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ABSTRACT
The database community has provided excellent frameworks
for efficient querying and online transaction or analytical
processing. The main assumption underlying most of these
frameworks is that there is no uncertainty regarding the
stored data. However, in recent years, many important
applications have emerged that need to manage noisy, cor-
rupted, or incomplete data. This includes, e.g., anonymized
data, data derived from sensor systems, or data from
information extraction and integration systems. For such
applications the assumption of logical consistency may not
be valid and needs to be revised. In particular, techniques
like probabilistic modelling and statistical inference may be
necessary to be able to draw meaningful conclusions from
the underlying data.

This paper presents DBrev, a hypothetical, intelligent
database system for managing large quantities of data that
involves uncertainty. We explain the main features of
DBrev based on the scenario of information extraction and
integration. We point out research challenges that need to
be tackled and discuss a new set of assumptions that future
database management frameworks need to build on.

General Terms
Databases, Probabilistic Reasoning, Information Extrac-
tion, Integration, Entity, Relationship, Knowledge Search

1. INTRODUCTION
For many decades the Database (DB) community has
focused on applications involving data that is not subject
to uncertainty or where the uncertainty can be ignored
or managed outside of the database. Such applications
include accounting, payroll, inventory, etc. However, for a
wide variety of recently emerged applications, uncertainty is
abundant and unavoidable: in many applications, measure-
ment reading from sensors can be corrupted, noisy or involve
missing data; in applications dealing with anonymized data,
uncertainty is part of the ambiguity arising from missing
values in the data; and most prominently, in information
extraction and integration, uncertainty comes from the im-
perfect automatic extraction and disambiguation techniques
or from unreliable sources. It is widely recognized by the
DB community that the capabilities and the relational-
algebraic models offered by state-of-the-art DB management
systems are not sufficient for applications such as the above

[16, 17, 10, 15, 19]. Rather, for such applications, there
is a need for DB systems that can automatically quantify
uncertainty, resolve inconsistencies, and provide means for
ranked retrieval and knowledge discovery for the stored data
based on uncertainty. The main problems that such a system
should be able to deal with are:

Provenance The system needs to be able to reason about
the derivation process and the validity of the stored
data, as well as about the reliability of the data
sources.

Context Awareness The system needs to keep track of
the context in which data is valid. This may involve
inferring entities and categories from the data, as
well as reasoning about temporal, spatial and other
relevant context.

Ambiguity The system needs to maintain different
context-dependent interpretations of data and support
the disambiguation process at query time. This may
involve inferring probabilities over interpretations, de-
pending on context, and possibly notions of statisti-
cally inferred semantic similarity.

Consistency The system needs to maintain consistency
beyond logical integrity constraints. This includes
more complex (first-order logic) inference rules on
the one hand and the handling of soft, probabilistic
constraints on the other.

Searching and Ranking The system needs to provide
ranked retrieval and knowledge discovery mechanisms
that can quickly adapt to the search context, prefer-
ences, and needs of the user.

The above problems have been addressed in isolation by
different communities, e.g, Databases, Machine Learning,
Information Retrieval, etc., and can be approached by
current techniques. However, addressing and solving them
simultaneously in an integrated system is, from our point
of view, an extremely challenging (and hence “outrageous”)
endeavor. The fundamental problem is to build the system
on a framework for representing and updating beliefs under
uncertainty. A promising candidate framework is probabilis-
tic reasoning. Unfortunately, the scalable models used in
state-of-the-art DB systems draw from first-order logic and
are not designed to deal with probabilities. The Statistical
Machine Learning (SML) community has given rise to com-
prehensive probabilistic reasoning models [20, 21, 22, 19],
but these often still suffer from scalability issues. Jaynes’
interpretation of probability theory as an extension of logic
under uncertainty [21] points towards the commonalities of
the DB and the SML communities. In this paper, we hy-
pothetically join these two research avenues with the one of
Information Retrieval, and present the hypothetical DBrev
system as their synergetic yield. As an example, we explain
how DBrev helps constructing and maintaining large-scale
knowledge bases containing billions of entity-relationship-
entity triples (statements) extracted from the Web and
other sources. DBrev enables probabilistic reasoning and



provides ranked retrieval and knowledge discovery over the
stored knowledge. In order to mitigate the uncertainty
inherent to information extraction and integration, DBrev
aggregates statistics about different sources of evidence for
the extracted triples, such as Web pages, extraction tools,
Web 2.0 users, who may give feedback on the extracted
triples, etc.

2. RELATED WORK
The main theoretical frameworks for combining the rela-
tional data representation with probabilistic reasoning are
the Probabilistic Database Model and Statistical Relational
Learning

Probabilistic Database Model (PDM) The PDM [16, 17, 10,
15] can be viewed as a generalization of the relational model
which captures uncertainty with respect to the existence
of database tuples (also known as tuple semantics) or to
the values of database attributes (also known as attribute
semantics). In the tuple semantics, the main assumption
is that the existence of a tuple is independent of the
existence of other tuples. Given a database consisting of
a single table, the number of possible worlds (i.e. pos-
sible database instances) is 2n, where n is the maximum
number of the tuples in the table. Each possible world is
associated with a probability which can be derived from
the existence probabilities of the single tuples and from
the independence assumption. In the attribute semantics,
the existence of tuples is certain, whereas the values of
attributes are uncertain. Again, the main assumption in this
semantics is that the values attributes take are independent
of each other. Each attribute is associated with a discrete
probability distribution over the possible values it can take.
Consequently, the attribute semantics is more expressive
than the tuple-level semantics, since in general tuple-level
uncertainty can be converted into attribute-level uncertainty
by adding one more (Boolean) attribute. Both semantics
could also be used in combination, however, the number of
possible worlds would be much larger, and deriving complete
probabilistic representations would be very costly. So far,
there exists no formal semantics for continuous attribute
values [16]. Another major disadvantage of PDMs is that
they build on rigid and restrictive independence assumptions
which cannot easily model correlations among tuples or
attributes [10, 12, 19]. Such correlations, however, may
be dictated by the application or domain at hand, and the
underlying system has to provide a flexible framework to
define and represent them.

Statistical Relational Learning (SRL) SRL models [12] are
concerned with domains that exhibit uncertainty and rela-
tional structure. They combine a subset of relational cal-
culus (first-order logic) with probabilistic graphical models,
such as Bayesian or Markov networks to model uncertainty.
These models can capture both, the tuple and the attribute
semantics from the PDM and can represent correlations
between relational tuples or attributes in a natural way
[10]. More ambitious models in this realm are Markov Logic
Networks [8, 19], Multi-Entity Bayesian Networks [13] and
Probabilistic Relational Models [11]. Some of these models
(e.g., [8, 13]) aim at exploiting the whole expressive power
of first-order logic. While [8] represent the formalism of
first-order logic by factor graphs, [11] and [13] deal with
Bayesian networks applied to first-order logic. Usually,
(approximate) inference in such models is performed using
standard techniques such as belief propagation or Gibbs
sampling. In order to avoid complex computations, [6,
7] propose the technique of lifted inference, which avoids
materializing all objects in the domain by creating all
possible groundings of the logical clauses. Although lifted
inference can be more efficient than standard inference on
these kinds of models, it is not clear whether they can be
trivially lifted (see [9]). Hence, very often these models
fall prey to high complexity when applied to practical
cases. However, despite the complexity of probabilistic

frameworks that build on graphical models, we think that
future database systems can considerably benefit from light-
weight graphical models for probabilistic reasoning, such as
the ones presented in [14, 23].

Ranked Retrieval and Knowledge Discovery Finally, [4] and
the references therein present approaches for combining In-
formation Retrieval and Knowledge Discovery with current
DB technology. Although the approaches discussed go a long
way, they are rather static in nature by disregarding online
updates of the data, which are inherent to many modern
knowledge-oriented frameworks and applications, such as
life-long information extraction [5], sensor networks and
signal processing, etc. Most importantly, their frameworks
do not consider holistic reasoning models for handling
uncertainty.

3. DBREV
We illustrate the functionality of DBrev in the context of
the management of information extracted from the Web.
The system is continuously supplied with triples of the
form <entity, relationship, entity>, where each triple comes
with other metadata such as the URLs of Web pages from
which it was extracted as well as temporal and/or spatial
information about its validity (when available). In addition,
DBrev continuously integrates implicit user feedback about
the triples it contains; the feedback may be collected from
an online game about encyclopedic knowledge or from users
of Amazon’s Mechanical Turk. The main tasks DBrev has
to deal with are described in the following.

3.1 Data Provenance
The problem of data provenance (also known as the lineage
problem) is closely related to the problem of database
curation, which is an open problem in the presence of
multiple information sources [16]. The idea is to trace
the data derivation process back to the sources in order
to guarantee data quality or to detect reasons for possible
data inconsistencies. In probabilistic databases the lineage is
handled by means of Boolean constraints on the tuples (e.g.,
c-tables [25]), which represent the set of possible worlds in
which the tuples are true. In contrast, DBrev can compute
the joint probability distribution over all possible worlds.
Consequently, for any subset of triples, DBrev can return
the maximum a posteriori assignment that maximizes their
joint probability. Note that the triples can be related to each
other through the sources they come from. Hence, DBrev
constructs factor graphs in which the truth value of the triple
is constrained by factors that relate it to variables quanti-
fying the reliability of sources. This way the information
sources become first-class citizens in DBrev. Furthermore,
there can be other logical dependencies between the triples,
such as dependencies concerning temporal and/or spatial
dependencies [26]. These dependencies are translated into
factor graphs as well, which are then integrated into the
above factor graph. Consequently, they are handled as
(soft) probabilistic constraints within the same reasoning
framework (see Subsection 3.3). Efficient message passing
on the factor graph corroborates the evidence and quantifies
the uncertainty.

For example, consider the triple <MichaelJackson, diedOn,
25-07-2009>. This triple could have been extracted from
many different news pages and also from encyclopedic
pages, such as Wikipedia. From a few other pages
(e.g. www.michaeljacksonsightings.com), an extraction
system could have extracted the triple <MichaelJackson,
seenIn, Cambridgeshire(UK)> together with the temporal
information ‘2010-03-08’1. In this case the corrobora-
tion process exploits temporal reasoning to decrease the
truth value of the latter triple and the trust in www.

1In DBrev, temporal and spatial information about triples
are represented by means of triple reification (see RDF
Semantics at http://www.w3.org/TR/rdf-mt/).



michaeljacksonsightings.com. Note that the probabilistic
corroboration problem is very subtle, as the truth values of
triples and the trustworthiness of information sources are
not necessarily determined by “majority voting” (e.g. by
the number of Web pages or people who claim something,
see also [23]). For example, if we corroborate user feedback
about the triple <BarackObama, hasWon, GrammyAward>
then a “majority voting” paradigm might fail since the
majority of users may not know that Obama did indeed win
the Grammy Award.

3.2 Ambiguity and Context Awareness
The ambiguity problem has been addressed in many vari-
ations, in different settings. It is one of the most acute
problems in the field of information extraction and inte-
gration, where it arises in the form of entity disambigua-
tion/resolution. For example, the integration of the datasets
from different Social Web platforms, such as Facebook,
MySpace, Twitter, flickr, LinkedIn, etc., poses a very
hard problem, since the entities mentioned there can have
ambiguous names. In the database setting, the problem
occurs as the record linkage problem, where the goal is
to find records that refer to the same entity. From a
semantic point of view, the ambiguity problem is very
difficult, as it often requires that contextual and background
information be interpreted in the correct way. Hence, the
ambiguity problem lies at the heart of AI. Consider the
famous example sentence “The fruit flies like a banana”.
Contextual and background information play a decisive role
for its understanding. At the same time, a probabilistic
reasoning framework seems to be predestined for capturing
the uncertainty that is inherent to disambiguation tasks.

For each entity, DBrev maintains two types of features:
(1) ontological and (2) contextual features. While the
contextual features are mainly provided by users and our
extraction tools, the ontological features are automatically
derived from general-purpose ontologies. For a given entity,
the ontological features describe its taxonomic relations to
other classes of entities (e.g. the entity AlbertEinstein be-
longs to the class physicist, philosopher, person, etc.). The
contextual features consist of relevant terms (e.g. derived
by frequency-based measures such as tf-idf ) which occur in
articles or user queries related to the given entity. While
the ontological features represent some kind of commonsense
background knowledge, the contextual features represent
the different contexts that might be related to the given
entity. The two types of features are combined into a
unified representation and are used to map all the entities
into a common latent space, in which the affinities or
similarities between entities are measured. Similar ideas
have been proposed in [24], where the authors describe
a Bayesian model for the task of deriving feature-based
similarities. On demand, the derived similarities allow
DBrev to introduce for every pair of candidate entities e1
and e2 a new triple <e1, sameAs, e2>, which is assigned
a corresponding probability (representing the belief that e1
and e2 are same) by the reasoning framework. This way,
DBrev retains the flexibility to reassess its conclusions as
new data comes in.

3.3 Consistency
In general, consistency can be viewed as a state (or pos-
sible world) in which a set of logical formulas are jointly
satisfied. In databases, consistency is checked with respect
to universal logical constraints (integrity constraints). A
consistent transaction on a DB is one that does not violate
those constraints. For example, the referential integrity
constraints disallow dangling references, i.e., references to
keys that do not exists in the DB.

DBrev exploits ontological knowledge, e.g. relationship
properties, such as symmetry, transitivity, functionality2,

2E.g. the relationship X born on date Y is functional, since
every person can only have one date of birth.

etc., to check whether the deductions between triples are
consistent. Furthermore, as described in the previous
subsection, DBrev combines the ontological knowledge with
contextual knowledge to deal with ambiguity. The dis-
ambiguation component plays a critical role; without it
the same entity might occur in the database in various
dangling definitions, which would make logical deductions or
transactions of any kind impossible. Consider the following
rule, which describes the deduction of triples by exploiting
the transitivity property of a relationship:

<X, R, Y> ∧ <Y, R, Z> ∧
<R, type, TransitiveRelation> → <X, R, Z>

where X, Y, and Z are entity variables, and R stands
for a relationship variable. For example, from the triples
<MuséeDuLouvre, locatedIn, Paris> and <Paris, locatedIn,
France> DBrev can derive the triple <MuséeDuLouvre,
locatedIn, France>. Although the latter triple may not
be explicitly stored in the database, its derivation is very
useful for the reasoning process, since it represents a logical
constraint between triples. This is exploited to support
the lineage (see Subsection 3.1) and the disambiguation
(see Subsection 3.2). Consider a newly extracted triple
<“Louvre”, “is located in”, “France”>. DBrev supports
its disambiguation component by reasoning probabilistically
about logical rules of the following kind:

refersTo(“r”, R) ∧
refersTo(“y”, Y ) ∧
canBeDeduced(X, R, Y ) ∧ D
→ refersTo(“x”, X)

where D represents a conjunction of contextual constraints
(e.g., temporal, spatial, or domain-based constraints), R rep-
resents a relationship variable, and X and Y represent entity
variables. This way DBrev can become more confident in the
hypothesis that“Louvre” is a useful description for the entity
MuséeDuLouvre. Similar rules were introduced in [1] to
support the disambiguation process. However, DBrev allows
users to define a wide range of logical constraints, which are
interpreted as probabilistic rules (i.e., soft constraints) on
the stored data; [23] shows how similar deduction rules can
be translated into factor graphs.

3.4 Searching and Ranking
For large-scale information retrieval tasks such as web
search, the ranking-oblivious conditions of Boolean search,
which were mainly used for querying library or product
catalogs, have been replaced by similarity and preference
based ranking techniques involving vectorial or bag-of-words
representations of documents and queries. Following the
same trend, DBrev combines the unstructured conditions
of keyword retrieval and the structured query paradigm of
databases with question answering techniques, while making
ranking a first-class citizen. This allows casual as well as
expert users to query the system. The search and ranking
model of DBrev is based on the following desiderata:

Pattern-Based Approximate Matching DBrev is geared to
answer knowledge queries (i.e., queries that ask about enti-
ties and relationships between them) or questions. Knowl-
edge queries can be expressed through a graph-based query
language similar to the one proposed in [3]. An example
search task could be: “Find all US companies that are
certified partners of Microsoft”. Figure 1 depicts a graph-
based representation of this query. The node labeled with
$x represents a variable, which in the answering phase is
replaced by entities that satisfy the relationship constraints
given by the query graph. The expression locatedIn* aims
at capturing geographical hierarchies, e.g. cities, counties,
states, countries, etc. Furthermore, node and edge labels
are relaxed through labels that refer to the same entities
and relations, respectively. For example, the node labeled
“Microsoft” is relaxed through labels that might refer to
the same real-world entity, e.g., “MS”, “MS Corporation”,



“MSFT”, etc. The entity disambiguation component of
DBrev takes care of retrieving similar labels for relaxation.
Natural language questions are first translated to graph-
based queries, which are then answered by means of the
same relaxation technique.

Figure 1: Graph-based representation of the search
task “Find all US companies that are certified
partners of Microsoft”

Top-k Ranking for Multiple Criteria Queries such as the
above have a knowledge discovery character and may return
a result set that is too large for a human to handle. This
means that the results need to be ranked with respect
to various criteria. The main criteria in DBrev are (1)
similarity and (2) user preference. In an approximate
matching paradigm, ranking by similarity (e.g. entity- or
relationship-based similarity) is crucial. This allows DBrev
to rank salient results higher than results that may be
only vaguely related to the query. However, from a user
perspective, the ranking becomes really meaningful if the
system takes the user preferences into account. This is why
DBrev makes use of the user context (e.g., location, back-
ground, general and current interests, etc.) and takes into
account his information needs (e.g. information freshness,
accuracy, popularity, etc.). Since the above criteria involve
probabilities, which need to be aggregated in an efficient
way, DBrev computes the results in a top-k fashion. This in
lines with [18], where Ré et al. argue that in a probabilistic
setting, the only meaningful semantics for returning results
to a user is by ranking them. Finally, DBrev allows users to
specify their own ranking criteria and provides hyperbolic
visualization tools for data exploration.

4. CONCLUSION
In this “outrageous” paper we have speculated about a
direction towards which database research may evolve. Our
dream database system DBrev combines ideas from database
research, machine learning and information retrieval to be
able to manage the huge amounts of unreliable information
extracted from the web. The challenge of large-scale
information extraction illustrates how we need to employ
and extend the notions of provenance, context, ambigu-
ity, consistency, and ranking as key concepts for future
database research. Although we have circumvented many
other important questions (e.g. dynamic index updates,
multidimensional indexing, etc.), we hope that the above
mentioned research communities may take some inspiration
from our dream and may seize the opportunity to collaborate
on the challenges ahead.
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