rℓ} is the set of ranks, where ℓ denotes the number of ranks.
There exists a total order between the ranks rℓ ≻ rℓ−1 ≻ · · · ≻ r1, where ≻ denotes the order.
Suppose that Q = {q1, q2, · · · , qm} is the set of queries in training. Each query qi is associated with
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a list of retrieved documents di = {di1, di2, · · · , di,n(qi)} and a list of labels yi = {yi1, yi2, · · · , yi,n(qi)},
where n(qi) denotes the sizes of lists di and yi, di j ∈ D denotes the jth document in di, and yi j ∈ Y
denotes the label of document di j. A feature vector ϕ(qi, di j) is created from each query-document
pair (qi, di j), i = 1, 2, · · · ,m; j = 1, 2, · · · , n(qi). The training set is denoted as S = {(qi,di, yi)}mi=1.

Let the documents in di be identified by the integers {1, 2, · · · , n(qi)}. We define permutation
πi on di as a bijection from {1, 2, · · · , n(qi)} to itself. We use Πi to denote the set of all possible
permutations on di, and use πi( j) to denote the position of item j (i.e., di j). Ranking is nothing
but to select a permutation πi ∈ Πi for the given query qi and the associated list of documents di

using the ranking model.
The ranking model is a real valued function of features. There are two types of ranking

models. We refer to them as f and F respectively.
Ranking model f is a document level function, which is a linear combination of the features

in a feature vector ϕ(qi, di j):
f (qi, di j) = w⊤ϕ(qi, di j), (1)

where w denotes the weight vector. In ranking for query qi we assign a score to each of the
documents using f (qi, di j) and sort the documents based on their scores. We obtain a permutation
denoted as τ(qi,di, f ), or τi for short.

Ranking model F is a query level function. We first introduce a query level feature vector
for each triple of qi, di and πi, denoted as Φ(qi,di, πi). We calculate Φ by linearly combining the
feature vectors ϕ of query-document pairs for qi:

Φ(qi, di, πi) =
1

n(qi) · (n(qi) − 1)

∑
k,l:k<l

[zkl(ϕ(qi, dik) − ϕ(qi, dil))], (2)

where zkl = +1 if πi(k) < πi(l) (dik is ranked ahead of dil in πi), and −1 otherwise. We define F
as a linear combination of the features in feature vector Φ:

F(qi,di, πi) = w⊤Φ(qi,di, πi), (3)

where w denotes the weight vector. In ranking, the permutation σ(qi,di, F) (also denoted as σi

for short) with the largest score given by F is selected:

σi = arg max
σ∈Πi

F(qi,di, σ). (4)

It can be shown that the two types of ranking models are equivalent, if the parameter vectors
w’s in the two models are identical.

Theorem 1. Given a fixed parameter vector w, the two ranking models f and F generate the
same ranking result. That is, permutations τi and σi are identical.

Proof of the theorem can be found in Appendix A. Theorem 1 implies that Equation (4) can
be computed efficiently by sorting documents using Equation (1).

A slightly different definition of Φ is given in [33]:

Φ(qi,di, πi) =
1

|Cqi | · |Cqi |

∑
k:dik∈Cqi

∑
l:dil∈Cqi

[zkl(ϕ(qi, dik) − ϕ(qi, dil))],

where Cqi and Cqi denote the set of relevant and irrelevant documents for query qi, respectively.
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Table 1: Summary of notations.
Notations Explanations
qi ∈ Q Query
di = {di1, di2, · · · , di,n(qi)} List of documents for qi

di j ∈ D jth document in di

yi = {yi1, yi2, · · · , yi,n(qi)} List of ranks for qi

yi j ∈ {r1, r2, · · · , rℓ} Rank of di j w.r.t qi

S = {(qi,di, yi)}mi=1 Training set
πi ∈ Πi Permutation for qi

π∗i ∈ Π∗i ⊆ Πi Perfect permutation for qi

ϕ(qi, di j) Feature vector w.r.t. (qi, di j)
Φ(qi, di, πi) Feature vector w.r.t. (qi,di, πi)
f and F Ranking models
E(πi, yi) ∈ [0,+1] Evaluation of πi w.r.t. yi for qi

It is assumed that the data has only two relevance ranks. Intuitively, Φ is a summation over
the vector differences of all relevant/irrelevant document pairings. With this definition of Φ,
Equation (4) can also be computed efficiently, still by sorting documents using Equation (1).
This can be obtained by following the proof of Theorem 1.

In IR, evaluation measures are used to evaluate the goodness of a ranking model, which are
usually query-based. By query based, we mean that the measure is defined on a ranking list
of documents with respect to the query. These include MAP, NDCG, MRR (Mean Recipro-
cal Rank), WTA (Winners Take ALL), and Precision@N [1, 16]. We utilize a general function
E(πi, yi) ∈ [0,+1] to represent the evaluation measures. The first argument of E is the permu-
tation πi created using the ranking model. The second argument is the list of ranks yi given as
the ground truth. E measures the agreement between πi and yi. Most evaluation measures return
real values in [0, +1]. We denote the perfect permutation as π∗i . Note that there may be more
than one perfect permutation for a query, and we use Π∗i to denote the set of all possible perfect
permutations for query qi. For π∗i ∈ Π∗i , we have E(π∗i , yi) = 1.

Table 1 gives a summary of the notations described above.

4. Direct Optimization Framework

In this section, we give a general framework for analyzing learning to rank algorithms that
directly optimize evaluation measures.

Ideally, we would create a ranking model that maximizes the accuracy in terms of an IR
measure on training data, or equivalently, minimizes the loss function defined as below:

R(F) =
m∑

i=1

(E(π∗i , yi) − E(πi, yi)) =
m∑

i=1

(1 − E(πi, yi)), (5)

where πi is the permutation selected for query qi by ranking model F (or f ). We refer to the loss
function R(F) (or R( f )) as the ‘basic loss function’ and those methods which minimize the basic
loss function as the ‘direct optimization approach’.

This paper focuses on the bounding approach. The advantage of taking this approach is that
one can leverage existing learning techniques, such as Boosting and SVM. We consider two
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Figure 1: Type one bounds.

types of upper bounds. The first one is defined directly on the IR measures (type one bound).
The second one is defined on the pairs between the perfect and imperfect permutations (type two
bound). SVMmap turns out to be an algorithm that minimizes a type two bound. AdaRank and
PermuRank, which we propose in this paper, are two algorithms that minimize a type one bound
and a type two bound, respectively.

4.1. Type One Bound

The basic loss function defined in (5) can be upper bounded directly by the exponential
function, logistic function, which is widely used in machine learning. The logistic function and
exponential function are defined as

• logistic loss:

m∑
i=1

log2

(
1 + e−E(πi,yi)

)
,

• exponential loss:

m∑
i=1

e−E(πi,yi).

Here the πi is the permutation selected for query qi and document set di, by ranking model f .
Note that both functions are continuous, differentiable, and even convex with respect to E. The
exponential loss function is tighter than the logistic loss function since E ∈ [0,+1] (c.f. Fig. 1).
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4.2. Type Two Bound

Here, we introduce a new loss function.

m∑
i=1

max
π∗i ∈Π∗i ;πi∈Πi\Π∗i

((
E(π∗i , yi) − E(πi, yi)

) · J(F(qi,di, π
∗
i ) ≤ F(qi,di, πi)

)K) , (6)

where J·K is one if the condition is satisfied, otherwise zero.
The loss function measures the loss when the worst prediction is made, specifically, the dif-

ference between the performance of the perfect permutation (it equals to one) and the minimum
performance of an incorrect permutation (it is less than one).

The following theorem holds with respect to the new loss function.

Theorem 2. The basic loss function in (5) is upper bounded by the new loss function in (6).

Proof of Theorem 2 can be found in Appendix B.
The loss function (6) is still not continuous or differentiable because it contains the 0-1 func-

tion J·K, which is neither continuous nor differentiable. We can consider using continuous, dif-
ferentiable, and even convex upper bounds on the loss function (6), which are also upper bounds
on the basic loss function (5).

1. The 0-1 function J·K in (6) can be replaced with its upper bounds, for example, logistic,
exponential, and hinge functions, yielding

• Logistic loss:

m∑
i=1

max
π∗i ∈Π∗i ;πi∈Πi\Π∗i

(
E(π∗i , yi) − E(πi, yi)

)·log2

(
1 + e−(F(qi,di,π

∗
i )−F(qi,di,πi))

)
;

• Exponential loss:

m∑
i=1

max
π∗i ∈Π∗i ;πi∈Πi\Π∗i

(
E(π∗i , yi) − E(πi, yi)

)·e−(F(qi,di,π
∗
i )−F(qi,di,πi));

• Hinge loss:

m∑
i=1

max
π∗i ∈Π∗i ;πi∈Πi\Π∗i

(
E(π∗i , yi) − E(πi, yi)

)·[1−(F(qi,di, π
∗
i ) − F(qi,di, πi)

)
]+,

or

m∑
i=1

[
max

π∗i ∈Π∗i ;πi∈Πi\Π∗i

((
E(π∗i , yi) − E(πi, yi)

) − (
F(qi,di, π

∗
i ) − F(qi,di, πi)

))]
+

,

where [·]+ denotes the hinge function.

Fig. 2 shows the relation between the loss function (6) and its upper bounds, where E(π∗i , yi)−
E(πi, yi) is set to 0.5. From the figure, we can see that it is not possible to say which upper bound
is the tightest. Different upper bounds may be suitable for different datasets.
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2. The max function can also be replaced with its upper bound, the sum function. This is
because

∑
i xi ≥ maxi xi if xi ≥ 0 holds for all i.

3. Relaxations 1 and 2 can be applied simultaneously. For example, replacing J·K with the
hinge function and max with sum, we obtain:

m∑
i=1

∑
π∗i ∈Π∗i ;πi∈Πi\Π∗i

(
E(π∗i , yi) − E(πi, yi)

) · [1 − (
F(qi,di, π

∗
i ) − F(qi,di, πi)

)]
+ . (7)

We can derive different algorithms by using the upper bounds as surrogate loss functions.

4.3. Relation between Type One Bound and Type Two Bound
Relation between the type one bound and type two bound can be summarized as the following

Theorem 3:

Theorem 3. For any monotonically nondecreasing and positive function φ(·), the inequality

m∑
i=1

max
π∗i ∈

∏∗
i ;πi∈

∏
i \

∏∗
i

(
1 − E(πi, yi)

) · φ (− (
F(qi, di, π

∗
i ) − F(qi, di, πi)

)) ≤ m∑
i=1

φ (−E(σi, yi)), (8)

if ∀i = 1, ...,m,
min

π∗i ∈
∏∗

i ;πi∈
∏

i \
∏∗

i

(
F(qi, di, π

∗
i ) − F(qi, di, πi)

) ≥ E(σi, yi) (9)

holds, where σi = arg max
σ∈∏i

F(qi,di, σ) is a permutation of integers created for query qi, corre-

sponding list of documents di, and ranking function F.

Proof of Theorem 3 can be found in Appendix C.
The left side of Equation (8) corresponds to the type two bound and the right side corresponds

to the type one bound. φ can be any monotonically nondecreasing positive function such as ex,
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log2 (1 + ex), and [1 + x]+, which corresponds to the exponential loss, logistic loss, and hinge
loss, respectively. Theorem 3 indicates that, for a given function φ, the type two bound is tighter
than the corresponding type one bound, if condition (9) holds. Otherwise, the relation between
the type one bound and type two bound is not clear. One can easily verify that condition (9)
means that the trained ranking model is ‘close’ to the optimal one.

We conduct a simulation to verify the correctness of the result. First, we assume that there are
two relevance levels: ‘relevant’ and ‘irrelevant’ and instances in the two dimensional Euclidean
space are generated according to Gaussian distributions N(mk,Σ). We set the centers as m1 =

(+1,+1) and m2 = (−1,−1) for ‘relevant’ and ‘irrelevant’, respectively. The deviation matrix

Σ =

(
0.2 0
0 0.2

)
.

Next, according to the distribution, we randomly generate n1 and n2 instances for rank levels
of ‘relevant’ and ‘irrelevant’, respectively (synthetic dataset 1). We set n1 = 7 and n2 = 14. (n1
and n2 are relatively small because precisely calculating the type two loss is time consuming for
large datasets.)

We assume the ranking model is linear and represented as a 2-dimension vector w = (cos(θ), sin(θ)).
Since only the direction of the ranking model impacts the order of instances, we change the free
parameter θ from 0 to 2π to obtain a list of ranking models. Values of the exponential type one
bound and exponential type two bound with respect to θ are illustrated in Fig. 3.

We also generate another synthetic dataset (synthetic dataset 2) with deviation matrix Σ =(
0.2 0
0 1.3

)
. All other parameters are identical to that for dataset 1. In synthetic dataset 2,

some of the ‘relevant’ and ‘irrelevant’ instances are mixed, which reflects the characteristics of
the real data. Values of the exponential type one bound and type two bound with respect to θ are
shown in Fig. 4.

From these two figures, we can see that both the type one bound and type two bound are
optimized when θ = π4 . The type two bound is tighter than the type one bound when the ranking
model is close to its optimal. The results agree well with Theorem 3.

4.4. Summary on Bounds

Fig. 5 shows the relationship between the bounds. There is a basic loss function (5). On
the left hand side is the type one bound. It includes the exponential loss function and logistic
loss function as examples. On the right hand side is the type two bound (i.e., Equation (6)). It
contains the exponential loss function, logistic loss function, and hinge loss functions.

With this framework, we can: 1) derive new algorithms based on the framework; 2) ana-
lyze existing algorithms within the framework (we will analyze the existing direct optimization
algorithm of SVMmap in detail in Section 5.3)

5. Direct Optimization Algorithms

We can derive different algorithms by using the upper bounds as surrogate loss functions.
In principle, any type one and type two bounds can be optimized using optimization techniques
such as those in Perceptron, Support Vector Machines, and Boosting. As examples, we will
show that the new algorithms of AdaRank and PermuRank can be derived as minimizing the
type one bound and type two bound, respectively. We will also show that the existing algorithm
of SVMmap can be derived as one optimizing the type two bound.
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5.1. AdaRank
Here, we propose a new direct optimization algorithm which efficiently minimizes one type

one bound (exponential type one bound) as a loss function, using the boosting technique [13].
The algorithm is referred to as AdaRank and is shown in Fig. 6.

AdaRank takes a training set S = {(qi,di, yi)}mi=1 as input and takes the performance measure
function E and the number of iterations T as parameters. AdaRank runs T rounds and at each
round it creates a weak ranker ht(t = 1, · · · ,T ). Finally, it outputs a ranking model f by linearly
combining the weak rankers.

At each round, AdaRank maintains a distribution of weights over the queries in the training
data. We denote the distribution of weights at round t as Pt and the weight on the ith training
query qi at round t as Pt(i). Initially, AdaRank sets equal weights to the queries. At each round,
it increases the weights of those queries that are not ranked well by ft, the model created so far.
As a result, the learning at the next round will be focused on the creation of a weak ranker that
can work on the ranking of those ‘hard’ queries.

At each round, a weak ranker ht is constructed based on training data with weight distribution
Pt. The goodness of a weak ranker is measured by the performance measure E weighted by Pt:

m∑
i=1

Pt(i)E(π(qi,di, ht), yi),

where π(qi,di, ht) is the permutation created for query qi, the corresponding list of documents di,
and the ranking function ht.

Several methods for weak ranker construction can be considered. For example, a weak ranker
can be created by using a subset of queries (together with their document list and label list)
sampled according to the distribution Pt. In this paper, we use single features as weak rankers,
that is, as a weak ranker we choose the feature that has the optimal weighted performance among
all of the features:

max
k

m∑
i=1

Pt(i) · E(π(qi,di, xk), yi).

Creating weak rankers in this way, the learning process turns out to be that of repeatedly selecting
features and linearly combining the selected features.

Once a weak ranker ht is built, AdaRank chooses a weight αt > 0 for the weak ranker.
Intuitively, αt measures the importance of ht.
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Input: S = {(qi, di, yi)}mi=1, and parameters E and T
Initialize P1(i) = 1/m.
For t = 1, · · · , T

• Create weak ranker ht with weighted distribution Pt on training data S .

• Choose αt

αt =
1
2
· ln

∑m
i=1 Pt(i){1 + E(π(qi,di, ht), yi)}∑m
i=1 Pt(i){1 − E(π(qi,di, ht), yi)}

.

• Create ft

ft(x⃗) =
t∑

k=1

αkhk(x⃗).

• Update Pt+1

Pt+1(i) =
exp{−E(π(qi,di, ft), yi)}∑m

j=1 exp{−E(π(q j, d j, ft), y j)}
.

End For
Output ranking model: f (x⃗) = fT (x⃗).

Figure 6: The AdaRank algorithm.

A ranking model ft is created at each round by linearly combining the weak rankers con-
structed so far h1, · · · , ht with weights α1, · · · , αt. ft is then used for updating the distribution
Pt+1.

The loss function in AdaRank is defined on the basis of general IR performance measures.
The measures can be MAP, NDCG, WTA, MRR, or any other measures whose range is within
[0,+1]. We next explain why this is the case.

We attempt to minimize the exponential type one bound in Section 4.1:

min
f∈F

m∑
i=1

exp{−E(π(qi, di, f ), yi)}.

We consider the use of a linear combination of weak rankers as our ranking model:

f (x⃗) =
T∑

t=1

αtht(x⃗).

The problem then turns out to be

min
ht∈H ,αt∈ℜ+

L(ht, αt) =
m∑

i=1

exp{−E(π(qi,di, ft−1 + αtht), yi)},

where H is the set of possible weak rankers, αt is a positive weight, and ( ft−1 + αtht)(x⃗) =
ft−1(x⃗) + αtht(x⃗). Several ways of computing coefficients αt and weak rankers ht may be consid-
ered. Following the idea of AdaBoost, in AdaRank we take the approach of ‘forward stage-wise
additive modeling’ [14] and get the algorithm in Fig. 6.
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It can be proved that there exists a lower bound on the ranking accuracy for AdaRank on
training data, as presented in Theorem 4.

Theorem 4. The following bound holds on the ranking accuracy of the AdaRank algorithm on
training data:

1
m

m∑
i=1

E(π(qi,di, fT ), yi) ≥ 1 −
T∏

t=1

e−δ
t
min

√
1 − φ(t)2,

where φ(t) =
∑m

i=1 Pt(i)E(π(qi,di, ht), yi), δtmin = mini=1,··· ,m δ
t
i, and

δti = E(π(qi,di, ft−1 + αtht), yi) − E(π(qi,di, ft−1), yi) − αtE(π(qi, di, ht), yi),

for all i = 1, 2, · · · ,m and t = 1, 2, · · · ,T.

A proof of the theorem can be found in Appendix D. The theorem implies that the rank-
ing accuracy in terms of the performance measure can be continuously improved, as long as
e−δ

t
min

√
1 − φ(t)2 < 1 holds.

Theorem 4, however, cannot guarantee that the total performance will definitely be improved,
because it is likely that e−δ

t
min

√
1 − φ(t)2 is larger than 1, although in real world applications we

usually observe that this is not the case. Fortunately, we can prove that when the evaluation
measure is a dot product, the performance of AdaRank with respect to training data is guaranteed
to improve when the number of iterations increases. It is easy to verify δit is always zero in such
a case.

5.2. PermuRank

New direct optimization algorithms can also be derived through optimizing different type
two bounds. The challenge here is that the sizes of permutation sets Π∗i and Πi \ Π∗i are both of
order O(n!), which makes the optimization intractable. Here n denotes the number of documents
associated with query qi.

PermuRank is an algorithm that can efficiently minimize one of the type two bounds as loss
function in a greedy way. The algorithm is shown in Fig. 7. The key idea in PermuRank is to
maintain a set of perfect permutations and a set of imperfect permutations as working sets, instead
of using the entire set of perfect permutations and the entire set of imperfect permutations.

Similarly to AdaRank, PermuRank takes a training set S = {(qi,di, yi)}mi=1 as input and takes
an evaluation measure E and number of iterations T as parameters. PermuRank runs T rounds
and at each round it creates a ranking model Ft(t = 1, · · · ,T ). Finally, it outputs a ranking model
F created during the last round.

At each round t, PermuRank maintains a set of perfect permutations and a set of imperfect
permutations for each query qi, denoted as Bt

i and Ct
i, respectively. These two sets are initialized

with an arbitrary perfect permutation π∗i ∈ Π∗i and an arbitrary imperfect permutation πi ∈ Πi \
Π∗i . At each round, the two sets are updated by adding the most violated perfect and imperfect
permutations respectively:

Bt+1
i ← Bt

i ∪ {arg min
πi∈Π∗i

Ft(qi, di, πi)},

Ct+1
i ← Ct

i ∪ {arg max
πi∈Πi\Π∗i

Ft(qi, di, πi)}.
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Input: S = {(qi, di, yi)}mi=1, parameters E and T
Initialize B1

i and C1
i , for all i = 1, · · · ,m.

For t = 1, · · · , T

• Ft = arg minF∈F L(Bt
1,Ct

1, · · · ,Bt
m,Ct

m).

• Update Bt+1
i and Ct+1

i , for all i = 1, · · · ,m.

• break if Bt+1
i = Bt

i and Ct+1
i = Ct

i, for all i = 1, · · · ,m.

End For
return Ft

Figure 7: The PermuRank algorithm.

At each round t, a ranking model Ft is created using the permutation sets Bt
i and Ct

i, i =
1, · · · ,m created so far

Ft = arg min
F∈F

L(Bt
1,Ct

1, · · · ,Bt
m,Ct

m),

where L(Bt
1,Ct

1, · · · ,Bt
m,Ct

m) is a type two bound, based on Bt
i and Ct

i instead of Π∗i and Πi \Π∗i .
In this paper, without loss of generality, we use the hinge loss function of Equation (7). The

total empirical loss L becomes

L(B1,C1, · · · ,Bm,Cm) =
m∑

i=1

l(Bi,Ci),

where

l(Bi,Ci) =
1
|Bi|

∑
π∗i ∈Bi

∑
πi∈Ci

(E(π∗i , yi) − E(πi, yi)) · [1 − (F(qi,di, π
∗
i ; w) − F(qi,di, πi; w))]+.

In this paper, we employ the SVM technique to minimize the regularized hinge loss function.
The learned ranking model Ft is then used to update Bt+1

i and Ct+1
i for training the next ranking

model Ft+1.
At each round, PermuRank checks whether the permutation sets Bt

i and Ct
i are changed. If

there is no change, the algorithm will stop and return Ft as the final ranking model.

5.3. SVMmap

Existing direct optimization algorithms can be analyzed under the framework. Here we make
use of SVMmap [33] as an example. SVMmap is a Support Vector Machine (SVM) algorithm for
predicting rankings. The goal of SVMmap is to directly optimize ranking measures in terms
of Mean Average Precision (MAP). During training, SVMmap solves the following quadratic
programming problem:

min
w⃗;ξ≥0

1
2
||w⃗||2 + C

m

m∑
i=1

ξi

s.t. ∀i,∀π∗i ∈ Π∗i ,∀πi ∈ Πi \ Π∗i : F(qi,di, π
∗
i ) − F(qi,di, πi) ≥ E(π∗i , yi) − E(πi, yi) − ξi,

14



where C is the coefficient for trade-off between total empirical loss and model complexity, ξi
represents the empirical loss for qi, and E is the ranking measure of MAP. One can easily verify
that in the constraints the empirical loss ξi is the maximum among all the losses of permutations
for query qi.

Equivalently, SVMmap minimizes the following regularized hinge loss function

m∑
i=1

[
max

π∗i ∈Π∗i ;πi∈Πi\Π∗i

((
E(π∗i , yi) − E(πi, yi)

) − (
F(qi, di, π

∗
i ) − F(qi,di, πi)

))]
+

+ λ ∥ w⃗ ∥2 . (10)

Intuitively, the first term calculates the total maximum empirical loss when selecting the best
permutation for each of the queries. Specifically, if the difference between the permutations
F(qi, di, π

∗
i ) − F(qi,di, πi) is less than the difference between the corresponding evaluation mea-

sures E(π∗i , yi) − E(πi, yi)), then there will be a loss, otherwise not. Next, the maximum loss is
selected for each query and they are summed up over all the queries.

Since c · Jx ≤ 0K ≤ [c − x]+ holds for all c ∈ ℜ+ and x ∈ ℜ, it is easy to see that the upper
bound in (10) also bounds the basic loss function in (5) (See also Fig. 2). In [33], the authors
have proved this fact (see also [28]).

6. Experiments

We conducted experiments to test the performances of the learning to rank methods of
SVMmap, AdaRank, PermuRank, Ranking SVM, and RankBoost, on LETOR 2.0 benchmark
datasets and benchmark datasets of WSJ and AP. We choose these datasets because they are all
public available benchmark datasets and easy to reproduce the experiments.

AdaRank and PermuRank can optimize any evaluation measure in [0,+1]. In our exper-
iments, we chose MAP as the evaluation measure for them, denoted as AdaRank.MAP and
PermuRank.MAP, respectively. For AdaRank.MAP, we utilized features as weak rankers, as
described in Section 5.1. As measures for evaluation, we actually used MAP and NDCG at the
positions of 1, 3, 5, and 10.

6.1. Experiment with LETOR Data

In the first experiment, we used the LETOR 2.0 benchmark datasets of OHSUMED, TD2003,
and TD2004[22].

LETOR OHSUMED dataset consists of articles from medical journals. There are 106 queries
in the collection. For each query, there are a number of associated documents. The relevance
degrees of documents with respect to the queries are given by humans, on three levels: defi-
nitely, possibly, or not relevant. There are 16,140 query-document pairs with relevance labels.
In LETOR, We index the fields of .T (title) and .W (abstract) for documents and the field .W
for queries. For both documents and queries, the field .I is used as id. The data is represented
as feature vectors and their corresponding relevance labels. Features in LETOR OHSUMED
dataset consists of ‘low-level’ features and ‘high-level’ features. Low-level features include term
frequency (tf), inverse document frequency (idf), document length (dl), and their combinations.
High-level features include BM25 and LMIR scores.

LETOR TD2003 and TD2004 datasets are from the topic distillation task of TREC 2003 and
TREC 2004. TD2003 has 50 queries and TD2004 has 75 queries. The ‘title’ field is considered
as the query strings. The document collection is a crawl of the .gov domain. For each query, there
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are about 1,000 associated documents. Each query document pair is given a binary judgment:
relevant or irrelevant. The features of LETOR TD2003 and TD2004 datasets include low-level
features, such as term frequency (tf), inverse document frequency (idf), and document length
(dl), as well as high-level features such as BM25, LMIR, PageRank, and HITS. Details of the
datasets please refers to [22].

Following the data partition [22], we conducted 5-fold cross validation experiments. Fig. 8
shows the results on LETOR OHSUMED dataset in terms of MAP and NDCG, averaged over
five trials. In calculation of MAP, we viewed ‘definitely’ and ‘partially relevant’ as relevant. (We
tried treating ‘partially relevant’ as ‘irrelevant’, it did not work well for SVMmap). Fig. 9 and
Fig. 10 show the results on the LETOR TD2003 and TD2004 datasets.

We also conducted experiments to observe the training curve of AdaRank.MAP and Permu-
Rank.MAP in terms of MAP on OHSUMED. We found that, in each fold of the cross validation,
the training accuracy in terms of MAP would converge after 40 ∼ 100 iterations. Fig. 11) shows
the learning curves during the training phase in one trial of the cross validation. From the fig-
ure, we can see that the ranking accuracy of AdaRank.MAP steadily improves, as the training
goes on. The result agrees well with Theorem 4. That is, the ranking accuracy in terms of the
performance measure can be continuously improved, as long as e−δ

t
min

√
1 − φ(t)2 < 1 holds. For

PermuRank, the sizes of the working sets are also 40 ∼ 100, which is significantly smaller than
n!, where n denotes the number of documents associated with the query. Similar results were
also observed in the experiments on TD2003 and TD2004.

On OHSUMED, the direct optimization methods of SVMmap, AdaRank, and PermuRank al-
most always outperform the baselines of Ranking SVM and RankBoost. We conducted t-tests
on the improvements between the methods in terms of NDCG@1. The results show that on
OHSUMED, the improvements of the direct optimization methods over the baselines are statis-
tically significant (p-value < 0.05). The t-test results also show that no statistically significant
difference exists among the performances of the direct optimization methods.

However, on TD2003 and TD2004 all the t-tests show that there is no statistically significant
difference among the performances of all the methods. This is because the numbers of queries in
TD2003 and TD2004 are too small, which is a common problem for the major publicly available
datasets.

6.2. Experiment with WSJ and AP Data

In the second experiment, we made use of the WSJ and AP datasets.
The WSJ and AP datasets are from the TREC ad-hoc retrieval track. WSJ contains news

articles by the Wall Street Journal, and AP contains 158,240 news articles by the Associated
Press. 200 queries are selected from the TREC topics (No.101 ∼ No.300). Each query has a
number of documents associated and they are labeled as ‘relevant’ or ‘irrelevant’. As features,
we adopted those used in document retrieval [5]. They are tf (term frequency), idf (inverse
document frequency), dl (document length), and BM25. Details of the datasets and features can
be found in [5].

The WSJ and AP data were split into four even subsets and 4-fold cross-validation experi-
ments were conducted. Fig. 12 and Fig. 13 respectively show the results in terms of MAP and
NDCG, averaged over four trials.

The results show that the direct optimization methods of SVMmap and PermuRank almost
always outperform the baselines of Ranking SVM and RankBoost on WSJ and AP. With the
help of t-test, we confirmed that the improvements of the SVMmap and PermuRank over the
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Figure 8: Ranking accuracies on LETOR OHSUMED data.
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Figure 9: Ranking accuracies on Letor TD2003 data.
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Figure 10: Ranking accuracies on Letor TD2004 data.
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Figure 12: Ranking accuracies on WSJ data.

Table 2: Ranking accuracies in terms of MAP.
OHSUMED WSJ AP TD2003 TD2004

SVMmap 0.4456(2) 0.4406(2) 0.4208(3) 0.2554(3) 0.3804(2)

AdaRank 0.4419(4) 0.4287(3) 0.4233(2) 0.1373(5) 0.3308(5)

PermuRank 0.4495(1) 0.4617(1) 0.4527(1) 0.2768(1) 0.3636(3)

RankSVM 0.4469(3) 0.4218(4) 0.4144(4) 0.2564(2) 0.3505(4)

RankBoost 0.4403(5) 0.4203(5) 0.4081(5) 0.2125(4) 0.3835(1)

baselines are statistically significant (p-value < 0.05). Furthermore, SVMmap and PermuRank
work equally well, without a statistically significant difference between their performances. In
addition, this time AdaRank does not perform as well as expected: its performance is similar to
the baselines, and significantly worse than SVMmap and PermuRank.

6.3. Summary of Results

Table 2 and Table 3 show the ranking accuracies of the five methods on the datasets in terms
of MAP and NDCG@3, respectively. Ranks of the five methods based on their performances on
the datasets are also shown. The top ranked methods on the three datasets are highlighted. Note
that the results on TD2003 and TD2004 are not statistically reliable; we list them here only for
reference. From the results, we can conclude that the direct optimization methods of SVMmap,
AdaRank, and PermuRank perform better than the baselines. Also, we conclude that these direct
optimization methods themselves perform equally well.

Table 4 compares the direct optimization algorithms of AdaRank, PermuRank, and SVMmap.
We can see that all of the three algorithms perform well empirically. However, AdaRank has
several advantages over PermuRank and SVMmap.

First, AdaRank can incorporate any performance measure, provided that the measure is query
based and in the range of [0,+1]. Notice that the major IR measures meet this requirement. In
contrast the SVMmap only minimizes the IR measure of MAP.
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Figure 13: Ranking accuracies on AP data.

Table 3: Ranking accuracies in terms of NDCG@3.

OHSUMED WSJ AP TD2003 TD2004

SVMmap 0.4669(4) 0.5867(1) 0.5415(2) 0.4014(1) 0.4586(2)

AdaRank 0.4803(1) 0.5547(3) 0.5010(3) 0.2912(4) 0.4017(5)

PermuRank 0.4764(2) 0.5846(2) 0.5765(1) 0.3823(2) 0.4467(3)

RankSVM 0.4649(5) 0.5069(5) 0.4653(5) 0.3787(3) 0.4092(4)

RankBoost 0.4726(3) 0.5362(4) 0.4902(4) 0.2704(5) 0.4640(1)
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Table 4: Comparison of the direct optimization algorithms.
AdaRank PermuRank SVMmap

Measure measures in [0,+1] measures in [0,+1] MAP
Time complexity low high high
Implementation easy difficult difficult
Empirical performance good good good

Second, the learning process of AdaRank is more efficient than PermuRank and SVMmap.
The time complexity of AdaRank is of order O((k + T ) ·m · n log n), where k denotes the number
of features, T the number of rounds, m the number of queries in training data, and n is the
maximum number of documents for queries in training data. The time complexity of SVMmap

and PermuRank is much higher since they try to optimize with the loss functions defined on
permutations, which is of the order n!.

Third, AdaRank is easier to implement. AdaRank follows the idea of AdaBoost and takes
the approach of ‘forward stage-wise additive modeling’ [14]. SVMmap and PermuRank, however,
employ the technique of quadratic programming and are more difficult to be implemented.

7. Discussions

We investigated the reasons that direct optimization algorithms outperform the baseline meth-
ods, using the results of AdaRank on the OHSUMED dataset as examples.

We examined the reason that AdaRank performs better than pairwise learning to rank al-
gorithms, such as RankBoost. Specifically we compared the error rates between different rank
pairs made by RankBoost and AdaRank on the test data. The results over all of the five trials
in the 5-fold cross validation are shown in Fig. 14. We use ‘d-n’ to stand for the pairs between
‘definitely relevant’ and ‘not relevant’, ‘d-p’ the pairs between ‘definitely relevant’ and ‘partially
relevant’, and ‘p-n’ the pairs between ‘partially relevant’ and ‘not relevant’. From Fig. 14, we
can see that AdaRank makes fewer errors for ‘d-n’ and ‘d-p’, which are related to the tops of
rankings and are important. This is because direct optimization algorithms can naturally focus
upon the training at the top by optimizing the performance measures.

We also gathered statistics on the number of document pairs per query in the entire OHSUMED
dataset. The queries are clustered into different groups based on the the number of their asso-
ciated document pairs. Fig. 15 shows the distribution of the query groups. In the figure, for
example, ‘0-1k’ is the group of queries whose number of document pairs are between 0 and
999. We can see that the numbers of document pairs really vary from query to query. Next we
evaluated the accuracies of AdaRank and RankBoost in terms of MAP for each of the query
groups. The results are reported in Fig. 16. We found that the average MAP of AdaRank over
the groups is higher than RankBoost. Furthermore, it is interesting to see that AdaRank performs
particularly better than RankBoost for queries with small numbers of document pairs (e.g., ‘0-
1k’, ‘1k-2k’, ‘2k-3k’, ‘3k-4k’, ‘4k-5k’, and ‘5k-6k’). The results indicate that AdaRank can
effectively avoid creating a model biased towards queries with more document pairs.

8. Conclusion and Future Work

In this paper, we have studied the direct optimization approach to learning to rank, in which
one trains a ranking model that can directly optimize the evaluation measures used in IR.
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We have built a theoretical framework of the direct optimization approach. According to our
analysis, the direct optimization approach is one that minimizes the basic loss function defined on
the IR measures. It turns out that the algorithms AdaRank and PermuRank, which we propose,
actually try to minimize two types of upper bounds of the basic loss function, respectively called
type one bound and type two bound in the paper. Existing algorithm SVMmap also minimizes a
type two bound upon the basic loss function. We have also analyzed the relation between the two
types of bounds both theoretically and empirically. With this framework, we are able to analyze
existing methods, such as SVMmap, and derive new algorithms.

We have also conducted empirical studies on AdaRank, SVMmap, and PermuRank using a
number of benchmark datasets. Experimental results show that the direct optimization methods
of SVMmap, AdaRank, and PermuRank can always perform better than the conventional methods
of Ranking SVM and RankBoost.

There are several interesting future research directions. First, one can further explore the
generalization ability of direct optimization algorithms for learning to rank. Second, it is inter-
esting to develop other ranking algorithms that can utilize both type one and type two bounds.
For example, we know that the type two bound is tighter than the type one bound but harder to
optimize. One possibility is to learn the ranking model first according to the type one bound and
then switch to the type two bound. Finally, it is better to further extend the framework, specifi-
cally, to study direct optimization achieved by approximating the IR measures functions [27] or
by other techniques [3, 10, 23].
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A. Proof of Theorem 1

Proof Without loss of generality, assume that we have a query q with n associated documents
d1, d2, · · · , dn.

With the use of model f , the relevance scores of the n documents become s1 = f (q, d1) =
w⊤ϕ(q, d1), s2 = f (q, d2) = w⊤ϕ(q, d2), · · · , sn = f (q, dn) = w⊤ϕ(q, dn).

With the use of F and the features defined in Equation (2), F(q,d, π) can be written as

F(q,d, π) = w⊤
1

n(q) · (n(q) − 1)

∑
k,l:k<l

[zkl(ϕ(q, dk) − ϕ(q, dl))]

=
1

n(q) · (n(q) − 1)

∑
k,l:k<l

[
zkl(w⊤ϕ(q, dk) − w⊤ϕ(q, dl))

]
=

1
n(q) · (n(q) − 1)

∑
k,l:k<l

[zkl(sk − sl)],

(11)

where zkl = +1 if π(k) < π(l), and zkl = −1 otherwise. Since π is only related to the variables
zkl’s in the equation, the equation is maximized with respect to π, if and only if all the terms in
the summation are not negative.

Next, we prove that the permutation given by model f is equivalent to the permutation given
by model F, and vice versa.

1 τ is obtained by sorting documents in descending order with f (q, di)(i = 1, · · · , n). We have
τ(k) < τ(l) ⇒ sk ≥ sl, for k, l = 1, · · · , n. According to the definition of zkl, we have
zkl(sk−sl) = |sk−sl| ≥ 0 for all k, l = 1, · · · , n, given τ. Since all the terms in the summation
of Equation (11) are not negative, F is maximized: τ = arg maxτ∈Π F(q,d, τ) = σ.

2 σ is obtained by maximizing F: σ = arg maxσ∈Π F(q,d, σ). Based on the analysis above, we
know the maximum is achieved when all of the terms in the summation are not negative:
zkl(sk − sl) = |sk − sl| for all k, l = 1, · · · , n. According to the definition of zkl, for all
k, l = 1, · · · , n, we have: (a) sk > sl ⇒ σ(k) < σ(l); and (b) sk = sl ⇒ σ(k) < σ(l) or
σ(k) > σ(l). (a) and (b) mean σ can also be obtained by ranking the documents according
to their relevance scores, i.e., τ = σ.

Summarizing 1 and 2, we conclude that with the same parameter vector w, the ranking models
f and F generate the same ranking result.

B. Proof of Theorem 2

Proof Let

l(qi) = max
π∗i ∈Π∗i ;πi∈Πi\Π∗i

(
E(π∗i , yi) − E(πi, yi)

) · J(F(qi,di, π
∗
i ) − F(qi,di, πi)

) ≤ 0K ,
and r(qi) = 1 − E(σi, yi), where σi is the permutation selected for query qi by model F. There
are two cases:

Case 1 σi ∈ Π∗i If σi ∈ Π∗i , E(σi, yi) = 1, it is obvious that r(qi) = 1−E(σi, yi) = 0 and l(qi) ≥ 0.
Thus we have l(qi) ≥ 0 = r(qi).
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Case 2 σi < Π∗i Since σi = arg maxσ∈Πi F(qi,di, σ), we have F(qi, di, π
∗
i ) − F(qi,di, σi) ≤ 0.

Thus

l(qi) ≥ max
π∗i ∈Π∗i

(
E(π∗i , yi) − E(σi, yi)

) · J(F(qi, di, π
∗
i ) − F(qi,di, σi)

) ≤ 0K
= max
π∗i ∈Π∗i

(
E(π∗i , yi) − E(σi, yi)

)
= r(qi).

Summarizing case 1 and case 2, we obtain

m∑
i=1

l(qi) ≥
m∑

i=1

r(qi).

C. Proof of Theorem 3

Proof For ∀i = 1, ...,m, since

min
π∗i ∈Π∗i ;πi∈Πi\Π∗i

(
F(qi, di, π

∗
i ) − F(qi, di, πi)

) ≥ E(σi, yi),

we have
F(qi, di, π

∗
i ) − F(qi, di, πi) ≥ E(σi, yi), for ∀π∗i ∈ Π∗i , ∀πi ∈ Πi\Π∗i .

Since φ is monotonically nondecreasing, then

φ
(− (

F(qi, di, π
∗
i ) − F(qi, di, πi)

)) ≤ φ (−E(σi, yi)) , for ∀π∗i ∈ Π∗i , ∀πi ∈ Πi\Π∗i .

Since φ is positive, for ∀π∗i ∈ Π∗i , ∀πi ∈ Πi\Π∗i , we have(
E(π∗i , yi) − E(πi, yi)

) · φ (− (
F(qi, di, π

∗
i ) − F(qi, di, πi)

)) ≤ φ (− (
F(qi, di, π

∗
i ) − F(qi, di, πi)

))
≤ φ (−E(σi, yi)) ,

Thus,

φ (−E(σi, yi)) ≥ max
π∗i ∈Π∗i ;πi∈Πi\Π∗i

(
E(π∗i , yi) − E(πi, yi)

) · φ (− (
F(qi, di, π

∗
i ) − F(qi, di, πi)

))
.

Therefore,

m∑
i=1

φ (−E(σi, yi)) ≥
m∑

i=1

max
π∗i ∈

∏∗
i ;πi∈

∏
i \

∏∗
i

(
E(π∗i , yi) − E(πi, yi)

) · φ (− (
F(qi, di, π

∗
i ) − F(qi, di, πi)

))
.
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D. Proof of Theorem 4

Proof Set ZT =
∑m

i=1 exp {−E(π(qi,di, fT ), yi)} and ϕ(t) = 1
2 (1+φ(t)). According to the definition

of αt, we know that eαt =

√
ϕ(t)

1−ϕ(t) .

ZT =

m∑
i=1

exp {−E(π(qi,di, fT−1 + αT hT ), yi)}

=

m∑
i=1

exp
{
−E(π(qi,di, fT−1), yi) − αT E(π(qi,di, hT ), yi) − δTi

}
≤

m∑
i=1

exp {−E(π(qi,di, fT−1), yi)} exp {−αT E(π(qi,di, hT ), yi)} e−δ
T
min

= e−δ
T
min ZT−1

m∑
i=1

exp {−E(π(qi,di, fT−1), yi)}
ZT−1

exp{−αT E(π(qi,di, hT ), yi)}

= e−δ
T
min ZT−1

m∑
i=1

PT (i) exp{−αT E(π(qi,di, hT ), yi)}.

Moreover, if E(π(qi,di, hT ), yi) ∈ [0,+1] then,

ZT ≤ e−δ
T
minZT−1

m∑
i=1

PT (i)
(
1+E(π(qi,di, hT ), yi)

2
e−αT+

1−E(π(qi,di, hT ), yi)
2

eαT

)

= e−δ
T
min ZT−1

ϕ(T )

√
1 − ϕ(T )
ϕ(T )

+ (1 − ϕ(T ))

√
ϕ(T )

1 − ϕ(T )


= ZT−1e−δ

T
min

√
4ϕ(T )(1 − ϕ(T ))

≤ ZT−2

T∏
t=T−1

e−δ
t
min

√
4ϕ(t)(1 − ϕ(t))

≤ Z1

T∏
t=2

e−δ
t
min

√
4ϕ(t)(1 − ϕ(t))

= m
m∑

i=1

1
m

exp{−E(π(qi,di, α1h1), yi)}
T∏

t=2

e−δ
t
min

√
4ϕ(t)(1 − ϕ(t))

= m
m∑

i=1

1
m

exp{−α1E(π(qi,di, h1), yi) − δ1i }
T∏

t=2

e−δ
t
min

√
4ϕ(t)(1 − ϕ(t))

≤ me−δ
1
min

m∑
i=1

1
m

exp{−α1E(π(qi,di, h1), yi)}
T∏

t=2

e−δ
t
min

√
4ϕ(t)(1 − ϕ(t))

≤ m
{
e−δ

1
min

√
4ϕ(1)(1 − ϕ(1))

} T∏
t=2

e−δ
t
min

√
4ϕ(t)(1 − ϕ(t))

= m
T∏

t=1

e−δ
t
min

√
1 − φ(t)2.
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∴ 1
m

m∑
i=1

E(π(qi,di, fT ), yi) ≥
1
m

m∑
i=1

{1 − exp(−E(π(qi,di, fT ), yi))}

= 1 − ZT

m

≥ 1 −
T∏

t=1

e−δ
t
min

√
1 − φ(t)2.
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