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Abstract

In this paper, we study the complexity of computing the determinant of a matrix over a
non-commutative algebra. In particular, we ask the question, “over which algebras, is the
determinant easier to compute than the permanent?” Towards resolving this question, we show
the following hardness and easiness of noncommutative determinant computation.

• [Hardness] Computing the determinant of an n × n matrix whose entries are themselves
2 × 2 matrices over a field is as hard as computing the permanent over the field. This
extends the recent result of Arvind and Srinivasan, who proved a similar result which
however required the entries to be of linear dimension.

• [Easiness] Determinant of an n × n matrix whose entries are themselves d × d upper
triangular matrices can be computed in poly(nd) time.

Combining the above with the decomposition theorem of finite dimensional algebras (in partic-
ular exploiting the simple structure of 2×2 matrix algebras), we can extend the above hardness
and easiness statements to more general algebras as follows. Let A be a finite dimensional
algebra over a finite field with radical R(A).

• [Hardness] If the quotient A/R(A) is non-commutative, then computing the determinant
over the algebra A is as hard as computing the permanent.

• [Easiness] If the quotient A/R(A) is commutative and furthermore, R(A) has nilpotency
index d (i.e., the smallest d such that R(A)d = 0), then there exists a poly(nd)-time
algorithm that computes determinants over the algebra A.

In particular, for any constant dimensional algebra A over a finite field, since the nilpotency
index of R(A) is at most a constant, we have the following dichotomy theorem: if A/R(A) is
commutative, then efficient determinant computation is feasible and otherwise determinant is
as hard as permanent.

†Microsoft Research, Silicon Valley, 1065 La Avenida, Mountain View CA 94043, USA. email:
schien@microsoft.com.

‡Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, INDIA. email:
prahladh@tifr.res.in. Part of this work was done while the author was at Microsoft Research, Silicon Valley
and the MIT Computer Science and Artificial Intelligence Laboratory.

§Computer Science Division, University of California Berkeley, CA 94720, USA. email:
sinclair@cs.berkeley.edu.

¶Institute for Advanced Study, Einstein Drive, Princeton NJ 08540, USA. email: srikanth@math.ias.edu. Part
of this work was done while the author was at Microsoft Research, Silicon Valley.



1 Introduction

Given a matrix M = {mij}, the determinant of M , denoted by det(M) is given by the polynomial
det(M) =

∑
σ∈Sn

sgn(σ)
∏n
i=1miσi, while the permanent of M , denoted by per(M) is defined by

the polynomial per(M) =
∑

σ∈Sn

∏n
i=1miσi. Though deceivingly similar in their definitions, the

determinant and permanent behave very differently with respect to how efficiently one can compute
these quantities. The determinant of a matrix over any field can be efficiently computed using
Gaussian elimination. In fact, determinant continues to be easy even when the entries come from
some commutative algebra, not necessarily a field [Sam42, Ber84, Chi85, MV97]. Computing the
permanent of a matrix over the rationals, on the other hand, as famously shown by Valiant [Val79],
is just as hard as counting the number of satisfying assignments to a Boolean formula or equivalently
#P-complete even when the entries are just 0 and 1. Given this state of affairs, it is natural to ask,
“what is it that makes the permanent hard while the determinant is easy?” Understanding this
distinction in complexity of computing the determinant and permanent of a matrix is a fundamental
problem in theoretical computer science.

Nisan first pioneered the study of noncommutative lower bounds in his 1991 groundbreaking
paper [Nis91]. In one of that paper’s more important results, Nisan proves that any algebraic
branching program (ABP) that computes the determinant of a matrix M = {mij} over the non-
commutative free algebra F〈x11, . . . , xnn〉 must have exponential size; this then implies a similar
lower bound for arithmetic formulas. This contrasts markedly with the many known efficient algo-
rithms for determinant in commutative settings, which include polynomial-sized ABPs [MV97].

This problem takes on added significance in light of a connection discovered by Godsil and
Gutman [GG81] and developed by Karmarkar et al. [KKL+93] between computing determinants
and exponential time algorithms for approximating the permanent. The promise of this approach
was cemented when Chien et al. [CRS03], expanding on work by Barvinok [Bar99], showed that if
one can efficiently compute determinant of an n × n matrix M whose entries mij are themselves
matrices of O(n2) dimension, then there is a fully polynomial randomized approximation scheme
for the permanent of a 0-1 matrix; similar results were later proven by Moore and Russell [MR09].
Thus understanding the complexity of noncommutative determinant is of both algorithmic and
complexity-theoretic importance.

Nisan’s results are somewhat limited in that they apply only to the free algebra F〈xi〉 and not
to specific finite dimensional algebras (such as those used to approximate the permanent), and
because they do not apply outside of ABPs and arithmetic formulas. Addressing the first concern,
Chien and Sinclair [CS07] significantly strengthened Nisan’s original lower bounds to apply to a
wide range of other algebras by analyzing those algebras’ polynomial identities. In particular, they
show that Nisan’s lower bound extends to d × d upper-triangular matrix algebra over a field of
characteristic 0 for any d > 1 (and hence over Md(F), the full d × d matrix algebra as well), the
quaternion algebra, and several others, albeit only for ABPs.

In a significant advance, Arvind and Srinivasan [AS10] recently broke the ABP barrier and
showed noncommutative determinant lower bounds for much stronger models of computation.
They show that unless there exist small circuits to compute the permanent, there cannot exist
small noncommutative circuits for the noncommutative determinant. More devastatingly from the
algorithmic point of view, they show that computing det(M) where the mij are linear-sized matrix
algebras is at least as hard as (exactly) computing the permanent. Arvind and Srinivasan thus bring
into serious doubt whether the determinant-based approaches to approximating the permanent are
computationally feasible.

While these collections of results make substantial progress in our understanding of when de-
terminant can be computed over a noncommutative algebra, they are still incomplete in significant
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ways. First, we do not know whether Arvind and Srinivasan’s results rule out algorithms for de-
terminants over constant-dimensional matrix algebras, which are still of use in approximating the
permanent. More expansively, we still do not know the answer to what is perhaps the fundamental
philosophical question underlying this:

Whether there is any noncommutative algebra over which we can compute determinants
efficiently, or whether, as may seem attractive, commutativity is a necessary condition
to having such algorithms?

1.1 Our results

In this paper, we fill in most of these remaining gaps. Our first main result extends Arvind and
Srinivasan’s results all the way down to 2× 2 matrix algebras.

Theorem 1.1. (stated informally†) Let M2(F) be the algebra of 2×2 matrices over a field F. Then
computing the determinant over M2(F) is as hard as computing the permanent over F.

The proof of this theorem works by retooling Valiant’s original reduction from #3SAT to per-
manent. One would not expect to be able to modify Valiant’s reduction to go from #3SAT to
determinant over a field F, as there are known polynomial-time algorithms in that setting. How-
ever, when working withM2(F), what we show is that there is just enough noncommutative behavior
in M2(F) to make Valiant’s reduction (or a slight modification of it) go through.

Given the central role of matrix algebras in ring theory, this allows us to prove similar results for
other large classes of algebras. In particular, consider a finite-dimensional algebra A over a finite
field F. This algebra has a radical R(A), which happens to be a nilpotent ideal of A. Combined
with classical results from algebra (in particular the simple structure of the 2× 2 matrix algebras)
the above theorem can be extended as follows to yield our second main result.

Theorem 1.2. (stated informally‡) If A is a fixed§ finite dimensional algebra over a finite field
such that the quotient A/R(A) is noncommutative, then computing determinant over A is as hard
as computing the permanent.

In particular, if the algebra is semisimple (i.e, R(A) = 0), then the commutativity of A itself
is determinative: if A is commutative, there is an efficient algorithm for computing det over A;
otherwise, it is at least as hard as computing the permanent. The class of semisimple algebras
includes several well-known examples, such as group algebras.

It may be tempting at this point to see the sequence of lower bounds starting from Nisan’s
original work and conjecture that computing det over A for some algebra A is feasible if and only
if A is commutative. Perhaps surprisingly, we show that this is not the case—in, fact there do
exist noncommutative algebras A for which there are polynomial-time algorithms for computing
det over A. For instance, in our third main result, we show that computing the determinant where
the matrix entries are d× d upper triangular matrices for constant d is easy. For reasons that will
soon be clear, we will state this result, more generally, in the language of radicals.

Theorem 1.3. Given a finite dimensional algebra A and its radical R(A), let d be the smallest
value for which R(A)d = 0 (i.e. any product of d elements of R(A) is 0). If A/R(A) is commutative,
there is an algorithm for computing det over A in time poly(nd).

†See Theorem 3.5 for a formal statement.

‡See Theorem 5.1 for a formal statement.

§By fixed, we mean that the algebra is not part of the input; we fix an algebra A and consider the problem of
computing the determinant over A.
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While this description of the class of algebras that allow efficient determinant computation is
somewhat abstruse, it does include several familiar algebras. Perhaps most familiar is the algebra
Ud(F) of d × d upper-triangular matrices, for which R(Ud(F))d = 0. What the result states is
that the key to whether determinant is computationally feasible is not commutativity alone. For
noncommutative algebras, it is still possible that determinant can be efficiently computed, so long
as all of the noncommutative elements belong to a nilpotent ideal and have a limited “lifespan” of
sorts.

The above theorems together yield a nice dichotomy for constant dimensional algebras over a
finite field. Given any such algebra A of constant dimension D over a finite field, either A/R(A) is
commutative or not. Furthermore, if A/R(A) is commutative, we have that R(A) is nilpotent with
nilpotency index at most D which is a constant. We thus, have the following dichotomy: if A/R(A)
is commutative, then efficient determinant is feasible else determinant is as hard as permanent.

Does this yield a complete characterization of algebras over which efficient determination com-
putation is feasible? Unfortunately not. In particular, what if the dimension D is non-constant, i.e.,
the algebra is not fixed but given as part of the input or if the algebra is over a field of characteristic
0? In these cases, the lower bound of Theorem 1.2 and upper bound of Theorem 1.3 are arguably
close, but do not match. A complete characterization remains an intriguing open problem.

Organization of the paper: After some preliminaries in Section 2, we prove lower and upper
bounds in two concrete settings: we prove a lower bound for 2× 2 matrix algebras in Section 3 and
an upper bound for small-dimensional upper triangular matrix algebras in Section 4. The results
on general algebras are in Section 5, followed by some discussion in Section 6.

2 Preliminaries

In this section we define terms and notation that will be useful later.
An (associative) algebra A over a field F is a vector space over F with a bilinear, associative

multiplication operator that distributes over addition. That is, we have a map · : A×A→ A that
satisfies: (a) x · (y · z) = (x · y) · z for any x, y, z ∈ A, (b) λ(x · y) = (λx) · y = x · (λy), for any λ ∈ F
and x, y ∈ A, and (c) x · (y + z) = x · y + x · z and (y + z) · x = y · x+ z · x for any x, y, z ∈ A. We
will assume that all our algebras are unital, i.e., they contain an identity element. We will denote
this element as 1. For more about algebras, see Curtis and Reiner’s book [CR62]. A tremendous
range of familiar objects are algebras; we will be concerned with the algebra of d× d matrices over
F, which we will denote Md(F), as well as the algebra of d × d upper-triangular matrices over F,
or Ud(F). Other prominent examples are the free algebra F〈xi〉, the algebra of polynomials F[xi],
group algebras over a field, or a field considered as an algebra over itself.

Given an n× n matrix M = (mij) whose elements belong to an algebra A, the determinant of
M , or det(M), is defined as the polynomial det(M) =

∑
σ∈Sn

sgn(σ)
∏n
i=1miσi. Note that when

A is noncommutative, the order of the multiplication becomes important. When the order is by
row, as above, we are working with the Cayley determinant. The permanent of the same matrix
is per(M) =

∑
σ∈Sn

∏n
i=1miσi. We will denote by detA (and perA) the problem of computing the

determinant (and permanent) over an algebra A.
We recall also the familiar recasting of the determinant and permanent in terms of cycle covers

on a graph. Suppose M = (mij) is an n × n matrix over an algebra A. Let G(M) denote the
weighted directed graph on vertices 1, . . . , n that has M as its adjacency matrix. A permutation
π : [n] → [n] from the rows to the columns of M can be identified with the set of edges (i, π(i))
in the graph G(M); it is easily observed that these edges form a (directed) cycle cover of G(M).
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Letting C(G) denote the collection of all cycle covers of G(M), we can write

det(M) =
∑

C∈C(G(M))

sgn(C)m1,C(1)m2,C(2) · · ·mn,C(n) (2.1)

and
per(M) =

∑
C∈C(G(M))

m1,C(1)m2,C(2) · · ·mn,C(n), (2.2)

where for a given cycle cover C, C(i) represents the successor of vertex i in C, and sgn(C) is the
sign of C. It is known that sgn(C) = (−1)n−c, with c being the number of cycles in C, and that this
is also the sign of the corresponding permutation. We will denote the weight of an edge e = (x, y)
as w(e) or w(x, y). Further, for a subset of edges B = {(x1, y1), . . . , (x|B|, y|B|)} of a cycle cover C

with xi < xi+1, we can define the weight of B as w(B) =
∏|B|
i=1w(xi, yi). (Note that the product is

in order by source vertex.) Thus w(C) =
∏
imi,C(i) by w(C) is the weight of the cycle cover, and

the product sgn(C)
∏
imi,C(i) is the signed weight of C.

3 The lower bound for 2× 2 matrix algebras

In this section, we show our key lower bound for 2 × 2 matrix algebras. Our proof is based on
Valiant’s seminal reduction from #3SAT to permanent, as modified by Papadimitriou [Pap94] and
also described in the complexity textbook by Arora and Barak [AB09]. We first give a self-contained
description of that, before detailing our modifications of it.

3.1 Valiant’s lower bound for the permanent

Valiant’s reduction is from #3SAT to permanent; given a #3SAT formula ϕ on n variables and m
clauses, he constructs a weighted directed graph Gϕ on poly(n,m) vertices such that the number
of satisfying assignments of ϕ is equal to constant × per(M(Gϕ)), where M(Gϕ) is the adjacency
matrix of Gϕ. The key components of Gϕ are the variable, clause, and XOR gadgets shown in
Figure 1.¶ The idea is that there will be a relation between satisfying assignments of ϕ and cycle
covers of Gϕ; moreover, for each satisfying assignment, the total weight of its corresponding cycle
covers will be the same.

Before defining Gϕ itself, we first work with a preliminary graph G0
ϕ that contains n variable

gadgets and m clause gadgets, but no XOR gadgets; all of the gadgets are disjoint from each other.
For the moment, the number of external edges in each of the variable gadgets is unimportant. In
analyzing G0

ϕ, we will use the following:

Lemma 3.1. The following hold for the gadgets in Figure 1: (a) A variable gadget has exactly two
cycle covers. Each cycle cover contains one long cycle using all of the external edges on one side
of the gadget and the long middle edge, as well as all the self-loops on the other side of the gadget.
(b) In a clause gadget, there is no cycle cover that uses all three external edges. For every proper
subset S of the external edges in a clause gadget, there is exactly one cycle cover that contains
exactly the edges in S; this cycle cover has weight 1.

¶We follow a convention from [AB09] in allowing gadgets to sometimes have multiple edges between the same two
vertices. While technically prohibited in a graph defined by a matrix, this can be fixed by adding an extra node in
these edges.
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Figure 1: Gadgets used in proving Valiant’s lower bound. All edges have weight 1 unless noted otherwise.
For the variable and clause gadgets, the solid (not dotted) edges are called (vertex) external edges or (clause)
external edges. Note that the number of external edges in a variable gadget is not fixed, and need not be
the same for the True and False halves of the gadget.

As all n+m gadgets in G0
ϕ are disjoint, any cycle cover of G0

ϕ will be a union of n+m smaller
cycle covers–namely, one for each gadget. The choice of cycle cover for each gadget defines the
value of each variable and which literals are satisfied in each clause.

More precisely, for a variable gadget, let the term True cycle cover denote the cycle cover
containing the external edges on the True side of the gadget. Analogously, the False cycle cover
refers to the cycle cover containing the external edges on the False side of the gadget. The idea
is that a cycle cover of G0

ϕ sets a variable to T or F by choosing either the True or False cycle
cover. Meanwhile, for clause gadgets, the intention is that each external edge will correspond to
one of the three literals in the clause, and an external edge is used in a cycle cover if and only if
the corresponding literal is set to F (i.e. the corresponding literal is not satisfied). Since no cycle
cover can contain all three external edges of a clause gadget, in this interpretation at least one of
the literals in the clause must be satisfied.

We say a cycle cover C of G0
ϕ is consistent if (1) whenever C contains the True cycle cover of

the gadget for a variable xk, it contains all clause external edges for instances of the negative literal
xk and no clause external edges for instances of the positive literal xk, and (2) conversely, whenever
C contains the False cycle cover for xk, it contains all clause external edges for instances of xk but
no clause external edges for instances of xk. A consistent cycle cover therefore does not “cheat” by
claiming to set xk to T (for example) in a variable gadget but to F in a clause gadget. This is close
to what we want:

Lemma 3.2. The number of satisfying assignments of ϕ is equal to the total weight of consistent
cycle covers of G0

ϕ.

Proof. This follows from combining the natural bijection between satisfying assignments and con-
sistent cycle covers and the fact from Lemma 3.1 that every cycle cover of a clause gadget has
weight 1.

Of course, nothing about G0
ϕ guarantees that a cycle cover must be consistent, and in fact many

inconsistent covers exist. To fix this, we need to use the critical XOR gadgets to obtain the final
graph Gϕ.

The graph Gϕ is constructed as shown in Figure 2 (left). It has the same n variable gadgets and
m clause gadgets as G0

ϕ, with the gadget for each variable xk having as many True external edges
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Figure 2: Left: Subgraph of Gϕ corresponding to clause (x1 ∨ x2 ∨ x4), with the clause gadget in center.
Three variable gadgets are connected to the clause gadget via XOR gadgets. Right: Examples of how
gadgets may have cycle covers of different sign.

as there are instances of xk in ϕ, and as many False external edges as there are instances of xk.
Now, however, for each appearance of a literal xk or xk in a given clause, an XOR gadget is used
to replace the corresponding external edge in that clause gadget and a distinct external edge on
the appropriate side of the variable gadget for xk. The role of the XOR gadgets is to neutralize the
inconsistent cycle covers of G0

ϕ while still maintaining the property that each satisfying assignment
of ϕ contributes the same to the total weight of cycle covers. This leads to the description of the
final graph Gϕ itself.

We now state the important properties of the XOR gadget, the key component of Valiant’s
proof.

Lemma 3.3. Suppose a graph G contains edges (u, u′) and (v, v′), with all four vertices distinct.
Suppose now that the edges (u, u′) and (v, v′) are replaced by an XOR gadget as shown in Figure 1,
resulting in a new graph G′ (with four new vertices a, b, c and d). Let Cu\v be the set of cycle covers
containing (u, u′) but not (v, v′), and wu\v =

∑
C∈Cu\v w(C) be their total weight. Let Cv\u and

wv =
∑

C∈Cv\u w(C) be defined analogously. Then there exist two disjoint sets of cycle covers of G′

with total weight 4wu\v and 4wv\u, while all cycle covers of G′ not in these sets have total weight
0.

The proof is omitted, as we will state and prove our own modified version of this in Section 3.2.
This leads to the following:

Theorem 3.4. [Valiant] Given a 3-SAT formula ϕ and the graph Gϕ as described, per(Gϕ) =
43mS, where S is the number of satisfying assignments of ϕ.

We omit the formal proof, but give some of the intuition. Beginning with G0
ϕ, we begin adding

XOR gadgets one at a time. When a pair of edges is replaced by an XOR gadget, any cycle covers
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that are consistent with respect to that pair of edges are turned into a set of cycle covers whose
total weight is a factor of 4 more than the original weight. All other cycle covers in the new graph
have total weight 0. This continues until each of the 3m XOR gadgets are added, at which point
the original consistent cycle covers have become a set of cycle covers with total weight 43m while
all other cycle covers in the final graph have weight 0. The total weight of the cycle covers in the
final graph is therefore 43mS, as required.

3.2 Our construction

We now prove the following:

Theorem 3.5. Let F be a field of characteristic p ≥ 0. If p = 0, computing detM2(F) is #P-hard.
On the other hand, if p > 0 and odd, then computing detM2(F) is ModpP -hard.

Our proof is also a reduction from #3SAT (or Modp-SAT in the case of positive odd character-
istic) and is based on Valiant’s framework as described in the previous subsection. Given a 3SAT
formula ϕ, we wish to construct a directed graph Hϕ with weights belonging to M2(F) such that
the number of satisfying assignments of ϕ can be computed from det(M(Hϕ)), as expressed in
equation (2.1) above. We will first describe the graph and then prove its correctness.

A very naive but instructive first try would be to simply use the graph Gϕ from Valiant’s
construction, replacing each edge weight w ∈ F with wI, where I2 is the 2 × 2 identity matrix.
This fails, of course, because of the sign factor sgn(C) inside the summation, which is based on
the parity of the number of cycles in C. The immediate problem is that each of the three types
of gadgets could conceivably use an odd or even number of cycles. As shown in Figure 2 (right),
variable gadgets may have a different number of self-loops on different sides; clause gadgets may
use one or two cycles depending on which external edges are chosen; and XOR gadgets show similar
behavior.

Fortunately, these problems can be overcome if we also allow ourselves to modify the edge
weights, and crucially, use the noncommutative structure available in M2(F). This results in the
gadgets shown in Figure 3. We now define two graphs, a preliminary graph H0

ϕ and final graph
Hϕ, in analogy with G0

ϕ and Gϕ from Section 3.1. The new graphs H0
ϕ and Hϕ will be constructed

in the same manner as Gϕ, only using the modified gadgets from Figure 3 instead of the original
gadgets in Figure 1.

The rough idea behind these gadgets is that with the new weights, each resulting cycle cover of
a gadget of the “wrong” sign will have an extra −1 sign from its edge weights. The determinant is
then essentially the same as the permanent. We now explain the changes in more detail.

For variable gadgets, the fix is easy – all we have to do is make sure that both sides of the
gadget have an even (for example) number of vertices, and hence an even number of self loops.
This can be accomplished by adding, if necessary, a new vertex and appropriate new edges on one
or both sides. The new external edges, if any, will not be connected to any of the clause gadgets.

For clause gadgets, we need to address the problem that some cycle covers have only one cycle,
while others have two. Here we benefit from the observation that one of the edges, (x, y) in Figure 3,
is used only in cycle covers with two cycles. Thus we can correct for parity by changing the sign
of this edge from I2 to −I2; as a result, every cycle cover of a clause gadget has the same signed
weight.

For XOR gadgets, simply changing the edge weights to scalar multiples of I2 is insufficient.
(Indeed, Valiant presciently noticed this in 1979!) However, we can save the construction by using
more sophisticated matrix-valued edge weights instead. In particular, we define the following three
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Figure 3: Modified gadgets.

2× 2 matrices:

X =

(
1 0
0 −1

)
;Y =

(
0 −1
−1 0

)
;Z =

(
0 −1
1 0

)
. (3.1)

We then modify the weights of the edges between vertices a, b, c and d. Specifically, each edge
entering vertex b has its weight multiplied by X; each edge entering c has its weight multiplied by
Y , and each edge entering d has its weight multiplied by Z.

For now, with Hϕ defined, we prove that computing det(Hϕ) is equivalent to computing the
number of satisfying assignments of ϕ. We first observe the following analogue of Lemma 3.2.

Lemma 3.6. Let Ccon be the set of all consistent cycle covers of H0
ϕ. Then there exists z ∈ {1,−1}

such that for all C ∈ Ccon, we have sgn(C)w(C) = zI2.

Proof. As in the proof of Lemma 3.2, there is a bijection between satisfying assignments of ϕ and
consistent cycle covers of H0

ϕ. We need to show that each of these cycle covers has the same signed

weight. For such a cycle cover C ∈ Ccon we have sgn(C) = (−1)n
0
H−c(C), where n0

H is the number of
vertices in H0

ϕ and c(C) is the number of cycles in C. We further know that (−1)c(C) = (−1)p+m+q,
where p is the number of cycles used to cover the n variable gadgets, m is the number of clauses,
and q is the number of times C uses two cycles to cover a clause gadget. Since we assumed p to be
even, we have sgn(C) = (−1)n

0
H+m+q.

On the other hand, w(C) is the product of the edge weights of C. All of these weights are
I2 except for the w(x, y) in the clause gadget, which has weight −I2 and shows up when C uses
two edges for a clause gadget. Thus w(C) = (−1)qI2, and sgn(C)w(C) = (−1)n

0
H+mI2, which is

independent of the cycle cover C. (Hence,
∑

C∈Ccon sgn(C)w(C) = (−1)n
0
H+mSI2, where S is the

number of satisfying assignments of ϕ).

Without loss of generality, we can assume from here on that the sign z is positive, as we can
insert a new vertex within an edge so that n0

H +m is even.
We now prove the following useful identities of XOR gadgets, which can be verified by hand:

Lemma 3.7. Let MXOR be the adjacency matrix for the XOR gadget, or
0 −X −Y Z
0 X 2Y Z
0 3X 0 Z
I2 X Y −Z

 .
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Letting Mi,j indicate the minor of M with row i and column j removed, we have (1) det(M3,1) =
−4I2, (2) det(M1,3) = −4J2, (3) det(M) = det(M1,1) = det(M3,3) = det(M13,13) = 0, where

J2 =

(
0 1
1 0

)
.

Now consider a graph G with vertices labeled 1, . . . , nG and weights in M2(F). Suppose G
contains vertex-disjoint edges (u, u′) and (v, v′), each with weight I2. Suppose now that the edges
(u, u′) and (v, v′) are replaced by an XOR gadget as shown in Figure 3. This results in a new graph
G′, with four new vertices a, b, c and d, which we number nG + 1, . . . , nG + 4. We now define a
mapping ψ from C(G) to subsets of C′(G) as follows: Given cycle covers C ∈ C(G) and C ′ ∈ C(G′),
then C ′ ∈ ψ(C) if and only if (1) for all edges e ∈ C\{(u, u′), (v, v′)}, we have e ∈ C ′, (2) (u, u′) ∈ C
if and only if (u, a), (c, u′) ∈ C ′, and (3) (v, v′) ∈ C if and only if (v, c), (a, v′) ∈ C ′.

This leads to the following analogue of Lemma 3.3:

Lemma 3.8. Let Cu\v = {C ∈ C(G) : (u, u′) ∈ C, (v, v′) 6∈ C} be the set of cycle covers of
G containing (u, u′) but not (v, v′), and Cv\u = {C ∈ C(G) : (v, v′) ∈ C, (u, u′) 6∈ C}. Then there
exists a mapping ψ from C(G) to subsets of C′(G) such that ψ(C1)∩ψ(C2) = ∅ for all C1, C2 ∈ C(G)
and (1) for any C ∈ Cu\v, the total weight of ψ(C) is

∑
C′∈ψ(C) sgn(C ′)w(C ′) = 4sgn(C)w(C), (2)

for any C ∈ Cv\u,
∑

C′∈ψ(C) sgn(C)w(C ′) = 4sgn(C)w(C)J2, and (3) the remaining cycle covers in

G′ have total weight
∑

C′ 6∈ψ(C)∀C∈Cu\v∪Cv\u sgn(C ′)w(C ′) = 0.

Proof. We start with proving (1). Fix any C ∈ Cu\v. Notice that ψ(C) consists of all C ′ ∈ C(G′)
that contain (u, a), (c, u′) and all of C’s edges except (u, u′). Call this set of common edges EC ;
by the assumption that w(u, u′) = I2, w(EC) = w(C) The set ψ(C) consists of all possible ways of
completing EC to a cycle cover C ′ of G′ by adding edges to G′ so that every vertex has indegree
and outdegree 1. Within EC , the only vertices with deficient degree are a, b, c and d. Vertices b
and d have indegree and outdegree 0, while a has indegree 1 and outdegree 0, and c has indegree
0 and outdegree 1. Note that the edges (u, a) and (c, u′) must belong to the same cycle in C ′, and
so the edges in EC form zero or more completed cycles and an incomplete cycle from c to a. The
number of completed cycles is c(C)− 1, where c(C) is the number of cycles in C.

We thus need to add three edges matching the vertices {a, b, d} to the vertices {b, c, d}; call these
three edges EXOR, so that EC ∪EXOR forms a cycle cover C ′. The weight of C ′ is therefore w(C ′) =
w(EC)w(EXOR). The sign of C ′ is (−1)n+4−c(C′), where c(C ′) is the number of cycles in C ′. We can
see that c(C ′) is the sum of the number of completed cycles in EC and the number of cycles among
{a, b, c, d} assuming the existence of an edge from c to a. Hence c(C ′) = c(C)−1+c(EXOR∪{(c, a)},
and so sgn(C ′) = −sgn(C)(−1)4−c(EXOR∪{(c,a)}) = −sgn(C)sgn(EXOR ∪ {(c, a)}).

Thus,
∑

C′∈ψ(C) sgn(C ′)w(C ′) = −sgn(C)w(EC)
∑

C′∈ψ(C) sgn(EXOR ∪ {(c, a)})w(EXOR) =
− sgn(C)w(EC) det(M3,1). From Lemma 3.7, this is 4sgn(C)w(EC) = 4sgn(C)w(C), as required.

The proof of (2) proceeds similarly, except that ψ(C) contains (v, c) and (a, v′) instead of (u, a)
and (c, v′). The set of common edges then has an incomplete path from a to c. As a result, we end
up with

∑
C′∈ψ(C) sgn(C ′)w(C ′) = −sgn(C)w(EC) det(M1,3) = 4sgn(C)w(C)J2.

To prove (3), we observe that a cycle cover in C(G′) that contains (u, a) and (c, u′) but not (v, c)
or (a, v′) must fall into ψ(C) for some C ∈ Cu\v; similarly, any cycle cover containing (v, c) and (a, v′)
but not (u, a) or c, u′) must fall into ψ(C) for some C ∈ Cv\u. These were already accounted for in
the proofs of (1) and (2), so we can concentrate only on the leftover cycle covers. Partition these
leftover cycle covers into equivalence classes based on their edge sets excluding edges wholly within
{a, b, c, d}; namely C ′1 ∼ C ′2 if and only if C ′1 \ {a, b, c, d}× {a, b, c, d} = C ′2 \ {a, b, c, d}× {a, b, c, d}.
For any equivalence class, its cycle covers must either all (a) contain none of these four edges, (b)
contain (u, a) and (a, v′) only, (c) contain (v, c) and (a, v′) only, or (d) contain all four edges.
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Up to sign, the total weights of those equivalence classes in (a) contain a factor of det(M), those
in (b) contain a factor det(M1,1), those in (c) contain a factor det(M3,3), and those in (d) contain a
factor det(M13,13). From Lemma 3.7, all four of these determinants are 0, and so the total weights
of the cycle covers in any equivalence class is 0, as is therefore the total weight of all the leftover
cycle covers.

With this in hand, we can prove the key result:

Theorem 3.9. Given a 3SAT formula ϕ with S satisfying assignments, let the graph Hϕ with
weights in M2(F) be as defined above. Then det(Hϕ) = aI2 + bJ2, where a+ b = 43mS.

Proof. The structure of the proof is similar to the sketch given after Theorem 3.4, though with
extra care needed for the complications of working with matrices. In the end, each cycle cover of
G ends up with weight 43mI2 or 43mJ2, giving the result.

Let us start with H0
ϕ, which we know from Lemma 3.6 has det(H0

ϕ) = SI2. In particular, for
each satisfying assignment of ϕ, there is a consistent cycle cover of H0

ϕ of weight I2. There exist 3m
pairs of edges in H0

ϕ that when replaced by XOR gadgets will convert H0
ϕ to Hϕ; each of these pairs

contains an external edge in a clause gadget and an external edge in a variable gadget referring to
the same literal.

Consider what happens when we replace one of the above-mentioned edge pairs with an XOR
gadget, forming a new graph H1

ϕ. From Lemma 3.8, each cycle cover C that is consistent on
this edge pair in H0

ϕ will be mapped to ψ(C), a set of cycle covers in the new graph whose total
signed weight will either be 4I2 or 4J2. Further, since all of these sets ψ(C) are disjoint and all
other cycle covers have total signed weight 0, the total signed weight of all cycle covers in H1

ϕ is∑
C∈C1con(G) 4K2(C), where C1

con(G) are those cycle covers of G that are consistent on this edge pair,
and K2(C) is either I2 or J2.

Now suppose a second edge pair is replaced with an XOR gadget, resulting in the graph H2
ϕ.

Consider a cycle cover C of H0
ϕ in ψ(C) that is consistent on both the first and second edge pairs.

Then each cycle cover of H1
ϕ in ψ(C) will be mapped to a set of cycle covers ψ(ψ(C)) of H2

ϕ, with
signed weight that is 4I2 or 4J2 multiple of its signed weight in H1

ϕ. The set ψ(ψ(C)) therefore
has total signed weight of either 16I2 or 16J2, since all of the images of ψ are disjoint. Once again,
the total signed weight of all cycle covers in H2

ϕ is
∑

C∈C1,2con(G)
16K2(C), where C1,2

con(G) is the set of

cycle covers of G consistent on both edge pairs.
Carrying this out over all 3m edge pairs to reach Hϕ, we see that every consistent cycle cover

of H0
ϕ becomes a disjoint set of cycle covers in Hϕ of total signed weight 43mI2 or 43mJ2, while all

other cycle covers in Hϕ have total weight 0. The total weight over all original consistent cycle
covers is

∑
C∈Ccon(G) 43mK2(C). This therefore takes the form given in the theorem.

This completes the proof of Theorem 3.5.

4 Computing the determinant over upper triangular matrix algebras

In this section, we consider the problem of computing the determinant over the algebra of upper
triangular matrices of dimension d. We show that the determinant over these algebras can be
computed in time NO(d), where N denotes the size of the input. We will then generalize this
theorem to arbitrary algebras to yield Theorem 5.5.

Given a field F, we denote by Ud(F) the algebra of upper triangular matrices of dimension d
with entries from the field F.
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Theorem 4.1. Let F be a field. There exists a deterministic algorithm, which when given as input
an n × n matrix M with entries from Ud(F), computes the determinant of M in time poly(Nd),
where N is the size of the input.

Proof. The algorithm is simple. We write out the expression for the determinant of M and note
that each entry of det(M) may be written as the sum of nO(d) many determinants of matrices with
entries from the underlying field. Since each of these can be computed in time NO(1), we obtain
an NO(d)-time algorithm for our problem.

Let M = (mi,j)i,j , where mi,j ∈ Ud(F) for each i, j ∈ [n]. Given m ∈ Ud(F), we use m(p, q) to
denote the (p, q)th entry of m. We have

det(M) =
∑
σ∈Sn

sgn(σ)m1,σ(1)m2,σ(2) · · ·mn,σ(n)

Consider a product of matrices m = m1 · · ·mn where each mi ∈ Ud(F). For p, q ∈ [d] such that
p ≤ q, we may write the (p, q)th entry of m as

m(p, q) =
∑

k1,k2,...,kn−1∈[d]

m1(p, k1)m2(k1, k2) · · ·mn(kn−1, q)

=
∑

p≤k1≤···≤kn−1≤q
m1(p, k1)m2(k1, k2) · · ·mn(kn−1, q) (4.1)

where the last equality follows since mi(k, l) = 0 unless k ≤ l. Note that the number of terms in
the summation in (4.1) is equal to the number of increasing sequences of length n consisting of
elements from [d] and is bounded by nO(d).

Fix any p, q ∈ [d] such that p ≤ q. By (4.1), we may write det(M)(p, q) as

det(M)(p, q) =
∑

p≤k1≤···≤kn−1≤q

∑
σ∈Sn

sgn(σ) ·m1,σ(1)(p, k1) ·m2,σ(2)(k1, k2) · · ·mn,σ(n)(kn−1, q) (4.2)

We now note that each of the inner summations may be written as the determinant of an
appropriate matrix over the underlying field. Fix any k = (k1, . . . , kn−1) satisfying p ≤ k1 ≤ k2 ≤
· · · ≤ kn−1 ≤ q. Denote by Mk the matrix (mi,j(ki−1, ki))i,j , where k0 denotes p and k1 denotes q.
It follows from (4.2) that det(M)(p, q) =

∑
k det(Mk).

Note that the matrices Mk are n×n matrices with entries from the underlying field and hence,
their determinants can be computed in time NO(1). Hence, we can compute det(M)(p, q) — for
each p, q — in time nO(d) ·NO(1) = NO(d). The result follows.

5 Determinant computation over general algebras

We now consider the problem of computing the determinant of an n × n matrix with entries
from a general finite-dimensional algebra A of dimension D over a field F that is either finite, or
the rationals. We consider two algorithmic questions: the first is the problem of computing the
determinant over A, where A is a fixed algebra (and hence of constant dimension) such as M2(F);
the second is the case when A is presented to the algorithm along with the input (in this case, A
could have large dimension). We present our results for the latter case in the appendix.

In the first case, we prove a strong dichotomy for finite fields of characteristic p > 2. For any
fixed algebra A, we show, based on the structure of the algebra, that either the determinant over
A is polynomial-time computable, or computing the determinant over A is ModpP -hard.
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We first recall a few basic facts about the structure of finite dimensional algebras. An algebra
is simple if it is isomorphic to a matrix algebra (possibly of dimension 1) over a field extension of
F. An algebra is said to be semisimple if it can be written as the direct sum of simple algebras. ‖

Recall that a left ideal in an algebra A is a subalgebra I of A such that for any x ∈ I and a ∈ A,
we have ax ∈ I; a right ideal is defined similarly. An ideal I is said to be nilpotent if there exists
an m ≥ 1 such that the product of any m elements from I is 0. The radical of A denoted R(A)
is defined to be the ideal generated by all the nilpotent left ideals of A. We list some well-known
properties of the radical (see [CR62, Chapter IV]): (a) The radical is a left and right ideal in A,
(b) The radical is nilpotent: that is, there exists a d ∈ N such that the product of any d elements
of R(A) is 0. The least such d is called the nilpotency index of the radical R(A), and (c) A/R(A)
is semisimple.

An algebra A is a semidirect sum of subalgebras B1 and B2 if A = B1 ⊕ B2 as a vector space;
we denote this as A = B1⊕′B2. The Wedderburn-Malcev theorem (Theorem A.3) tells us that any
algebra is a semidirect sum of its radical with a subalgebra. We refer to such a decomposition as a
Wedderburn-Malcev decomposition.

We start with the hardness result.

Theorem 5.1. Let A denote any fixed algebra over a finite field F of characteristic p > 2. If
A/R(A) is non-commutative, computing the determinant over A is ModpP -hard.

Proof. Consider the problem of computing the determinant over an algebra A such that A/R(A),
the “semisimple part” of A, is non-commutative. Since A/R(A) is semisimple, we know that
A/R(A) ∼=

⊕
iAi, where each Ai is a simple algebra, and hence isomorphic to a matrix algebra

over a field extension of F. If each of the Ais is a matrix algebra of dimension 1 (that is, each Ai
is simply a field extension of F), then A/R(A) is commutative. Hence, w.l.o.g., we assume that A1

has dimension greater than 1. Moreover, by the Wedderburn-Malcev theorem (see Theorem A.3
in the appendix), we know that A contains a subalgebra B ∼= A/R(A). Thus, the algebra A1

is isomorphic to a subalgebra of A. Thus, Theorem 3.5 immediately implies that computing the
determinant over A is ModpP -hard.

5.1 The upper bound

In this section, we show that if A/R(A) is commutative, then the determinant over A is efficiently
computable. However, we present our result in some generality, which will be useful later. We
assume that the algebra A is presented to the algorithm along with the input as follows: we are
given a (vector space) basis {a1, . . . , aD} for A along with the pairwise products aiaj for every
i, j ∈ [D]. Let d denote the nilpotency index of R(A).

The Wedderburn-Malcev theorem (see Theorem A.3) tells us that the algebra A = B ⊕′ R(A),
where B is a semisimple subalgebra of A isomorphic to A/R(A), and hence commutative.

We will use without explicit mention the following result, which was explicit in the work of
Chien and Sinclair [CS07], and implicit in that of Mahajan and Vinay [MV97] (and also many
other works):

Theorem 5.2. There is a deterministic algorithm which, when given any commutative algebra A
of dimension D and an n × n matrix over A as input, computes the determinant of A in time
poly(n,D).

‖This is not the standard definition of semisimplicity in the case of infinite fields. However, we will only use it in
the case that F is finite. See Appendix A.
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We start with two simple lemmas.

Lemma 5.3. There is a deterministic polynomial-time algorithm which, when given an algebra A
as input, computes the nilpotency index of A.

Proof. Let d denote the nilpotency index of A. It is easy to see that d ≤ D, the dimension of
the algebra as a vector space over F. The algorithm computes a basis for R(A) (this can be done
in deterministic polynomial time by Theorem A.1), and then successively computes a basis for
R(A)2, R(A)3, . . . , R(A)D and outputs the least d such that R(A)d = {0}.

Lemma 5.4. Let A be a finite-dimensional algebra with Wedderburn-Malcev decomposition A =
B ⊕′ R(A). Then, 1 ∈ B.

Proof. We can write the identity 1 of A as 1 = b+ r, where b ∈ B and r ∈ R(A). We would like to
show that r = 0. Note that b = b · 1 = b2 + br. Since b2 ∈ B and br ∈ R, we must have br = 0.
Similarly, r = 1r = br+ r2. But br = 0 implies that r = r2. This implies that r = rk for any k ≥ 1.
But we know that r is nilpotent. Hence, r = 0.

These lemmata and a generalization of Theorem 4.1 yield the following:

Theorem 5.5. There exists a deterministic algorithm, which when given as input an algebra A of
dimension D s.t. A/R(A) is commutative and an n× n matrix M with entries from A, computes
the determinant of M in time NO(d), where d is the nilpotency index of R(A) and N is the size of
the input.

In particular, when A is a fixed algebra, then d ≤ D = O(1), and hence, Theorem 5.5 gives us
a polynomial-time algorithm. This yields straightaway the sharp dichotomy theorem in the case of
a fixed algebra over finite fields of odd characteristic.

Corollary 5.6. Let F be any finite field of odd characteristic and A be any fixed algebra over
F. Then, if A/R(A) is non-commutative, computing the determinant over A is ModpP -hard. If
A/R(A) is commutative, then the determinant can be computed in polynomial time.

Proof of Theorem 5.5. The algorithm first computes the Wedderburn-Malcev decomposition A =
B ⊕′ R(A) of the algebra A: a result of de Graaf et al. (Theorem A.5) shows that such a decom-
position may be computed efficiently. By Lemma 5.3, we can compute the nilpotency index d of
the algebra in deterministic polynomial time. We assume that d ≤ n; otherwise, the bruteforce
algorithm for the determinant has running time NO(d).

For any i and j, the (i, j)th entry of the input matrix M can be written uniquely as mi,j =
bi,j + ri,j where bi,j ∈ B and ri,j ∈ R; the elements bi,j and ri,j are also efficiently computable.
Now, note that the determinant of the input matrix M can be written as

det(M) =
∑
σ∈Sn

sgn(σ)(b1,σ(1)+r1,σ(1))·(b2,σ(2)+r2,σ(2)) · · · (bn,σ(n)+rn,σ(n)) =
∑
σ∈Sn

sgn(σ)
∑
S⊆[n]

t(σ, S)

where t(σ, S) is the product, in increasing order of i, of ri,j for i ∈ S and bi,j for i 6∈ S. Note that
t(σ, S) ∈ R(A)|S| (we use here the fact that R(A) is an ideal in A) and hence, t(σ, S) = 0 if |S| ≥ d.
Thus, we may only consider S of size strictly less than d.

We divide the terms t(σ, S) based on the ri,j that actually appear in t(σ, S). Specifically, for
each 1-1 function f : S → [n], let t(σ, S, f) denote t(σ, S) if σ|S = f and 0 otherwise. We can write
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the determinant det(M) as

det(M) =
∑
S⊆[n]:
|S|<d

∑
f :S→[n]:
f 1−1

∑
σ∈Sn

sgn(σ)t(σ, S, f) =
∑
S⊆[n]:
|S|<d

∑
f :S→[n]:
f 1−1

det(M(S, f))

where the entries m(S, f)i,j of M(S, f) are defined as follows: for i ∈ S, m(S, f)i,j = 0 if f(i) 6= j
and ri,j otherwise; for i 6∈ S, m(S, f)i,j = bi,j . We show that for each S and f as above, det(M(S, f))
can be computed in time NO(d), which will prove the theorem, since there are only nO(d) of them to
compute. For the remainder of the proof, we fix some subset S ⊆ [n] of size t < d and f : S → [n]
that is 1-1.

Note that the matrix M(S, f) is “almost” a matrix over the commutative subalgebra B of A:
it contains exactly d entries outside B, one in each row indexed by an element of S. We reduce
the computation of det(M(S, f)) to the computation of the determinant of a similar matrix over
a commutative algebra closely related to B. Indeed, let B⊗(t+1) denote B ⊗ B ⊗ · · · ⊗ B (t + 1
times). This is a commutative algebra of dimension at most Dd. Furthermore, we see that 1⊗(t+1)

is the identity element of this algebra. For i ∈ [t]∪{0}, we denote by Bi the following subalgebra of
B⊗(t+1): 1⊗i⊗B⊗1⊗(t−i). It can easily be seen that each Bi is isomorphic to B by the isomorphism
φi : B → Bi where φi(b) = 1⊗i ⊗ b⊗ 1⊗(t−i).

Given any i ∈ [n], we denote by Pre(i) the set {i′ ∈ S | i′ < i}. We now construct a new matrix
M ′(S, f) with entries from B⊗(t+1) as follows:

m′(S, f)i,j =


0 if i ∈ S and f(i) 6= j,

1⊗(t+1) if i ∈ S and f(i) = j,
φ`(m(S, f)i,j) if i 6∈ S and ` = |Pre(i)|.

In words, to construct M ′(S, f), we have replaced each entry in M(S, f) that is in R(A) by the
identity 1⊗(t+1) and each entry bi,j ∈ B by the corresponding element in B` where ` = |Pre(i)|.

Since M ′(S, f) is a matrix with entries from the commutative algebra B⊗(t+1), its determinant
can be computed in time NO(d). Say S = {i1, . . . , it} and f(ik) = jk for k ∈ [t]. Let {e1, . . . , em}
be a basis for B. Then, we have

det(M(S, f)) =
∑
σ∈Sn:
σ|S=f

sgn(σ)

(∏
i<i1

bi,σ(i)

)
· ri1,j1 ·

( ∏
i1<i<i2

bi,σ(i)

)
· ri2,j2 · · · rit,jt ·

(∏
i>it

bi,σ(i)

)

Each product of the form
∏
i∈T bi,σ(i) that appears in the summation above is an element of the

commutative algebra B and hence can be expanded in the basis of B as follows:

det(M(S, f)) =
∑
σ∈Sn:
σ|S=f

sgn(σ)

(
m∑
k=1

α
(0)
k,σek

)
· ri1,j1 ·

(
m∑
k=1

α
(1)
k,σek

)
· ri2,j2 · · · rit,jt ·

(
m∑
k=1

α
(t)
k,σek

)

=
∑

k0,...,kt∈[m]

 ∑
σ∈Sn:σ|S=f

sgn(σ)α
(0)
k0,σ
· · ·α(t)

kt,σ

 ek0ri1,j1ek1 · · · rit,jtekt

=
∑

k∈[m]t+1

ck · ek0ri1,j1ek1 · · · rit,jtekt (5.1)
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where k denotes the tuple (k0, . . . , kt) and ck denotes
∑

σ:σ|S=f α
(0)
k0,σ
· · ·α(t)

kt,σ
. Let us expand

det(M ′(S, f)) similarly. We use e
(`)
k to denote φ`(ek). We have

det(M ′(S, f)) =
∑
σ∈Sn:
σ|S=f

sgn(σ)

(∏
i<i1

φ0(bi,σ(i))

)
· 1⊗(t+1) ·

( ∏
i1<i<i2

φ1(bi,σ(i))

)
· 1⊗(t+1) · · · 1⊗(t+1) ·

(∏
i>it

φt(bi,σ(i))

)

=
∑
σ∈Sn:
σ|S=f

sgn(σ)

(
m∑
k=1

α
(0)
k,σe

(0)
k

)
· 1⊗(t+1) ·

(
m∑
k=1

α
(1)
k,σe

(1)
k

)
· 1⊗(t+1) · · · 1⊗(t+1) ·

(
m∑
k=1

α
(t)
k,σe

(t)
k

)

=
∑

k∈[m]t+1

ck · e
(0)
k0
e

(1)
k1
· · · e(t)

kt
=

∑
k∈[m]t+1

ck · ek0 ⊗ ek1 ⊗ · · · ⊗ ekt

Thus, we can simply read off the coefficients ck from det(M ′(S, f)), and using Equation (5.1),
we can compute det(M(S, f)). Since det(M ′(S, f)) can be computed in time NO(d), we obtain a
NO(d)-time algorithm to compute det(M(S, f)) and hence for det(M) as well.

6 Discussion

Our results show that the basic Godsil-Gutman approach to approximating the permanent, as
generalized by Chien et al. [CRS03] runs into many obstacles, since the estimators are not efficiently
computable. In the case of the quaternions, the result of Chien et al. shows that a suitable
modification of the basic estimator still gives a relatively good approximation to the permanent. Is
there such a modification for matrix algebras?

Our dichotomy theorem in Section 5 used crucially the fact that we worked over a finite field.
Over the rationals, for example, even the structure of semisimple algebras is fairly complicated, and
we don’t have an exact characterization of when the determinant over such an algebra is efficiently
computable. Extending our dichotomy theorem to these algebras is an interesting problem.

Theorem 5.5 shows that even when given the algebra A as input, the determinant remains
efficiently computable as long as A/R(A) is commutative and A has bounded nilpotence index. How
close is this to being a characterization of algebras over which the determinant is polynomial-time
computable (under reasonable complexity assumptions) when the algebra is part of the input? More
generally, can one come up with suitable conditions on the radical R(A) under which computing
the determinant over A is hard even when A/R(A) is commutative?
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A Computing the structure of algebras

An algebra is simple if it is isomorphic to a matrix algebra (possibly of dimension 1) over a division
ring containing F. Note that if F is finite, Wedderburn’s Little Theorem [Lam91] implies that the
division ring is a field extension of F and hence, a simple algebra is simply a matrix algebra over a
field extension of F. An algebra is said to be semisimple if it can be written as the direct sum of
simple algebras.

Friedl and Ronyai [FR85] first considered the question of efficiently computing the structural
elements of an algebra given as input in the form of a multiplication table. That is, the algebra A
is presented to the algorithm in the form of a basis {a1, . . . , aD} along with a table that lists the
pairwise products aiaj for i, j ∈ [D]. They proved the following result:

Theorem A.1 ([FR85], Theorem 5.7). There is a deterministic algorithm which, when given a
finite dimensional algebra A over F, computes a basis for the radical R(A). The algorithm runs in
time poly(N, log |F|), where N denotes the size of the input.

Thus, using the above algorithm, we can obtain in deterministic polynomial time a description
of A/R(A), the “semisimple” part of A. Friedl and Ronyai [FR85] and Ronyai [Rón87] showed
respectively that semisimple algebras can further be decomposed into simple algebras, and when
F is finite, one can find explicit isomorphisms from simple algebras to matrix algebras. We state
these two results below.

Theorem A.2 ([FR85, Theorem 7.8], [Rón87, Theorem 6.2]). There is a deterministic algorithm
which, when given a finite dimensional semisimple algebra A over a finite field F, computes a
decomposition of A =

⊕
iAi into simple matrix algebras, and explicit isomorphisms from each Ai

to a matrix algebra over a field extension of F. The algorithms run in time poly(N), where N is
the size of the input.

We say that an algebra A is a semidirect sum of subalgebras B1 and B2 if A = B1 ⊕ B2 as a
vector space. We will denote this as A = B1 ⊕′ B2. The Wedderburn-Malcev theorem tells us that
any algebra over a finite field or the rationals is a semidirect sum of its radical with a subalgebra.

Theorem A.3 ([CR62, Chapter X]). Given any finite dimensional algebra A over a finite field or
the rationals, there exists a subalgebra B of A such that A = B ⊕′ R(A).

A decomposition of the algebra A as given above is called a Wedderburn-Malcev decomposition
of A.

Remark A.4. Note that by definition, given any Wedderburn-Malcev decomposition of A = B ⊕′
R(A), the subalgebra B is isomorphic to A/R(A), the “semisimple” part of A.

The result of de Graaf et al. [GIKR97] shows that given an algebra A and the quotient A/R(A),
it is possible to obtain a Wedderburn-Malcev decomposition of A = B ⊕ R(A) in deterministic
polynomial time. We state the result below.

Theorem A.5 ([GIKR97, Theorem 3.1]). There is a deterministic polynomial-time algorithm
which, when given a finite dimensional algebra A over F, computes a Wedderburn-Malcev decom-
position A = B ⊕′ R(A) of the algebra.

17



B Computing the determinant over a given algebra

In this section, we assume that the algebra A is presented to the algorithm in the form of a basis
{a1, . . . , aD} along with a table that lists the pairwise products aiaj for i, j ∈ [D]. We would like to
efficiently compute the determinant of an input n× n matrix with entries from the algebra A. We
assume that D ≤ poly(n). (It is easy to see that when D is very large, say n!, even the bruteforce
algorithm is efficient. So we assume that D is small.)

Note that under no constraints on the algebra A, this problem is at least as hard as computing
the determinant over M2(F) and hence the hardness results of Theorem 3.5 apply. We would like
general conditions on the algebra under which the problem becomes tractable. When F is finite,
such conditions should ensure that the semisimple part A/R(A) is commutative (or else M2(F) is
a subalgebra of A). By the Wedderburn-Malcev theorem, this implies that A = B ⊕′ R(A), where
B is a commutative subalgebra of A. We would like general conditions on R(A) under which the
determinant is efficiently computable.

At this point, let us look at an important example that motivates this work. Consider the
algebra Ud(F) of d×d upper-triangular matrix algebras over F. Let Dd(F) denote the (commutative)
subalgebra of d× d diagonal matrices and let U ′d(F) be the subalgebra of strictly upper triangular
matrices (i.e., elements of Ud(F) that contain only zeroes along the diagonal). It is well-known (see
[EGH+09, Section 2.5], for example) that R(Ud(F)) = U ′d(F) and that Ud(F) = Dd(F) ⊕′ U ′d(F) is
a Wedderburn-Malcev decomposition of Ud(F). Thus, Ud(F)/R(Ud(F)) is commutative and hence,
this is the kind of algebra we would like to consider. It can be shown (and we will see below)
that when d is constant, the determinant over Ud(F) can be computed in polynomial time. On
the other hand, when d is nΩ(1), then it is known that the problem is hard; this is implicit in an
earlier result of Arvind and Srinivasan [AS10], and can also be proved from Theorem 3.5 above.
Therefore, any criterion that characterizes algebras w.r.t. the tractability of the determinant over
them must explain this difference.

We suspect that this criterion is the nilpotency index of the radical of the algebra in question.
It is easy to see that the nilpotency index of of U ′d(F) is d. In this case, we can use Theorem 5.5,
which implies the following:

Corollary B.1. For any constant d and field F that is either finite or the rationals, there is a
deterministic polynomial-time algorithm running in time poly(Nd), which when given as input the
description of an algebra A over F with nilpotence index bounded by d and an n×n matrix M with
entries from A, computes the determinant of M .

Thus, the nilpotency index successfully “explains” the tractability of computing the determinant
over Ud(F), when d = O(1). But does the nilpotency index explain every such instance? We suspect
that the issue of when exactly the determinant becomes intractable is closely related to the cases
when d becomes large, but we are unable to prove this.

18


	Introduction
	Our results

	Preliminaries
	The lower bound for 22 matrix algebras
	Valiant's lower bound for the permanent
	Our construction

	Computing the determinant over upper triangular matrix algebras
	Determinant computation over general algebras
	The upper bound

	Discussion
	Computing the structure of algebras
	Computing the determinant over a given algebra

