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ABSTRACT
In order to understand a complex system, we analyze its output or
its log data. For example, we track a system’s resource consump-
tion (CPU, memory, message queues of different types, etc) to help
avert system failures; we examine economic indicators to assess the
severity of a recession; we monitor a patient’s heart rate or EEG
for disease diagnosis. Time series data is involved in many such
applications. Much work has been devoted to pattern discovery
from time series data, but not much has attempted to use the time
series data to unveil a system’s internal dynamics. In this paper,
we go beyond learning patterns from time series data. We focus
on obtaining a better understanding of its data generating mecha-
nism, and we regard patterns and their temporal relations as organic
components of the hidden mechanism. Specifically, we propose to
model time series data using a novel pattern-based hidden Markov
model (pHMM), which aims at revealing a global picture of the
system that generates the time series data. We propose an iterative
approach to refine pHMMs learned from the data. In each itera-
tion, we use the current pHMM to guide time series segmentation
and clustering, which enables us to learn a more accurate pHMM.
Furthermore, we propose three pruning strategies to speed up the
refinement process. Empirical results on real datasets demonstrate
the feasibility and effectiveness of the proposed approach.
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1. INTRODUCTION
Time series data is being generated at an unprecedented speed

and volume in a wide range of applications in almost every do-
main. For example, daily fluctuations of the stock market, traces
produced by a computer cluster, medical and biological experimen-
tal observations, readings obtained from sensor networks, position
updates of moving objects in location-based services, etc, are all
represented in time series. Consequently, there is an enormous in-
terest in analyzing (including query processing and mining) time
series data, which has resulted in a large number of works on new
methodologies for indexing, classifying, clustering, and summariz-
ing time series data [8, 28, 13].

In this paper, we propose to study time series from a new angle.
Our goal is to understand the complex system that produces the
time series. Thus, instead of finding isolated historic patterns, or
predicting the next time series value based on the pattern in the
most recent time window, we focus on explaining the relationships
between the patterns, in particular, how they fit into a big, holistic
picture that describes the underlying system.

1.1 State of the art
Much work has been done on time series analysis, including time

series prediction [1, 6, 13, 9, 21], time series segmentation and
symbolization [12, 14], time series representation [7, 25], and sim-
ilar time series matching [8, 18]. However, not much attempt has
been made to use the time series data to explain how the underlying
system works.

Well known time series models such as ARIMA and Linear Re-
gression models, have been used for time series forecasting, which
is concerned with the problem of predicting time series values Xt

given observations X1, X2, · · · , Xt−1. One frequently used as-
sumption in time series forecasting is that the time series has a short
memory, which means current values are only related to values in a
recent time window. In other words, these approaches focus on lo-
cal characteristics in the time series, and do not attempt to explain
observations using the internal dynamics of the system.

Approaches such as Discrete Fourier Transform [8], Discrete
Wavelet Transform [2], Piecewise Linear Representation [11], and
Symbolic Aggregate Approximation [14], try to model the whole
time series. Their goal lies in representing the original time series
in a more concise way so that we can summarize the time series
or index the time series for fast pattern matching or pattern dis-
covery. These methods cannot reveal the internal dynamics of the
system, though. In DFT [8], for example, a time series is described
by a set of coefficients in the frequency domain. However, the co-
efficients are not interpretable, that is, knowing the coefficients in
the frequency domain does not necessarily enable us to understand
how the system works. Similarly, in PLR [11], a time series is seg-
mented into disjoint intervals, each of which is represented by a line



segment. However, the line segments are isolated. For instance, we
do not know whether the similarity between the line segments at
time t1 and t2 means the system is in the same internal state at t1
and t2.

Much work has been done on discovering frequent patterns (also
called motifs) in time series [17, 16]. However, frequent patterns
may not necessarily be important patterns, in terms of whether they
can inform us how the system works. Many mining algorithms
discover a large number of patterns that are hard to interpret, which
adds to the complexity of understanding the system instead of help-
ing reduce it.

1.2 Revealing system dynamics
Our goal is to obtain a better understanding of the system that

generates the time series. We assume the system that generates the
time series operates under a number of latent states [23, 24, 9, 21,
5, 4]. Many systems fall into this category. Our approach is based
on two important observations we made about such systems. The
first observation is that once a system is in a latent state, it will
stay in the state for a period of time until a certain event occurs
which leads the system to another latent state. For example, when
memory usage is below the physical memory capacity, the system
behaves in a certain way. The system exhibits stable patterns until
memory usage exceeds the physical memory capacity, when the
system starts paging. The second observation is that the system
goes through the same states over and over again. For example,
once memory usage recedes, the system will return to its old state
(without paging).

To have a better understanding of the system means to reveal the
latent states of the system, and how they alternate among them-
selves. In this paper, we regard the time series as the output gen-
erated by a state transition machine. Time series produced in each
state demonstrates a certain pattern of fluctuation, and transitions
between states reflect system dynamics. That is, the information of
once the system ending a certain state, what’s the most likely state
the system will enter.

The next question is what constitutes a state, or what constitutes
a unit of observation? This is the most challenging question when
using a state transition machine (e.g., an HMM) on time series data,
since it is not trivial to align an observation sequence with a state
sequence. A naïve and straightforward choice is to consider a sin-
gle observed value as an output token of a state. However, in time
series data, a single value contains very little semantics. We illus-
trate this by an example in Figure 1. Although A and B have the
same value, the underlying system is likely to be in two different
states when it outputs A and B, because A is in an upward trend
and B is in a downward trend. If our goal is to predict the next time
series value, then knowing the system in that value state has no pre-
dictive power. As a consequence, with single values as states, the
obtained machine will be full of uncertainty, which is not we want.

Figure 1: Single value as state

A better choice is to group neighboring values into a pattern, and
regard a pattern as a unit of observation (an observation token). A
good choice for a pattern is a line segment or a polynomial curve.

If line segments are used, the time series in Figure 1 will be repre-
sented by two line segments with different shapes, indicating that
the underlying system is in two different states. There are several
benefits of using line segments: 1) lines have simple shapes and the
trends they represent are easy to understand; 2) in many applica-
tions, a time series can be represented well by a sequence of line
segments.

Thus, our task is to: i) define a set of observation tokens, each
being a representative line segment in the time series; ii) convert the
time series to an observation sequence such that each observation
token aligns with a state in the unknown state sequence; iii) learn
an HMM from the observation sequence. However, the task of ob-
taining the observation sequence, or more specifically, the task of
segmenting a time series and then clustering the segments to obtain
representative line segments, is not trivial. The objective of many
time series segmentation and clustering approaches is to minimize
the difference between the time series and the resulting line seg-
ment sequence. However, this objective is not necessarily aligned
with that of finding the best state transition machine.

To see this, consider a toy example in Figure 2. Suppose we have
4 line segments A1, · · · , A4, and the question is whether we should
consider A1 and A2 as the same observation (i.e., representing A1

and A2 using the same observation token), or consider A3 and A4

as the same observation. It is clear that A1 and A2 are more simi-
lar to each other in shape. Thus, traditional clustering approaches,
which aim at minimizing approximation error, will group A1 and
A2 together.
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Figure 2: Segmenting

However, clustering line segments as if they are a set of discon-
nected elements is problematic. For instance, the line segments
following A3 and A4 have exactly the same shape, which suggests
that A3 and A4 may be generated by the system in the same state.
On the other hand, the line segments following A1 and A2 are to-
tally different, which suggests that the slight difference between
A1 and A2 may indicate that they actually belong to two different
states. To understand the internal dynamics of the system requires
us to pay attention to these temporal constraints instead of just min-
imizing the approximation error.

1.3 A Two Phase, Iterative Approach
To achieve the goal of revealing internal system dynamics, we

propose a pattern-based Hidden Markov model (pHMM) for time
series data. We discover patterns in the time series, and we ensure
that the discovered patterns are not disconnected or isolated, but
rather, they are organic components of a state transition machine,
which produces the original time series. Then, the challenges are
the following: i) in order to segment the time series and discover
patterns we should know the state transition machine first, because
it tells us the likelihood of one pattern being followed by another
pattern, otherwise we run into problems demonstrated by the ex-



ample in Figure 2; and ii) to build the state transition machine we
must know the patterns first, as patterns are the sole components of
the state transition machine.
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Figure 3: Overview of our approach

To solve this dilemma, we propose a two phase approach. In
phase one, we first segment the time series using traditional opti-
mization techniques. Because we do not have any knowledge about
the underlying state transition machine, the best thing we can do is
to use a standard approach [11] to convert the time series into a
piecewise linear representation. In other words, we approximate
the time series using line segments that minimize the approxima-
tion error. Then, we cluster the resulting segments using a greedy
clustering method (considering both the similarity and the tempo-
ral constraints). Finally, from the segmented time series, we learn
a hidden Markov model.

In phase two, we use an iterative process to refine the model.
Specifically, in each round, we first segment and cluster the time
series based on the learned pHMM. The pHMM provides important
guidance for segmenting and clustering, resulting in higher quality
patterns. Then we update the pHMM based on learned patterns.
We prove that the iteration process always improves the quality of
the model. The whole framework is illustrated in Figure 3.

1.4 Applications and Contributions
Our goal is to reveal the system beneath the time series data it

produces. With the knowledge of the underlying system, we will
be able to perform a large variety of challenging tasks. A represen-
tative list of tasks include the following:

• Trend prediction. With the knowledge of the state transition
machine, we can derive the temporal relations between pat-
terns. This enables us to answer queries such as: What the
trend of the time series is in 10 minutes; or when will the time
series end the current downward trend and enter an upward
trend?

• Accurate multi-step value prediction. Predicting time series
values long into the future is a challenging and important
task. Specifically, given time series before time point t, we
want to predict the values at time t + δ, where δ is much
bigger than 1.

• Pattern based correlation detection. In traditional approaches,
in order to compute correlation between two time series, we

map the time series into a vector space (e.g. using DFT or
DWT), and use a distance measure (e.g. Euclidean distance
or Dynamic Time Warping [7]) to calculate their similarity.
Now we can compute correlation based on patterns. Fur-
thermore, we can correlate the time series by rules such as:
whenever pattern P1 occurs in time series S1, P2 will occur
in time series S2.

In summary, the contributions we make in this paper are the fol-
lowing:

• We introduce a pattern-based hidden Markov model (pHMM)
for time series data. It focuses on revealing the internal dy-
namics of the system that produces the time series.

• We propose an iterative approach to refine the model. Fur-
thermore, we propose several pruning strategies to speed up
the refinement process.

• We propose algorithms that use pHMM to perform multi-step
value prediction, trend prediction and pattern based correla-
tion detection.

• We conduct extensive experiments to verify the effectiveness
and efficiency of the proposed approach.

1.5 Paper Organization
The rest of the paper is organized as follows. Section 2 dis-

cusses the problem and the challenges. Section 3 introduces the
algorithm in the initial phase. Section 4 describes the method to
refine pHMM. Section 5 shows how to utilize the learned model.
Section 6 shows experimental results. In Section 7, we discuss re-
lated work, and we conclude in Section 8.

2. PRELIMINARY AND APPROACH
In this paper, we propose using the pattern-based hidden Markov

model (pHMM) to reveal system dynamics from time series data.

2.1 Background of HMM
A hidden Markov model (HMM) is a statistical model in which

the system being modeled is assumed to be a Markov process. It
includes a finite set of states, each of which is associated with a
probability distribution over all possible output tokens. Transitions
among the states are governed by a set of probabilities. The states
are not visible, but outputs produced by the states are. Given a
sequence of observations, we learn an HMM and derive a sequence
of hidden states that correspond to the sequence of observations.

Formally, an HMM, denoted by λ = {S, A, B, π}, is described
with the following parameters:

• A set of states S = {1, 2, · · · , K}.

• State transition probabilities A = {aij}, 1 ≤ i, j ≤ K, i.e.,
aij is the probability of state i transiting to state j.

• Output probabilities B = {bi(o)}, 1 ≤ i ≤ K. o is an ob-
servation with a continuous or discrete value (or value vec-
tor). bi(o) is the probability of state i generating observation
o.

• Initial probabilities π = {πi}, 1 ≤ i ≤ K. πi is the proba-
bility of the time series beginning with state i.

When we learn an HMM, the basic assumption is that the obser-
vation sequence and the hidden state sequence is aligned. In our
case, however, one big challenge is to derive the alignment.

One fundamental problem associated with HMMs is the decod-
ing problem: given a model, λ, and a sequence of observations,



O, find the optimal state sequence that produces the observations.
Another problem is the learning problem: how to estimate the pa-
rameter λ of the HMM, so that the probability of the observation
sequence generated by the optimal state sequence is maximized.
In both cases, an important measurement is the production proba-
bility. Given an HMM λ, and a sequence of observations O, the
production probability is the probability of HMM λ generating O
along a state sequence s = (s1, · · · , sm), and it is computed as:

P (O, s|λ) = πs1bs1(o1)

m∏
j=2

asj−1,sj bsj (oj) (1)

The larger the production probability, the better λ and the state se-
quence s describe O.

2.2 Problem Statement
Given a time series X = x1, x2, · · · , xn, we aim at learning a

pattern-based Hidden Markov Model (pHMM), which reveals the
dynamics of the system that generates the time series.

Formally, we want to solve the following problem:

• Convert the time series X into a sequence of line segments,
L = (L1, L2, · · · , Lm);

• Learn a hidden Markov model from observation sequence L.

so that production probability

P (L, s∗|λ) = πs1bs1(L1)

m∏
j=2

asj−1,sj bsj (Lj) (2)

is maximized, where s∗ = (s1, s2, · · · , sm) is the optimal state
sequence, where sj generates line Lj with probability bsj (Lj).

2.3 Challenges and Overview of Our Approach
Although much research has been done on HMMs, and HMMs

have been successfully applied in many applications, it is a non-
trivial challenge to learn a pattern based HMM for the time series
data.

As we know, a traditional HMM is learned from an observation
sequence. We can estimate the parameters of an HMM using the
classic Baum-Welch algorithm. However, the premise is that we
have the observation sequence. In our case, the observation se-
quence is essentially unknown, since it needs to be learned from
the time series itself. Moreover, in the time series, the number of
possible patterns is infinite. For example, in our case, we repre-
sent a pattern by a line segment, whose slope and duration are all
continuous values.

Furthermore, the process of learning an observation sequence
from the time series cannot be decoupled from the process of learn-
ing a hidden Markov model from the observation sequence. Intu-
itively, producing an observation sequence from a time series is
done by time series segmentation. Existing approaches segment
time series by solving an optimization problem where the objec-
tive is to minimize the difference between the time series and the
line segment sequence. However, these approaches consider seg-
ments as independent and isolated, and ignore the temporal rela-
tions between them, but such temporal relations are critical in learn-
ing HMM. In our work, we learn the observation sequence and the
HMM simultaneously.

We solve the above problem using a two-phase approach. In the
first phase, we initialize the pHMM using a cluster-based approach.
The observation sequence used to learn the initial pHMM is learned
from the time series without any knowledge of the pHMM. In the
second phase, we refine the model with an iterative process. In
each round, we first segment the time series and cluster the line

segments under the guidance of a previously learned pHMM, then
the pHMM is updated based on the new segmentation.

3. THE INITIAL PHMM
We introduce our approach to build the initial pHMM in 3 steps.

First, we segment the time series. Second, we cluster line segments.
Third, based on the clusters, we learn the first pHMM.

3.1 From Time Series to Line Segments
In phase one, information about latent states is not available, so

we perform a traditional segmentation. We use a bottom-up ap-
proach to convert the time series X into a piecewise linear represen-
tation [12]. Initially, we approximate X with bn

2
c line segments.

The i-th line, Li, connects x2i−1 and x2i. Next, we iteratively
merge the neighboring lines. In each iteration, we merge the two
neighboring segments into one new line segment that has the min-
imal approximation error. The merging process repeats until every
possible merge leads to a line whose error exceeds a user specified
threshold, denoted by εr . Clearly, without knowledge of the latent
states, it is very likely that the initial segmentation is not optimal
for our goal (see Section 4.1).

3.2 From Line Segments to Clusters
After obtaining the line segments, we group them into clusters

{C1, C2, · · · , CK}. A key issue is to define the similarity between
line segments. Had our goal been to summarize or compress the
time series, we could have used the approximation error or minimal
description length as the objective function. However, as our goal
is to learn a pattern-based HMM, such an approach is not always
optimal.

We consider two clustering criteria:

• The similarity criterion. This is the same criterion for tradi-
tional clustering. In our case, the line segments in the same
cluster should have similar shapes (slopes and lengths), and
the line segments in different clusters have different shapes.

• The temporal criterion. If Li and Lj belong to the same
cluster, then Li+1 and Lj+1, which follow Li and Lj respec-
tively, should have the same distribution (in terms of which
cluster they belong to); more often than not they belong to
the same cluster.

We now formalize these two criteria. For the similarity criterion,
we measure the variance of the line segments in each cluster. For
cluster Ci, the relative error is computed as:

R(i) =
1

|Ci|
∑

(lj ,θj)∈Ci

{( lj − l̄i

l̄i
)2 + (

θj − θ̄i

θ̄i

)2}

where |Ci| is the number of lines in cluster Ci, l̄i and θ̄i are the
average length and the average slope of lines in Ci. Clearly, the
smaller R(i) is, the more similar the line segments in Ci are.

For the second criterion, we use entropy to measure the uncer-
tainty of the clusters following the lines of cluster Ci:

I(i) =

K∑
j=1

−p(j|i) log p(j|i) (3)

where p(j|i) denotes the probability that a line in Ci is followed by
a line in Cj . Intuitively, the smaller the I(i), the more certain we
are about the clusters that follow lines in Ci.

A straightforward way of clustering is to construct an objective
function based on these two criteria as:

F = α ·R + (1− α) · I (4)



where R =
∑K

i=1 |Ci|R(i) is the overall relative error of all clus-
ters, I =

∑K
i=1 p(i)I(i) is the overall entropy of all clusters, and

α ∈ [0, 1] is a user-provided parameter. Then we cluster the seg-
ment lines to minimize the objective function F . However, it is
hard to set a reasonable α. We illustrate it with an example. As-
sume we want to cluster three lines, L1, L2 and L3. They have
the same length, and their slopes satisfy: θ1 < θ2 < θ3. More-
over, L1 and L3 are followed by lines in the same cluster while L2

is followed by a line in another cluster, and the lines in these two
clusters have very different shapes. If we set a very large α, the
similarity criterion is dominant. It is likely that all three lines are
clustered into one cluster. On the other hand, if we set a small α,
the temporal criterion will dominate. A possible result is that L1

and L3 are put into the same cluster C while L2 is not. However,
this is unreasonable, as L2 is “enveloped” by L1 and L3.

In this paper, instead of optimizing Eq. 4 directly, we adopt a
greedy approach. Initially, each line is considered as a cluster on its
own. Then at each iteration, we merge two clusters by considering
two criteria in turn. The approach includes three steps:

Step 1. (Similarity Criterion) For each cluster Ci, find its most
similar cluster, called Ci’s candidate cluster.

DEFINITION 1 (CANDIDATE CLUSTER). For each cluster Ci,
its candidate cluster, denoted as Ti, is the cluster that satisfies:

1. R(Ti ∪ Ci) ≤ R(C ∪ Ci) holds for any C 6= Ti, where
Ti ∪ Ci is the new cluster generated by merging Ti and Ci,
and R(Ti ∪ Ci) is its relative error.

2. R(Ti ∪ Ci) ≤ εc, where εc is a user-specified threshold,
called the relative error threshold.

Step 2. (Temporal Criterion) For any cluster pair (Ci, Ti), com-
pute the entropy of new cluster Ci ∪ Ti.

Step 3. Merge a pair with minimal entropy to a new cluster.
This process continues until every possible merge results in a

relative error that exceeds the threshold εc.

Connection between the two measurements. In cluster-
ing, we use the similarity and the temporal criteria to measure the
quality of clusters. In the problem statement, we use the production
probability to measure the quality of the learned model. In fact, we
can build a connection between these two measurements.

We decompose production probability into P ′ and P ′′.

P (L, s∗|λ) = πs1bs1(L1)

m∏
j=2

asj−1,sj bsj (Lj)

=

m∏
j=1

bsj (Lj) · πs1

m∏
j=2

asj−1,sj

= P ′ · P ′′ (5)

P ′ measures how well the states match the occurrences of the line
segments, and it corresponds to the similarity criterion. P ′′ mea-
sures the certainty of transitions between states, and it corresponds
to the temporal criterion. So they are consistent with each other.

3.3 From Clusters to HMM
Based on the obtained clusters, we initialize the hidden Markov

model λ as follows. Assume the clusters are {C1, C2, · · · , CK},
we initialize an HMM with K states, {1, 2, · · · , K}, in which state
i corresponds to cluster Ci. In other words, we assume lines in
each cluster represent the typical fluctuation of time series when
the system stays in the same state.

Before discussing how to initialize the output probabilities, we
first define the output probability in terms of segment lines as ob-
servations. We assume slopes and lengths are independent to each
other. For line L = (l, θ), the output probability is defined as a
product of two probabilities:

bi(L) = pl(l|i)ps(θ|i)
in which pl(l|i) is the probability of state i generating the line with
length l, and ps(θ|i) is the probability of i generating the line with
slope θ.

In many real life applications, the system operates in different
states; and in each state, the system exhibits stable behavior. Each
observation of one state can be regarded as the stable behavior plus
some slight fluctuations, or errors. Since the observational error in
an experiment is often described by Gaussian Distribution, we use
it here to describe the distribution of segment lines. Formally, we
assume pl(·|i) and ps(·|i) follow 1-dimension Gaussian Distribu-
tions, N (µil, σ

2
il), and N (µis, σ

2
is) respectively.

Some experiments are conducted to verify the assumption and
results are shown in Figure 4. For both the Spot and Power datasets,
we select one big cluster randomly, since the big cluster contains
more lines that can demonstrate the distribution more clearly. It can
be seen that both length and slope can be approximated by Gaussian
distribution.

−10 −7.5 −5 −2.5 0
0

10

20

Slope

C
o
u
n
t

10 20 30 40
0

20

40

Length

C
o
u
n
t

−60 −40 −20
0

20

40

Slope

C
o
u
n
t

5 10 15 20 25
0

20

40

Length

C
o
u
n
t

 

 

(a) Spot Dataset (b) Power Dataset

Figure 4: Slope and length distribution

To initialize output probabilities of state i, we need to initialize 4
parameters: µil, σ

2
il, µis, σ

2
is. We estimate µil and σ2

il as the mean
and variance of lines’ lengths in Ci, and estimate µis and σ2

is as the
mean and variance of lines’ slopes in Ci.

We build a state sequence to initialize transition probabilities
and initial probabilities. In line sequence (L1, L2, · · · , Lm), we
replace each line with the cluster it belongs to. Since cluster Ci

corresponds to state i (1 ≤ i ≤ K), a state sequence is obtained.
Then based on this, we estimate transition probabilities and initial
probabilities as in the traditional HMM.

4. ITERATIVE PHMM REFINEMENT
We iteratively refine the pHMM learned in the previous round.

Each iteration has two steps. In step one, based on the current
pHMM, we use an extended Viterbi algorithm to segment the time
series and learn the optimal state sequence. In step two, based on
the new line segment sequence and the state sequence, we update
the pHMM. The iteration stops until the pHMM does not change.

4.1 Motivation of Iterative Refinement
We illustrate the benefit of refining with an example in Figure 5.

Assume in the initial phase, the time series is segmented into S1,
as shown in Figure 5(a). Consider intervals [a, b], [c, d] and [e, f ].
It can be seen that subsequences in all of them have similar shapes.



Moreover, the lines before and after them are all similar. However,
in S1, [a, b] is represented by line L2, while [c, d] is represented by
two lines L6 and L7. Since the shape of L2 is apparently different
to L6 or L7 respectively, they cannot be clustered into a group. So,
S1 misses the information that L2 is similar to the connection of L6

and L7. Moreover, according to the cluster approach, three clusters,
as well as three states, will be generated: C1 = (L6, L10), C2 =
(L7, L11) and C3 = (L2). While the first two are meaningful
states, C3 is very likely to be a noise state. Note that such issues
cannot be solved by frequent pattern mining, as such patterns may
not necessarily be frequent in the entire time series.
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Figure 5: Segmentation with/without Refinement

In the refinement process, the time series will be re-segmented
with the guidance of the current pHMM. Intuitively, the new seg-
mentation will identify the lines that can be generated by certain
states with a high probability. So [a, b] will be split into L2 and L3,
as shown in Figure 5(b). Obviously, it achieves a better pHMM.

4.2 pHMM-based Segmentation
Given an observation sequence, the Viterbi algorithm can find

the optimal state sequence. However, it only works if the observa-
tion sequence is known. In our case, we only have the raw time
series, instead of the observation sequence (a sequence of line seg-
ments). In this work, we extend the Viterbi algorithm to learn the
line segment and the state sequence simultaneously.

4.2.1 The Traditional Viterbi Algorithm
The Viterbi algorithm is an efficient method of learning the op-

timal state sequence s∗, given the HMM λ and the observation se-
quence O. It has a recursive procedure, and it works in parallel for
all states in a strictly time synchronous manner.

The key component in the Viterbi algorithm is the optimal prob-
ability, denoted as δt(i), which is the maximal probability of HMM
generating the observation segment o1, · · · , ot, along the optimal
state sequence s1, · · · , st, in which st = i. That is,

δt(i) = max
s1,··· ,st−1

P (o1, · · · , ot, s1, · · · , st−1, st = i|λ)

= max
s1,··· ,st−1

πs1bs1(o1)

t∏
j=2

(asj−1,sj bsj (oj))

The algorithm scans the observation sequence from t = 1, at
which point the optimal probability for state i is initiated as

δ1(i) = πibi(o1)

Assume all δt−1(j), 1 ≤ j ≤ K, are already obtained. The algo-
rithm computes δt(i) as:

δt(i) = max
j

(δt−1(j)aji)bi(ot)

When the algorithm reaches the last time point n, we obtain all
optimal probabilities: δn(i), 1 ≤ i ≤ K. By comparing all of
them, and backtracking the largest one, this algorithm obtains the
optimal state sequence.

4.2.2 Extending the Viterbi Algorithm
As analyzed before, we need to learn the line sequence and the

state sequence simultaneously. We implement it with a modified
optimal probability, δt(i). In other words, in the traditional Viterbi
algorithm, we only learn the optimal state sequence when comput-
ing δt(i), while in our algorithm, we not only learn the optimal
state sequence, but also find the optimal line sequence.

In our case, an observation token, or the unit of observation, is a
line segment. Therefore, we define δt(i) as the maximal probability
of the current HMM generating any line sequence up to t along the
optimal state sequence ending with state i. Formally,

δt(i) = max
L1,··· ,Lk

max
s1,··· ,sk−1

P (L1, · · · , Lk, s1, · · · , sk = i|λ)

where {L1, · · · , Lk} is a line sequence, in which the last line seg-
ment Lk ends at time point t, and its corresponding state is i. state
sk corresponds to the k-th line. Note that k can be any value not
exceeding b t

2
c.

Intuitively, in the Viterbi algorithm, when δt(i) is computed from
δt−1(j), it implies that the observation at time t is added to the ob-
servation sequence. Similarly, in our algorithm, when δt(i) is com-
puted, it implies a “new observation” is added to the observation
sequence. However, here the observation is a line segment ending
at t, instead of a single value.

(a) Traditional (b) Extended

Figure 6: Computing optimal probability

To be specific, we compute a possible δ′t(i) based on any previ-
ous optimal probability δt−d(j) as

δ′t(i) = δt−d(j)ajibi(L)

where L is the new observed line, which begins at t−d+1 and ends
at t, and its corresponding state is i. The new line L is determined
by t and d. The only limitation of d is that the approximation error
of L on the interval [t− d + 1, t] cannot exceed εr .

Since we do not know the optimal line sequence, we cannot de-
termine the value of d beforehand. We compute δt(i) by checking
all possible previous optimal probabilities, and choose the largest
result as the final δt(i):

δt(i) = max
d,j

(δt−d(j)aji)bi(L)

where line L is a variable for different previous optimal probabili-
ties. Figure 6 illustrates the difference between our approach with
the traditional Viterbi algorithm.

When the algorithm reaches time n, we obtain the maximal op-
timal probability maxi δn(i). Through backtracking it, we obtain
the optimal observation sequence and the corresponding state se-
quence. The detailed algorithm is shown in Algorithm 1.

In Algorithm 1, function BestLine(x, y) (line 7) learns the best-
fit line beginning from x and ending at y, which has the minimal



Algorithm 1 Detect_state_sequence
1: Input εr:maximal error threshold of line approximation
2: Initialize δ1(i) = 0 (1 ≤ i ≤ K)
3: for t ← 2, n do
4: for i ← 1, K do
5: δt(i) = 0
6: for d ← 2, t do
7: L = BestLine(t− d + 1, t)
8: if Err(L) > εr then
9: Break

10: else
11: if t == d then
12: temp = πibi(L)
13: else
14: temp = max

j
(δt−d(j) · aji)bi(L)

15: end if
16: if temp > δt(i) then
17: δt(i) = temp
18: prevd(t) = t− d
19: prevs(t) = j
20: end if
21: end if
22: end for
23: end for
24: end for
25: Obtain maximal optimal probability δn(i), which holds

δn(i) ≥ δn(j), j 6= i

26: Obtain state sequence by backtracking sequence of prevs

27: Obtain line sequence by backtracking sequence of prevd

approximation error. Function Err(L) computes the approxima-
tion error of L.

Performance analysis. In the traditional Viterbi algorithm, at
each time point, it computes K probabilities: δt(i), i = 1, · · · , K.
To compute each δt(i), it checks K probabilities δt−1(j), j =
1, 2, · · · , K. So the time complexity is O(nK2) in each round.

In our task, at each time point, we also compute K probabilities:
δt(i),i = 1, 2, · · · , K. However, to compute each δt(i), we need to
check (t−1)∗K possible probabilities δt−d(j), (j = 1, 2, · · · , K,
1 ≤ d < t) at most. Thus, the time complexity is O(n2K2) in
each round. Clearly, for long sequences, it is not feasible. Next, we
introduce three pruning strategies to improve the efficiency.

4.2.3 Three Pruning Strategies
We propose three pruning strategies, two of which are lossless

and the third is lossy (with respect to whether the final result is the
same as that of the exact approach discussed before).

Strategy 1: Prune with threshold εr. The first one is based
on the requirement that the approximation error of each line cannot
exceed threshold εr . So we use εr to filter state transitions which
need not be checked. Assume the current time point is t, and we
compute δt(i). We check optimal probabilities of previous time
points from t− 1 to 1. If we find a time point t′, which satisfies

Err(BestLine(t′ − 1, t)) > εr and Err(BestLine(t′, t)) < εr

it means the approximation error of the line covering interval [t′ −
1, t] must exceed εr . So later we need not check the optimal prob-
abilities before t′. Note that while the process continues, t′ will
move forward gradually.

Strategy 2: Prune with optimal possibility. The second
pruning strategy uses obtained candidates of optimal probabilities
to filter useless optimal probabilities. In algorithm 1, to compute
δt(i), we need to check lots of previous optimal probabilities. Each
time a previous optimal probability is checked, we get a candidate
of δt(i). Since computing optimal probability finds the maximal
one, we can make pruning based on the obtained candidates.

We maintain all previous optimal probabilities in a list, denoted
as LT , in which all probabilities are sorted in descending order.
The optimal probability will be deleted from LT once the approx-
imation error of the line L generated by it exceeds εr . We use LTi

to indicate the i-th optimal probability in LT . To compute δt(i),
we check the entries in LT from top to bottom. Assume after we
check the top-j entries in LT , the obtained maximal candidate is
δ′. Then we check the (j+1)-th entry, LTj+1, in LT . We compute
whether the following inequality holds:

LTj+1 · amax(i) · bmax(i) < δ′

where bmax(i) is the maximal output probability generated by state
i and amax(i) is the highest transition probability from any state to
state i.

If it holds, it indicates that from LTj+1, as well as all entries
after it, we cannot obtain a candidate of δt(i) larger than δ′. So δ′

is the final δt(i). We add it into LT for later computing.

Strategy 3: Prune with boundary points. Although the
first two strategies reduce the unit cost of computing an optimal
probability, the process may still be time consuming since it needs
to compute optimal probabilities for each time point. In this strat-
egy, we reduce the number of points where we need to compute
optimal probabilities, which can greatly speed up the process.

In fact, the goal of the extended Viterbi algorithm is to find the
optimal line sequence, which is determined by boundary points of
lines. If we only compute optimal probabilities on these points, in-
stead of all time points, we can speed up the process greatly, while
the accuracy doesn’t suffer too much. An important question is:
which points are more likely to be boundaries in the optimal seg-
mentation? We answer this question with the following observa-
tion:

OBSERVATION 1. If two neighboring lines before and after t
have apparently different slopes, t is more likely to be a boundary.

The reason is that if the two neighboring lines have similar slopes,
it is more likely that they are merged into a line, and consequently
t is a point in the middle of this line, instead of being a boundary.
We illustrate the observation in Figure 7. It is obvious that points
A and C should be boundaries. For D and E, the lines before and
after them have similar slopes, so they are less possible to be the
boundaries than A and C.

Figure 7: Boundary points

We choose points based on the above observation. Remember
that in the initial phase, we segment the time series in a bottom-
up way. At each step, two neighboring lines are merged and the
point connecting them changes from a boundary to a middle point.



The sooner a boundary point is changed, the less likely that it is a
boundary. So we sort all the time points according to the order they
become middle points, and select the last N time points to form
a boundary candidate list, where N is a user-specified parameter.
Then, we execute Algorithm 1 only on these points. Continuing
the example in Figure 7, assume we only consider these six points.
They should be sorted as:

· · · , D, E, B, F, A, C

If we just select 4 points from them to run Algorithm 1, C, A, F
and B will be selected.

Strategies 1 and 2 are lossless ones and don’t affect the accuracy,
while the third one is a lossy strategy, since it may cause some
points, which should be optimal segmentation boundaries, to be
missed. However, our method of choosing points guarantees that
we choose the points which are most likely to be the boundaries.
Experimental results verify that this strategy can reduce the time
consumption dynamically, while keeping the accuracy similar to
the exact model.

4.3 Updating pHMM
Assume in round k, the current pHMM is λk−1. The obtained

optimal line sequence and state sequence are denoted as Lk and sk

respectively. We update the current pHMM, so that it can generate
Lk and sk with the largest probability. Let Lk = (L1, L2, · · · , Lm)
and sk = (s1, s2, · · · , sm). Note that the number of lines in Lk,
m, is possible to vary over different rounds.

Transition probabilities and initial probabilities are updated ac-
cording to state sequence sk. To update output probabilities, we
cluster the lines in Lk according to the corresponding states. Specif-
ically,

Ci = {Lj |sj = i}, i = 1, 2, · · · , K

Then we update the mean and the variance of slopes and lengths
with the method in the initial phase. After that, we obtain the
pHMM in this round, denoted as λk. It happens that certain states
in λk−1 disappear from λk, if these states don’t occur in state se-
quence sk.

Finally, we prove the correctness of the refinement approach, that
is, the new production probability in the current round is not less
than that in the last round.

THEOREM 1. The production probability of round k is not less
than that of round k − 1, that is:

P (Lk, sk|λk) ≥ P (Lk−1, sk−1|λk−1)

PROOF. Since Lk and sk are the optimal observation sequence
and state sequence which has maximal probability based on the
pHMM in last round, it holds:

P (Lk, sk|λk−1) ≥ P (Lk−1, sk−1|λk−1) (6)

Next, since the parameters in λk are the results of maximum
likelihood estimation. So it holds

P (Lk, sk|λk) ≥ P (Lk, sk|λk−1) (7)

Combining Eq. 6 and Eq. 7, we can obtain

P (Lk, sk|λk) ≥ P (Lk−1, sk−1|λk−1) (8)

5. APPLICATIONS OF THE MODEL
The pHMM reveals the system dynamics from the time series it

produces. With knowledge of the underlying system, we can deal
with some advanced tasks. In this section, we introduce how to use
pHMM to perform these tasks.

5.1 Multi-step Value Prediction
Different from traditional prediction models, which make predic-

tions based on previous values, the pHMM makes predictions based
on patterns. To be specific, assume we already learn a pHMM from
the training time series. Now, we go through a testing time series
and predict the values based on the learned pHMM. Let t be the
current time point, we first detect the current state. Then based on
the current state, we predict the values of t+1, t+2, · · · . Multi-step
value prediction is very useful in the application of system moni-
toring, in which earlier detection of the anomaly value is critical.

Assume we already obtain a pHMM, and Y = {y1, y2, · · · } is
the time series we monitor to make predictions. We first detect
the current state, with the extended Viterbi algorithm in Section 4.
Pruning strategies 1 and 2 can both be used here, but the third one
is not, since it requires that we already have the segmentation of the
whole time series, which is not available in online monitoring.

To speed up the process, we utilize another pruning strategy in-
troduced in [18], which can be executed on the fly. It aims at
reducing the number of points, at which we checked the previous
optimal probabilities to compute the current optimal probability.
Specifically, if we find that a past point is not likely to be a bound-
ary, we delete all the optimal probabilities at this point from LT .

We do it as follows. Given a minimal distance D and a minimal
percentage P , we dynamically remove points yt and yt′ if they hold

|t− t′| < D and
|yt − yt′ |
|yt + yt′ |/2

< P

If these two inequalities hold, it means that these two points are
near and there is no large fluctuation between their values. By this
strategy, we only need to maintain a small number of optimal prob-
abilities, by which we can compute current optimal probability ef-
ficiently.

Assume the new arrival value is yt, we compute δt(i), 1 ≤ i ≤
K, and obtain the optimal line sequence and state sequence up to
t. Then we make predictions of future values based on the current
state.

5.2 Trend Prediction
In many applications, users are not interested in forecasting spe-

cific values. Instead, they are interested in the evolving of trends.
With pHMM, we can predict the future trends easily. For example,
we can answer queries like: what is the trend of time series after
10 minutes; or when will the time series end the current downward
trend and enter an upward trend.

The approach is similar with that of multi-step value prediction.
When monitoring a time series, we first detect the current state on-
line, and then make prediction based on this. For example, to esti-
mate how long the system will stay in the current state, we compute
the difference between the mean duration of the current state, and
its current duration; A more useful case is to estimate the trend in
a future period, such as predicting the temperature trend tomorrow
between 9:00-10:00am. To answer this query, we first predict the
time span of the next state based on transition probability. If it cov-
ers the period in question, we use the mean of the slope in the next
state as the estimated trend; if not, we predict the state after the
next state. We continue this process until the period in question is
covered.

5.3 Pattern-based Correlation Detection
Correlation detection is an important operation in time series

mining. Measurements, like the correlation coefficient, can tell
whether similar subsequences exist between two time series. How-
ever, it is advantageous to detect a more general correlation be-
tween two time series based on patterns. Consider the example



shown in Figure 8. When a burst, P1, occurs in time series X ,
a more stable upward trend, P2, will occur in time series Y with
probability 80%. Note that P1 and P2 can be two totally different
patterns. Moreover, they can have different lengths and not align.
For example, occurrences of P2 are always 5 seconds later than
those of P1. In general, we learn the correlations based on patterns,
instead of values. We call this type of correlation the pattern-based
correlation.

P1 P1

P2 P2

X

Y

Time

Value

P1 P1

P2P2

P1

Figure 8: General correlation

pHMM can be used to find the pattern-based correlation effec-
tively. Given two time series X and Y , we learn two pHMMs
for them respectively. Then we compute the correlations between
patterns in these two pHMMs. We use two criteria to measure
the general correlation. The first one is frequency, which mea-
sures whether these two patterns have a similar number of occur-
rences. Assume we measure the correlation between pattern P1 in
X and P2 in Y . Let P1 occur m1 times and P2 occur m2 times
(m1 ≤ m2). The first criterion is computed as

f(P1, P2) =
m1

m2

The second criterion is about how well their occurrences align. It is
better if most of their occurrences have similar gaps, or delays. To
measure the second criterion, we compute the minimal average of
their gaps’ square. Since there exist many possible matchings, we
choose the one with minimal gap-square-average. In the example
shown in Figure 8, the best matching of P1 and P2 is illustrated by
dotted lines.

If m1 ≤ m2, we pick out m1 occurrences of P2, which can best
match occurrences of P1. Let {cj}, 1 ≤ j ≤ m1, be the central
time points of occurrences of P1, and {cij}, 1 ≤ ij ≤ m2, be
central points of m1 occurrences of P2. We measure the second
criterion as follows:

g(P1, P2) = min

{
1

m1

m1∑
j=1

(cj − cij )
2

}

which can be efficiently computed with a dynamic programming
approach. We combine these two criteria to measure the general
correlation between patterns P1 and P2 as:

GC(P1, P2) =
g(P1, P2)

f(P1, P2)

The smaller GC(P1, P2), the more correlated patterns P1 and P2.

6. EXPERIMENT
We conducted extensive performance tests for our approach. All

algorithms are implemented in Matlab 7.0, and are tested on a PC
with Intel Pentium IV 2.4GHz CPU and 2GB RAM.

6.1 Experiment Setup
We choose two types of real-life time series, the first is a rela-

tively regular time series, and the second is less regular. We nor-
malize values of both datasets into interval [0,1].

1. Power demand time series [27]. It is the 15 minutes of av-
eraged values of power demand for research facility (ECN)
in the full year 1997 and it contains 35,050 data points. The
training subsequence and testing subsequence both contain
2,000 time points. Since the fluctuation of power demand in
each day is similar, it is more regular.

2. Spot prices time series. It contain the spot prices for daily
exchange rates of 12 kinds of currencies relative to the US
dollar. For each currency, there are 2,567 (work-)daily spot
prices over the period 10/9/86 to 8/9/96. In each experiment,
we randomly select one currency.

We conducted three groups of experiments. In the first group
of experiments, we test the efficiency of the proposed approach,
especially of the three pruning strategies. In the second group of
experiments, we analyze the impact of parameters εr and εc. Fi-
nally, we test the effectiveness of pHMM for answering three types
of queries introduced in Section 5.

6.2 Experiment Results

Efficiency. We conduct the experiments on the Power dataset.
We train the model in three scenarios: no pruning, pruning with
strategy 1, pruning with both strategies 1 and 2. In each scenario,
we compare the runtime under different N , the selection ratio of
boundary points. For example, 0.05 means we choose 0.05∗2000 =
100 time points to train the model. The results are shown in Table 1.
It can be seen that pruning reduces runtime significantly, especially
pruning with both strategies 1 and 2.

N 0.05 0.1 0.5 1
No-Prune 96 381 9265 -
Prune 1 41 93 689 1921

Prune 1&2 29 70 425 934

Table 1: Runtime Comparison(s)

Since pruning loses information, we test its influence on the qual-
ity of learned pHMM. As a larger N leads to longer training time,
it is desirable that a relatively small N can still build a high-quality
model. We directly measure the quality of the model with the whole
production probability. We test it on both the Power dataset and the
Spot dataset. The production probability is replaced by the value
of negative logarithm, − log(P (L, s|λ)). The results are shown in
Figure 9.
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Figure 9: Influence of N

We can see that in both datasets, when the percentage is equal to
or larger than 0.1, the production probability is not affected much,
which verifies the effectiveness of this pruning strategy. In other
words, we can still learn high quality models by looking at a small
number of time points. In our experiments, we set N as 0.1.



The influence of εr and εc. In this group of experiments,
we test the influence of two parameters, εr , approximation error
threshold in time series segmentation, and εc, relative error thresh-
old in line clustering. The experiments are conducted on the Spot
dataset and the Power dataset. The following two measurements
are used to measure the quality of the learned pHMM:

• Residual error per time point. It measures how accurately
pHMM represents the original time series by segment lines.
It is computed as follows. After obtaining the model and
the optimal segmentation, L, for each interval Li, we use the
’central’ line of state si to approximate the subsequence. The
errors are summarized and then divided by the length of the
whole time series. A smaller residual error means the learned
model represents the time series more accurately.

• Entropy. It is the second criterion used in clustering segment
lines in the initial phase, I in Eq. 4. It measures the certainty
of the states about the next state. The smaller the entropy, the
more certain the states are about the following state.
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Figure 10: Residual Error and Entropy Vs. εr
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Figure 11: Residual Error and Entropy Vs. εc

Figure 10 shows the results with varying εr . To make the com-
parison of two measurements clearer, we scale residual error by a
factor of 0.002. It can be seen that in both datasets, when εr in-
creases, the residual error also increases. It means larger εr will
reduce the accuracy of the learned model to approximate the time
series. In contrast, when εr increases, the entropy decreases. So in
different applications, users can set εr according to the following
requirement: To represent the time series more accurately, users
should choose a smaller εr; to be more certain about states, users
should choose a larger εr .

The results of varying εc are shown in Figure 11. The same scale
is used as in the experiment of the residual error. It can be seen that
εc has the same characteristics with εr . When it increases, since the
relative error of the lines in a cluster is larger, more residual error is
generated. On the contrary, entropy decreases when εc increases.
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Figure 12: Accuracy of Trend Prediction
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Figure 13: Accuracy of binary trend prediction

Trend Prediction. The major advantage of pHMM is that it can
be used to perform the tasks discussed in Section 5. In this exper-
iment, we first test the effectiveness of the proposed approach for
trend prediction.

The experiments are conducted on both the Spot dataset and the
Power dataset respectively. We compute the prediction accuracy
as follows. In the testing time series, we randomly select 50 time
points. At each time point, we make the trend predictions after 5
different gaps, 10, 20, 30, 40, 50. Assume the current time point is
t. For each gap d, we predict the trend of 20-length subsequence
[t+d+1, t+d+20]. The trend is represented by a segment line. We
compare the true trend with the estimated trend by our approach.
For example, at time point 100, we predict the trend of [111, 130],
[121, 140] · · · . We compute the relative error as e(l)−b(l)

b(l)
, where

e(l) is the slope of the estimated line, and b(l) is that of the best-fit
line. The accuracy of two models are compared. The first one is
the pHMM model obtained by only clustering, the second by both
clustering and refinement. Through this experiment, we test the
effectiveness of both the cluster algorithm and the refinement pro-
cess. The results are shown in Figure 12. It can be seen that in the
cluster-based model, the relative error does not increase dramati-
cally as the gap increases, which verifies the effectiveness of our
clustering approach. For both datasets, especially the Spot dataset,
which is less regular than the Power dataset, pHMM is more ac-
curate. This result clearly demonstrates the effectiveness of the
refinement process.

We also conduct experiments for binary trend prediction. For
each testing time series, we make a binary trend prediction: up
or down. Three approaches are compared: Rand, Regression and
pHMM. The Rand approach makes random guesses. The Regres-
sion approach predicts by first computing the linear regression of
the time series in the current time window, and then making pre-
dictions with it. For each dataset, we also pick 50 time points to
predict the trend of the next 10, 20, 30, 40 and 50 steps. Figure 13
shows the average accuracy of all 50 time points. It can be seen
that pHMM is more accurate than other approaches.
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Figure 14: Accuracy of Multi-step Value Prediction

Multi-step Value Prediction. In this experiment, we test the
accuracy of pHMM for multi-step value prediction. The experi-
ments are conducted for both Spot and Power datasets. We select
50 points randomly. For each selected point, we predict the val-
ues after 1, 5, 10, 20 ,30 and 40 steps respectively. The pHMM is
compared with two classic approaches: a linear regression model
(denoted by LR) and a regression tree (denoted by RT) [1]. Both ap-
proaches are trained based on values of the previous 20 time points.
For the linear regression model, we learn the model in the online
way. That is, at each selected time point, the model is learned based
on the previous 20 values. Then all 5 predictions are made based on
this model. For the regression tree, we train the model before mak-
ing predictions. First, we build a training dataset from the original
time series, where each row contains 20 input values and 1 output
value. Then a regression tree is learned from this dataset. We make
predictions as follows. Assume the current time point is t. First we
predict the value at t + 1 based on values at t− 19, t− 18, · · · , t.
Then we consider the estimated value at t + 1 as an input value,
and estimate the value at t + 2. This process continues until all 5
values at t + 1, t + 10, t + 20, t + 30, t + 40 are estimated.

We use relative error as the measurement. The results are shown
in Figure 14. It can be seen that on both datasets, pHMM is more
accurate than the other two approaches. In LR, the values are pre-
dicted based on the current line, which obviously cannot accurately
predict the values after a large gap. Unlike LR, RT contains multi-
ple prediction rules, so when the step increases, it still can find the
fittest model to make predictions. However, since it has no knowl-
edge whether the estimated value is appropriate, it cannot adjust the
next predictions, even if the previous estimated value has a large er-
ror. Hence when the step increases, its accuracy drops. The results
show that these two models are applicable for predicting the next
value, but not for multi-step prediction. To increase the accuracy
for these approaches, an alternative way is to train a specific model
for the prediction with a specific step, but it needs to learn a lot
of models, which is infeasible in practice. In contrast, pHMM can
make predictions accurately, even when the step increases. It veri-
fies the advantage of the pattern-based model.

Pattern-based Correlation Detection. Finally, we test the
effectiveness of pHMM for pattern-based correlation detection. We
conduct this experiment on the Spot dataset. Since all time series
are over the same time period, we hope to find correlations be-
tween price trends of different currencies. We use time series for
"French Franc" as the reference time series, and compute correla-
tions between it and 5 other currencies (including "Australian Dol-
lar", "Belgian Franc", "Canadian Dollar" and so on). For each time
series, we train the pHMM model. Then, for each state of "French
Franc", we compute its pattern-based correlation(GC) with any
state in the 5 other time series. Table 2 shows both minimal GC
and average GC. For example, in the first row, Minimal GC means

the minimal GC computed between any state pair in which one is
from "French Franc" and the other is from "Australian Dollar". Av-
erage GC is the average of all GCs between all state pairs from two
currencies.

Minimal GC Average GC
Australian Dollar 88.33 130.45

Belgian Franc 41.25 50.62
Canadian Dollar 120.41 160.37
German Mark 60.57 120.46
Japanese Yenr 130.59 170.96

Table 2: Pattern-based Correlation

It can be seen that 5 target currencies demonstrate different cor-
relations. The fluctuation of "Belgian Franc" is most similar to that
of "French Franc", so both the minimal and average GC are min-
imal compared to all other currencies. "German Mark" also has a
similar state with "French Franc", although its average GC is still
high. For all the 3 other currencies, their states are more differ-
ent with those of "French Franc". This experiment shows that with
pattern-based correlation, we can compare time series in the higher
level.

7. RELATED WORK

Time series representation and forecasting. A number of
techniques have been proposed in the literature to represent time
series with patterns. In [7], authors give an extensive performance
comparison of popular time series representation approaches. They
can be categorized into two groups. Those in the first group split
the whole time series into disjoint segmentations and represent each
segment with the mean value or a regression line, such as PLA [11]
and PAA [10]. These techniques can provide an approximate shape
of the time series. However, they don’t exploit the relationships
between segments. Those in the second category represent time
series with a few dominant coefficients of certain transformations,
such as DFT [8] and DWT [2]. However, the coefficients are not
interpretable, that is, knowing the coefficients in the frequency do-
main does not necessarily enable us to understand how the system
works.

Time series motifs are approximately repeated subsequences of a
longer time series stream. Motifs are defined and categorized using
their support, distance, cardinality, length, dimension, underlying
similarity measure, etc. Many researchers have introduced tech-
niques to find them efficiently in the case of a large database or
streams [16]. But still, the set of motifs cannot provide us with the
whole picture of the time series.

Recently, some works dealing with relations between patterns
has been proposed. Pattern Growth Graph (PGG) [22] detects and
manages variations over pseudo periodical streams. It first splits
time series into segments, each of which is an occurrence of the
pseudo period, and then describes time series by several connected
lines. However, this work can only deal with pseudo periodical
time series, and is not applied to the general time series. In [19], a
multi-scale schema is proposed to compress time series. It uses
techniques such as FFT and random projection to represent the
original time series. However, patterns are still isolated, and hence
cannot be used to make predictions.

Time series forecasting has been a topic of extensive research [1,
3]. In particular, many tools for forecasting and processing time
series appear in statistics and signal processing fields. The tradi-
tional method includes ARIMA [1]. Other well-known machine
learning approaches include Bayesian Network, Regression Tree,



CART and Random Forests [28]. These methods try to capture re-
lationships between the predicted value, yt, with observed values
yt−1, · · · , yt−n. Our approach is different to them, since our goal
is to build a model based on patterns instead of single values.

Markov model and the related extension models. The
hidden Markov model (HMM) assumes that the states are unob-
servable and the observation symbols are emitted by the states ac-
cording to the output probability. A well-known problem of HMM
is that the first-order assumption restricts it from accurately model-
ing the time series data with highly varied dynamics, as it is often
that the future state not only depends on the present state, but also
the past states. To increase the accuracy of modeling, the n-gram
model was presented [15], but the complexity and the learning cost
increase exponentially when n increases.

In contrast with n-gram, variable length Markov model (VLMM)
learns a minimum set of contexts with variable lengths to model
the high-order Markovian process [20]. VLMM aims to extend
the states to variable length contexts, which is composed of several
connected states. It reduces the number and complexity of con-
texts by allowing the context to have variable lengths. However,
VLMM is limited as an observable Markov model and not a hidden
Markov model. In other words, all states are observable, and no
output probability is needed.

Another Markov model related to our work is Variable length
hidden Markov model (VLHMM) combines the advantages of both
HMM and VLMM [26]. Instead of generating observations using
single states, VLHMM extends states to contexts, which are com-
posed of variable of states. An EM algorithm is used to learn the
parameters of the model, which aims to maximize the likelihood of
generating time series by the model. The difference between these
models and the proposed pHMM is that they take the value of each
time point as an observation, while in pHMM, the observations are
patterns.

8. CONCLUSION
In this paper, we reveal the dynamics of a complex system by

learning a pattern-based hidden Markov model from the time se-
ries data generated by this system. The biggest difference between
a pHMM and a traditional HMM is that in pHMM, observations
are not given, but learned from the data as well. We propose an
approach to learn patterns (observations) and the model simultane-
ously. Furthermore, three pruning strategies are proposed to speed
up the learning process. With pHMM, we are able to perform pat-
tern based tasks, such as trend prediction and pattern-based corre-
lation detection. Empirical results on real datasets demonstrate the
feasibility and effectiveness of the proposed approach.
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