Sum of Us: Truthful Self-Selection

Noga Alon* Felix Fischer! Ariel D. Procacciat Moshe Tennenholtz

Abstract

We consider directed graphs over a set of agents, where an edge (i, ;) is taken to mean that
agent i trusts or supports agent j. Given such a graph, our goal is to select a subset of agents
of fixed size that maximizes the sum of indegrees, that is, a subset of most popular or most
trusted agents. On the other hand, each agent is only interested in being selected, and may
misreport its outgoing edges to this end. This problem formulation captures realistic scenarios
where agents choose among themselves, in the context of, e.g., social networks such as Twitter,
reputation systems such as Epinions, and Internet search.

We wish to design mechanisms—functions that map graphs to selected subsets (without
making payments)—which satisfy two constraints: strategyproofness, i.e., agents cannot benefit
from misreporting their outgoing edges; and approximation, that is, the mechanism must always
select a subset of agents that is close to optimal in terms of the sum of indegrees. Our first major
result is a surprising impossibility: no deterministic strategyproof mechanism can yield a finite
approximation ratio for any k € {1,...,n—1}, where k is the size of the selected subset and n is
the number of agents. Our second major result is a randomized strategyproof mechanism that
yields an approximation ratio of four for any value of k, and provides a ratio that approaches
one as k grows.
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1 Introduction

One of the most well-studied settings in social choice theory concerns a set of agents (also known as
voters or individuals) and a set of alternatives (also known as candidates). The agents express their
preferences over the alternatives, and these are mapped by some function to a winning alternative
or set of winning alternatives. In one prominent variation, each agent must select a subset of
alternatives that it approves; this setting is known as Approval voting [6].

We consider an Approval voting setting where the set of agents and the set of alternatives
coincide. Specifically, in our model there is an underlying directed graph, with the agents as
vertices. An edge from agent i to agent j implies that agent ¢ approves, votes for, trusts, or
supports agent j. Our goal is to select a subset of k “best” agents, based on the given graph; we
elaborate on what we mean by “best” later on.

Our assumption that agents and alternatives coincide enables us to restrict the preferences of
the agents. Indeed, we assume that each agent is only interested in whether it is among the subset
of selected agents, that is, an agent has a utility of one if it is selected and zero otherwise. This
assumption reflects (in the limit) a situation where each agent gives very small weight to the overall
composition of the selected subset, and very high weight to the question of its own selectionE

As an obvious first motivating example, consider an Internet search setting. The web pages
are the agents, while hyperlinks are represented by edges. Given this graph, a search engine must
return a set of, say, ten top web pages. Put another way, the top web pages are selected based on
the votes (hyperlinks) of the web pages themselves. Each specific web page (or, more accurately,
its webmaster) is naturally concerned only with appearing at the top of search results, and to this
end may add or remove hyperlinks at will.

A (deterministic) k-selection mechanism is a function that maps a given graph on the set of
agents to a k-subset of selected agents. We also consider randomized k-selection mechanisms, which
randomly select a subset.

Fixing a mechanism f, the agents play the following game. The private information of an agent
is its outgoing edges in the underlying graph G. Each agent reports a set of outgoing edges to the
mechanism. The reported edges induce a graph G’; the mechanism then selects the subset f(G’).
We say that a mechanism is strategyproof (SP) if an agent cannot benefit from misreporting its
outgoing edges, that is, cannot influence whether it is selected (or increase its probability of being
selected, in the case of randomized mechanisms), even if it has complete information about the
rest of the graph. Furthermore, we say that a mechanism is group strategyproof (GSP) if even a
coalition of agents cannot all gain from misreporting their outgoing edges.

We now explain what we mean by selecting the “best” agents. In this paper, we measure the
quality of a set of agents by their total number of incoming edges, i.e., the sum of their indegrees.
In other words, the goal of the mechanism designer is to optimize this target function. Note that
the designer’s goal is in a sense orthogonal to the agent’s interests, which may make the design of
good strategyproof mechanisms difficult.

For a second motivating example we look to social networks. Some social networks correspond to
undirected graphs, the paradigmatic example being Facebook. However, many social networks have
unilateral connections. Each user of the reputation system Epinions (http://www.epinions.com)
has a “Web of Trust”, that is, the user unilaterally chooses which other users to trust. Another
prominent example is a social network called Twitter (http://twitter.com), which of late has

1See Section |5| for further discussion of this utility model.
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become wildly popular; a Twitter user may choose which other users to “follow”.

In “directed” social networks, selecting a k-subset with maximum total indegree simply means
selecting the k most popular or most trusted users. Applications include setting up a committee,
recommending a trusted group of vendors, targeting a group for a (paid) advertising campaign, or
simply holding a popularity contest. The last point may seem pure fantasy, but, indeed, celebrity
users of Twitter have recently held a race to the one million followers milestone; the dubious honor
ultimately went to Ashton Kutcher. Clearly Mr. Kutcher could increase the chance of being
selected by not following any other users, that is, reporting an empty set of outgoing edgesﬂ

Since a mechanism that selects an optimal subset (in terms of total indegree) is clearly not
SP, we will resort to approximation. In more detail, we seek SP mechanisms that give a good
approximation, in the usual sense, to the total indegree. Crucially, the approximation is not
employed in this context to circumvent computational complexity (as the problem of selecting
an optimal subset is clearly tractable), but in order to sufficiently broaden the space of acceptable
mechanisms to include SP ones.

Context and related work. This work falls squarely into the realm of approximate mechanism de-
sign without money, an agenda recently introduced by some of us (Procaccia and Tennenholtz [20]),
which builds on earlier work (see, e.g., [9]). This agenda advocates the design of SP approximation
mechanisms that do not make payments for structured, and preferably computationally tractable,
optimization problems. Indeed, while almost all the work in the field of algorithmic mechanism de-
sign [19] considers approximation mechanisms that are allowed to make payments, money is usually
unavailable in Internet domains such as the ones discussed above (social networks, search engines)
due to security and banking issues (see, e.g., the book chapter by Schummer and Vohra [22]). Due
to this reason, and several other weighty arguments, our notion of mechanism, sometimes referred
to as a social choice rule in the social choice literature, precludes payments by definition. Note
that [20] (see also [I]) deals with a completely different domain, namely facility location.

For k = 1 (that is, one agent must be selected), the game that we deal with is a special case
of so-called selection games [4], where the strategy sets are the outgoing edges. More generally,
this setting is related to work in distributed computing on leader election (see, e.g., [2, 8, 1T} 5]).
In this line of work, there is a set of cheaters, or faulty agents, that would like to be selected. To
name one major difference between this work and ours, in the distributed computing work there is
no optimization aspect, but rather the goal is to select a random (honest) agent.

Our results and techniques. We give rather tight upper and lower bounds on the approximation
ratio achievable by k-selection mechanisms in the setting described above; the properties of the
mechanisms fall into two orthogonal dimensions: deterministic vs. randomized, and SP vs. GSP.
A summary of our results is given in Table

Our contribution begins in Section [3| with a study of deterministic k-selection mechanisms. It is
quite easy to see that no deterministic SP 1-selection mechanism can yield a finite approximation
ratio. Intuitively, this should not be true for large values of k. Indeed, in order to have a finite
approximation ratio, a mechanism should very simply select a subset of agents with at least one
incoming edge if there is one. An extreme case is k = n — 1, that is, we must select all the agents
save one: is it possible to design an SP mechanism that does not eliminate the unique agent with
positive indegree? Our first result gives a surprising negative answer to this question, and in fact
holds for every value of k.

2See Section [5| for a discussion of the influence of a single agent.



Deterministic Randomized
Sp Upper bound NA min{4,1+ O(1/k'/3)}
Lower bound 00 1+ Q(1/k%)
GSP Upper bound NA x
Lower bound 00 ”T_l

Table 1: Summary of our results with respect to k-selection mechanisms, where n is the number of
agents. SP stands for strategyproof whereas GSP stands for group strategyproof.

Theorem Let N ={1,...,n},n>2 and k € {1,...,n — 1}. There is no deterministic SP
k-selection mechanism that gives a finite approximation ratio.

The proof of the theorem is compact but rather tricky. It involves two main arguments. We first
restrict our attention to graphs that are stars with a common center. An SP mechanism over such
graphs can be represented using a function over the boolean (n — 1)-cube, which must satisfy some
constraints. We then show that the constraints lead to a contradiction using a parity argument.

In Section [4] we turn our attention to randomized k-selection mechanisms. We design a ran-
domized mechanism, Random m-Partition (m-RP), parameterized by m. Broadly speaking, the
mechanism works as follows: the agents are randomly partitioned into m subsets; we then select
the (roughly) k/m agents with largest indegree from each subset, when only the incoming edges
from the other subsets are taken into account. This rather simple technique is reminiscent of work
on random sampling in the context of auctions for digital goods [13| 16, 12] and combinatorial
auctions [10], although our problem is fundamentally different. We have the following theorem.

Theorem. Let N = {1,...,n}, k€ {1,...,n—1}. For every value of m, m-RP is SP. Furthermore:
1. 2-RP has an approximation ratio of four.
2. ((k:l/?’] )-RP has an approximation ratio of 1 + O(1/kY/3).

Since k, the number of agents to be selected, is fixed as a part of the problem formulation, we can
choose for each value of k the best value of m when applying m-RP. Put another way, there exists
a mechanism that always yields an approximation ratio of at most four, and furthermore provides
a ratio that approaches one as k grows. In addition, we prove a lower bound of 1+ Q(1/k?) on the
approximation ratio that can be achieved via randomized SP k-selection mechanisms; in particular,
the lower bound for k£ =1 is two.

Our final result concerns randomized GSP k-selection mechanisms. We present a lower bound
of (n—1)/k. This result implies that if one asks for group strategyproofness, one essentially cannot
do better than simply select k agents at random, as this gives a randomized GSP upper bound of

2 The Model

Let N = {1,...,n} be a set of agents. For each k = 1,...,n, we let Sy = Si(n) be the collection
of subsets of size k of IV, that is,

S={SCN: |S|=k} .



We consider directed graphs G = (N, E), that is, graphs with N as the set of vertices; let G = G(N)
be the set of such graphs.

A deterministic k-selection mechanism is a function f : G — Sy, which selects a subset of agents
given a graph. If the subset S C N was selected, the utility of agent ¢ € N is
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In other words, the agents are only interested in being selected among the winners. In Section
we further discuss our utility model.

A randomized k-selection mechanism is a function f : G — A(Sk), where A(Sk) is the set of
probability distributions over Si. Given a distribution p € A(Sy), the utility of agent i € N is

ui(p) = Propfi € 5]

We say that a k-selection mechanism is strategyproof (SP) if an agent cannot benefit from
misreporting its edges. In our context, this means that the question of whether an agent i € N is
selected among the winners is independent of the outgoing edges reported by agent . Formally, the
property is that for every ¢ € N and every two graphs G,G’ € G that differ only in the outgoing
edges of agent 4, it holds that u;(G) = u;(G’). Note that this is equivalent to writing the last
equality as an inequality. Please see Section [f] for a discussion of this definition in the context of
randomized mechanisms.

A E-selection mechanism is group strategyproof (GSP) if a coalition of agents cannot all gain
from misreporting their outgoing edges, that is, at least one member does not benefit. Formally,
for every S C N and every G,G’ € G that differ only in the outgoing edges of the agents in S,
there exists ¢ € S such that u;(G) < u;(G’). An alternative, stronger definition requires that
some agent strictly lose as a result of the deviation. Crucially, our result with respect to group
strategyproofness is an impossibility, hence using the weaker definition only strengthens the result.

Given a graph G, let indeg(i) = indeg(i, G) be the indegree of agent ¢ in G, i.e., the number of
incoming edges to 7. We seek mechanisms that are SP or GSP, and in addition approximate the
optimization target ), ¢ indeg(i), that is, we wish to maximize the sum of indegrees of the selected
agents. Formally, we say that a deterministic k-selection mechanism f has an approximation ratio
of « if for every graph G,

maxgses, Y ;cg indeg(i)
> icf(c) indeg(?)
The approximation ratio of a randomized k-selection mechanism is defined similarly, but with
E[> e () indeg(i)]-

3 Deterministic Mechanisms

In this section we study deterministic k-selection mechanisms. Before stating our (impossibility)
result, we discuss some special cases.

First, consider the case where k = n, that is, all the agents must be selected. Clearly in this
case there is only one mechanism, and it is optimal.

A second special—yet more interesting—case is when k£ = 1. In this case it is easy to see that
one cannot obtain a finite approximation ratio via a deterministic SP mechanism. Indeed, let n > 2,



let f be an SP deterministic mechanism, and consider a graph G = (N, E) with F = {(1,2),(2,1)},
i.e., the only two edges are from agent 1 to agent 2 and vice versa. Without loss of generality
we assume that f(G) = {1}. Now, assume that agent 2 removes its outgoing edge; formally, we
consider the graph G’ = (N, E') with E' = {(1,2)}. By strategyproofness f(G') = {1}, but now
agent 2 is the only agent with positive degree, hence the approximation ratio of f is infinite.

Note that in order to have a finite approximation ratio, our mechanism must satisfy the following
property: if there is an edge in the graph, the mechanism must select a subset of agents with at
least one incoming edge (this condition is necessary and also sufficient). The argument above shows
that this property cannot be satisfied by SP mechanisms when k = 1, but nevertheless intuitively
it should be easy to satisfy when k is very large.

Consider, for example, the case where k = n — 1. Put another way, the mechanism must select
all the agents save one. Is it possible to design an SP mechanism with the extremely basic property
that if there is only one agent with incoming edges, that agent would not be the only one not to
be selected?

In the following theorem, we give a surprising negative answer to this question, even when
we restrict our attention to graphs where each agent has at most one outgoing edge. Amusingly,
a connection to the popular TV game show “Survivor” can be made; consider a slight variation
where each tribe member can vote for one other trusted member, but is allowed not to cast a vote.
One member must be eliminated at the tribal council, based on the votes. Then a mechanism for
choosing the eliminated member cannot be strategyproof if it has the property that a member who
is the only one that received votes cannot be eliminated. Put another way, lies are inherent in the
game!

More generally, we prove that for any value of k strategyproofness and finite approximation
ratio are mutually exclusive. The theorem’s proof is concise but nontrivial.

Theorem 3.1. Let N ={1,...,n}, n>2, and k € {1,...,n —1}. There is no deterministic SP
k-selection mechanism that gives a finite approximation ratio.

Proof. Assume for contradiction that f : G — Si is a deterministic SP k-selection mechanism that
gives a finite approximation ratio. Furthermore, let G* = (N, ()) be the empty graph. Since k < n,
there exists i € N such that ¢ ¢ f(G*); without loss of generality n ¢ f(G*).

We will restrict our attention to stars whose center is agent n, that is, graphs where the only
edges are of the form (i,n) for an agent i € N \ {n}. We can represent such a graph by a binary
vector X = (x1,...,&p—1), where z; = 1 if and only if the edge (i,1) is in the graph; see Figure
for an illustration. In other words, we restrict the domain of f to {0,1}"1.

We claim that n € f(x) for all x € {0,1}"~!\ {0}. Indeed, in every such graph agent n is the
only agent with incoming edges. Hence, any subset that does not include agent n has zero incoming
edges, and therefore does not give a finite approximation ratio (as a subset that includes agent n
has at least one incoming edge).

To summarize, f satisfies the following three constraints:

1. n ¢ f(0).
2. For all x € {0,1}"1\ {0}, n € f(x).

3. Strategyproofness: for all i € N\ {n} and x € {0,1}""1, i € f(x) if and only if i € f(x +¢;),
where e; is the ith unit vector and the addition is modulo 2.
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(a) The vector (1,0,1,1,0,0). ) The vector (1,1,0,0,0,1).

Figure 1: Correspondence between stars and binary (n — 1)-vectors, for n = 7.

Next, we claim that |{x € {0,1}""1: i € f(x)}| is even for all i € N\ {n}. This follows directly
from the third constraint (strategyproofness): we can simply partition the set {x € {0,1}"*71: i€
f(x)} into disjoint pairs of the form {x,x + e;}.

Finally, we consider the expression } ¢ 13n-1 [f(x)[. On one hand, we have that

Yoo =Y Hxefo, 13" ie f(x)}
xe{0,1}n—1 ieEN

=@ -1+ > Hxe{o,1}" ' ie f(x)}

iEN\{n}

(1)

where the second equality is obtained by separating |[{x € {0,1}"7! : n € f(x)}| from the sum,
and observing that it follows from the first two constraints that this expression equals 2"~1 — 1.
Since 2"~! — 1 is odd and Yien\(ny 1{x € {0, 1371 i€ f(x)}| is even, Equation () implies that

er{o,l}"*l £ (x)] is odd.
On the other hand, it trivially holds that

Yool= > k=2"lk
xe{0,1}n—1 xe{0,1}n—1

hence 3 . ¢ 1yn-1 | f(x)] is even. We have reached a contradiction. O

It is interesting to note that if we slightly change the problem formulation by allowing the
selection of at most k agents for k& > 2 then it is possible to design a curious deterministic SP
mechanism with a finite approximation ratio, which selects at most two agents. The reader is
referred to Appendix [A] for more details.

4 Randomized Mechanisms

In Section [3| we have established a total impossibility result with respect to deterministic SP k-
selection mechanisms. In this section we ask to what extent this result can be circumvented using
randomization.

4.1 SP Randomized Mechanisms

As we move to the randomized setting, it immediately becomes apparent that Theorem no
longer applies. Indeed, a randomized SP k-selection mechanism with a finite approximation ratio



(a) The given graph. (b) The partitioned graph.

Figure 2: An example for the Random 2-Partition Mechanism, with n = 6 and k = 2. Figure
illustrates the given graph. The mechanism randomly partitions the agents into two subsets, shown
in Figure and disregards the edges inside each group. The mechanism then selects the best
agent in each group based on the incoming edges from the other group; in the example, the selected
subset is {1,5}, with a sum of indegrees of four, whereas the optimal subset is {2,5}, with a sum
of indgrees of five.

is given by simply selecting k agents at random. However, this mechanism would nevertheless yield
a poor approximation ratio. Can we do better?

The main result of this section is a randomized SP mechanism that yields a constant approx-
imation ratio. More accurately, we define an infinite family of mechanisms, parameterized by a
parameter m € N. For a fixed m, the mechanism randomly partitions the agents into m subsets. It
then selects (roughly) the top k/m agents from each subset, based only on the incoming edges from
agents in other subsets. Below we give a more formal specification of the mechanism; an example
can be found in Figure [2|

The Random m-Partition Mechanism (m-RP)
1. Assign each agent independently and uniformly at random to one of m subsets S1,. .., Sm.
2. Let T'C {1,...,m} be a random subset of size k —m - |k/m].

3. If t € T, select the [k/m] agents from S; with highest indegrees based only on edges from
N\ S;. If t ¢ T, select the |k/m| agents from S; with highest indegrees based only on edges
from N \ S;. Ties are broken lexicographically. If one of the subsets S; is smaller than the
number of agents to be selected from this subset, select the entire subset.

4. If less than k agents were selected in Step 3, select the remaining winners uniformly from
among the agents that were not previously selected.

Note that if £ = 1 and m = 2 then we select one agent from one of the two subsets, based on
the incoming edges from the other. In this case, step 2 of 2-RP is equivalent to a toss of a fair coin
that determines from which of the two subsets we select an agent.

Given a partition of the agents into subsets Sy, ..., Sm, the choice of agents that are selected
from S; is completely independent of the outgoing edges of the agents in S;. Furthermore, the



partition is independent of the input. Therefore, m-RP is SPE| The following theorem explicitly
states the approximation guarantees provided by m-RP; the rather technical proof of the theorem
is relegated to Appendix

Theorem 4.1. Let N = {1,...,n}, k € {1,...,n — 1}. For every value of m, m-RP is SP.
Furthermore:

1. 2-RP has an approximation ratio of four.

2. ([kl/‘g])—RP has an approzimation ratio of 1 + (5(1/k1/3), where the O notation omits loga-
rithmic factors.

Note that k, the number of agents to be selected, is not a part of the given instance, but rather
is fixed in the problem definition. Hence, for every fixed value of k we can choose the best value of
m when we apply m-RP. In other words, Theorem implies that for every k there exists an SP
mechanism with an approximation ratio of min{4,1 4 O(1/k/?)}, that is, the mechanism always
provides a 4-approximation, and as k grows the approximation ratio approaches one.

It follows from the theorem that, if ¥ = 1, 2-RP has an approximation ratio of four; for this
case m-RP with m > 2 has a strictly worse ratio. It is interesting to note that the analysis is
tight. Indeed, consider a graph G = (N, E) with only one edge from agent 1 to agent n, that is,
E = {(1,n)}. Assume without loss of generality that agent n is assigned to S;. In order for agent
n to be selected, two events must occur:

1. T'= {1}, that is, the winner must be selected from S;. This happens with probability 1/2.

2. Either 1 € S, or |S1| = 1. The probability that 1 € Sy is 1/2. The probability that |Si| =1,
given that n € S, is 1/2"~!. By the union bound, the probability of this event is at most
1/2+1/2"L.

Indeed, it is clear that if the first event does not occur, n cannot be selected. If the second event
does not occur, it follows that n has an indegree of zero based on the incoming edges from S,
and there are other alternatives in S; (which also have an indegree of zero). Since tie-breaking is
lexicographic, agent n would not be selected. As the two events are independent, the probability
of both occurring is therefore at most 1/4+1/2". We conclude that the approximation ratio of the
mechanism cannot be smaller than

1 1
111:4—O<%>
(1+37)-
We next provide a very simple, general, but rather weak randomized lower bound for the

approximation ratio yielded by SP k-selection mechanisms. Let k € {1,...,n—1}, and let f : G —
A(Sy) be a randomized SP k-selection mechanism. Consider the graph G = (N, E) where

E={(i,i+1): i=1,....k}U{(k+1,1)} ,

ie., E is a directed cycle on the agents 1,...,k + 1. There exists an agent i € {1,...,k + 1},
without loss of generality agent 1, that is included in f(G) with probability at most k/(k + 1).
Now, consider the graph G’ where E' = E \ {(1,2)}, that is, agent 1 removes its outgoing edge

3The mechanism is even universally SP, see Section



to agent 2. By strategyproofness, agent 1 is included in f(G’) with probability at most k/(k + 1).
Any subset S € Sy such that 1 ¢ S has at most k£ — 1 incoming edges in G’. It follows that the
expected number of incoming edges in f(G’) is at most

k 1 BP+k—1
-k Ak=1)=~——"_~
k+1 +k+1 ( ) k—+1 ’

Hence the approximation ratio of f cannot be smaller than

k 1
=1+ . (2)
k24+k—1 2 —
:7+1 K +k—1

We have therefore proved the following easy result:

Theorem 4.2. Let N = {1,...,n}, n > 2, k € {1,...,n — 1}. There is no randomized SP
k-selection mechanism that gives an approzimation ratio smaller than 1+ Q(1/k?).

Not surprisingly, the lower bound given by Theorem [4.2] converges to one, albeit more quickly
than the upper bound yielded by Theorem As usual, an especially interesting special case is
when k£ = 1. Equation gives an explicit lower bound of two for this case. On the other hand,
Theorem gives an upper bound of four. We conjecture that the “truth” is two.

Conjecture 4.3. There exists a randomized SP 1-selection mechanism with an approximation ratio
of two.

One deceptively promising avenue for proving the conjecture is designing an iterative version of
the Random Partition Mechanism. Specifically, we start with an empty subset S C NV, and at each
step add to S an agent from N \ S that has minimum indegree based on the incoming edges from
S, breaking ties randomly (so, in the first step we would just add to S a random agent). The last
agent that remains outside S is selected. This SP mechanism does remarkably well on some difficult
instances, but fails spectacularly on a contrived counterexample. We give a formal specification of
this Sliding Partition Mechanism, and construct the illuminating counterexample, in Appendix [C]

4.2 GSP Randomized Mechanisms

In the beginning of Section [4.1] we have noted that a trivial randomized SP k-selection mechanism
is given by selecting a subset of k agents at random. Of course this mechanism is also GSP, since
the outcome is completely independent of the reported graph.

We claim that selecting a random k-subset gives an approximation ratio of n/k. Indeed, consider
an optimal subset K* C N, where |K*| = k. Each agent ¢ € K* is included in the selected subset
with probability k/n, and hence in expectation contributes a (k/n)-fraction of its indegree to the
expected total indegree of the selected subset. By the linearity of expectation, the expected total
indegree of the selected subset is at least a (k/n)-fraction of the total indegree of K*.

Theorem implies that if we just ask for strategyproofness, we can do much better. On the
other hand, our final result implies that, if one asks for group strategyproofness, just selecting a
random subset is optimal up to a tiny gap.

Theorem 4.4. Let N = {1,...,n}, n > 2, and let k € {1,...,n — 1}. No randomized GSP
k-selection mechanism can yield an approximation ratio smaller than (n —1)/k.



Proof. Let f : G — Sk be a randomized GSP mechanism. Given the empty graph, there are two
agents i, j € N such that each is selected with probability at most k/(n — 1).

Consider the graph G’ where E' = {(i, j), (4,4)}, that is, there are only two edges in G’, from 17
to j and from j to i. By group strategyproofness, f(G’) either selects i with probability not greater
than under the empty graph, or the same holds for j; without loss of generality f(G’) selects i with
probability at most k/(n — 1).

We now consider the graph G” with E” = {(j,4)}. By SP, i is selected with equal probability
under f(G’) and f(G"), that is, at most k/(n —1). Since 7 is the only agent with an incoming edge
in G”, the approximation ratio is at least (n — 1)/k. O

Note that the proof of Theorem [.4] holds even if one is merely interested in coalitions of size
at most two.

5 Discussion

In this section we discuss two of the issues mentioned above, and list some open problems.

The utility model. We have studied an “extreme” utility model, where an agent is only interested
in the question of its own selection. The restriction of the preferences of the agents allows us
to circumvent impossibility results that hold with respect to more general preferences, e.g., the
Gibbard-Satterthwaite Theorem [14, 21] and its generalization to randomized rules [15].

It is possible to consider a more sensitive utility function, where an agent receives a utility of
one if it is selected, plus a utility of # > 0 for each of its (outgoing) neighbors that is selected.
In this model the social welfare (sum of utilities) of a set S of selected agents is k plus 3 times
the total indegree of S. Hence, if 3 > 0, a set S maximizes the social welfare if and only if it
maximizes the total indegree. In particular, if 3 > 0 and money is available, we can use the VCG
mechanism [23] [7, [I7] (see [I8] for an overview) to maximize the total indegree in a truthful way.

It is easy to verify that any upper bound in the 0—1 model (with total indegree as the target
function) also holds in the /-1 model (with social welfare as the target function), hence Theorem [4.1]
is true in the latter model. Furthermore, in many settings (e.g., the examples of Section (1)) 3 is, if
not zero, at least very small. In such cases a variation on the random partition mechanism achieves
an approximation ratio close to one for the social welfare, even when k = 1. Finally, note that if
(3 > 1 then simply selecting the optimal solution (and breaking ties lexicographically) is SP.

Universal SP vs. SP in expectation. In the context of randomized mechanisms, two flavors
of strategyproofness are usually considered. A mechanism is universally SP if for every fixed
outcome of the random choices made by the mechanism, an agent cannot gain by lying, that is, the
mechanism is a distribution over SP mechanisms. A mechanism is SP in expectation if an agent
cannot increase its expected utility by lying. In Section[2and thereafter we have employed the latter
definition, which is clearly weaker than the former. On one hand, this strengthens our randomized
SP lower bound (Theorem . On the other hand, notice that our randomized mechanisms are
in fact universally SP. Indeed, for every fixed partition, selecting agents from one subset based on
incoming edges from other subsets is SP. Hence, Theorem [.1]is even stronger that originally stated.

Open problems. Our most enigmatic open problem is the gap for randomized SP 1-selection
mechanisms: Theorem gives an upper bound of four, while Theorem gives a lower bound
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of two. We conjecture that there exists a randomized SP 1-selection mechanism that gives a 2-
approximation.

In addition, a potentially interesting variation of our problem can be obtained by changing the

target function. One attractive option is to maximize the minimum indegree in the selected subset.
Clearly our total impossibility for deterministic SP mechanisms (Theorem [3.1)) carries over to this
new target function. However, it is unclear what can be achieved using randomized SP mechanisms.

6
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The Edge Scan Mechanism

In Theorem we have seen that a deterministic SP k-selection mechanism cannot give a bounded
approximation ratio. In this appendix we show that if we are allowed to choose at most k agents,
and k£ > 2, then it is possible to design an SP mechanism with a bounded approximation ratio. As
noted in Section [3] it is sufficient to select a subset with an incoming edge, if one exists.

Intuitively, the mechanism, which we refer to as the Edge Scan Mechanism, first orders the

agents lexicographically. The mechanism scans the agents from left to right, until it finds an
outgoing edge directed to the right; it selects the agent the edge is pointing at. Then, the mechanism
scans the agents from right to left until it finds an edge that is directed to the left, and selects the
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Figure 3: An example for the Edge Scan Mechanism. Given this graph, the mechanism would select
agent 4 in the scan from left to right, and agent 3 in the scan from right to left, so the subset of
agents selected by the mechanism is {3,4}.

agent that this edge is pointing at as well; see Figure [3] for an example. What follows is a more
formal specification of the mechanism.

The Edge Scan Mechanism.
1. Partition E into By ={(i,j) € E: i <j}and Ex ={(i,j) € E: i > j}.

2. If E1 # 0, let ¢ € N be the minimum index such that there exists j € N with (i, j) € Fy; add
to the subset the minimum j such that (i,7) € E;. Otherwise, add agent n to the subset.

3. If By # (), let i € N be the maximum index such that there exists j € N with (i, j) € Es; add
to the subset the maximum j such that (i, j) € Eo. Otherwise, add agent 1 to the subset.

The Edge Scan Mechanism is clearly SP. Indeed, agent ¢ cannot benefit from adding outgoing
edges, since these edges would only point at some other agent; agent 4 also cannot benefit from
removing outgoing edges, since, informally, if the mechanism reaches the point in the scan (from
left to right or right to left) where the agent’s vote is taken into account, then it is too late for
agent ¢ itself to be elected.

Moreover, if there is at least one edge in the graph, the Edge Scan Mechanism will select an
agent with an incoming edge as this edge is either directed from left to right or from right to left.
Therefore, the mechanism has a finite approximation ratio (although it can be as bad as Q(nk)).

Crucially, the agents selected in both steps of the mechanism can be one and the same; in this
case the mechanism would return a singleton subset. One of the strange implications of Theorem [3.1]
is that such a selection cannot even be deterministically completed to obtain a subset of size two
in a strategyproof way.

B Proof of Theorem [4.1]

For part 1, consider an optimal set of k& agents (which might not be unique), and denote it by
K* C N. Let OPT be the sum of the indegrees of the agents in K*, that is,

OPT = ) _ indeg(i)
i€ K*
We wish to show that the mechanism selects a k-subset with OPT /4 incoming edges in expectation.
Consider some partition II of the agents into two subsets S and S3. In particular, let K* be

partitioned into K7 C 51 and K; C So, and assume without loss of generality that |Kj| > |K3|.
Denote by d; the number of edges from S to K7, that is,

d1:|{<i,j>€E: iESQ/\jEKTH ,
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Figure 4: An illustration of the proof of Theorem for n = 8 and k = 4. In the given graph G,
the optimal subset is K* = {1,2,3,4}. N is partitioned into S; = {1,2,5,6} and Se = {3,4,7,8},
which partitions K* into K} = {1,2} and Kj = {3,4}. We have that d; = dy = 1.

and similarly
dy=|{{i,j) e E: i€ S1Nj€e K}

See Figure [4] for an illustration.

Note that step 2 of the 2-RP mechanism is equivalent to flipping a fair coin to determine whether
we select [k/2] agents from S; and |k/2] agents from Sy (when 7" = {1}), or vice versa (when
T = {2}). Now, since |K;| < |k/2] (by our assumption that | K| > |K3|), it follows that the subset
of Sy selected by the mechanism has at least do incoming edges, regardless of whether 7' = {1} or
T = {2}, and even if |Sa| < |k/2]|. Moreover, since |K{| < |K*| = k it holds that the subset of S}

selected by the mechanism has at least UC/ 1 - dy incoming edges if T'= {1} and at least Lk—]{?] - dy
if T'= {2}. Therefore, we have that
E[MECH | II] =E[MECH | TAT = {1}] - f—i-E[MECH\H/\T—{Q}] %
(Wﬂ d+d> . <W2J d+d> s (3)
d dy+d
21 Ny > 1;— 2

For a random partition of the agents into S; and S, each edge has probability 1/2 of being an
edge between the two subsets, and probability 1/2 of being inside one of the subsets. Hence, by
linearity of expectation, the expected number of edges incoming to K* that are between the two
subsets is OPT/2. Formally, for a partition IT, let S{' and SI! be the two subsets of agents, and let

dM=1{(i,j) e E: (ieSIAjeSINnK*)Vv(ieSTAnjeSTNnK*)} .

Then it holds that

PT
> Pr)-d’ = 702 : (4)
We can now conclude that
d PT
E[MECH] = Y E[MECH | II] - Pr [} > ZPr OT ,
I
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where the second transition follows from Equation and the third transition follows from Equa-
tion (4)).

We now turn to proving part 2 of the theorem. For ease of exposition, we will omit the various
floors and ceilings from the proof, as we are looking for an asymptotic result.

In this part we employ one additional idea: if k is large enough, the random partition into K3
subsets is relatively balanced. Formally, we say that a partition IT is balanced if for all t = 1, ..., k'/3,

S| — k23 < 213\ /log k|

and that it is unbalanced otherwise. In order to bound the probability that a random partition
is balanced, we use the following version of the Chernoff bounds, which can be found, e.g., in [3|
Theorem A.1.11].

Theorem B.1. Let Xy,..., Xy be i.i.d. Bernoulli trials, Pr[X; =1] = p fori = 1,...,k, and
denote X = Zle Xi. In addition, let A > 0. Then

A2 A3
P?“[X — kp > )\] < exp <_2kp + 2(kp)2>

Using Theorem with A = 2k'/3\/logk and p = 1//131/3 we get

4k*3logk  8k(logk)3/?
2k2/3 2k4/3

()

| =

Pr [IT unbalanced] < exp (— > < exp(—logk) <

where the second inequality holds for a large enough k.
Let II be a balanced partition, and as before let d/' be the number of edges between the subsets

incoming to the optimal set K*. Using similar arguments to those employed to obtain Equation ,
we get,

2/3 1/3 ook
E[MECH | TI] > i T (R L VAT L D
k2/3 + 2k1/3/log k k2/3 4+ 2k1/3\/log k (©)
( 2\/logk) I
>(1- Lt
k1/3

We now select a random partition according to step 1 of the (kzl/ 3)-RP mechanism. The expected

number of incoming edges to an agent that are between the subsets is a KO

W—fraction of its
indegree. By the linearity of expectation, we get that

kY3 -1
E I _
11

This can be rewritten as

11 11 kl/g —1
> pr-d'+ > Pr-d =5 OPT .
IT balanced II unbalanced

Furthermore, Equation can be rewritten as

1
> Priimj <, .

IT unbalanced

15



Since d"' < OPT for any partition I, we get

k13 1 kY3 —1 1
I _ 11
Hbgl dPr[H]d _W.OPT—H bgl dPr[H]d Z(W'OPTk .OPT
kY3 —2
EW'OPT .

Finally, we conclude that

EMECH = Y E[MECH|I] -Pril+ Y  E[MECH I Pr

7 balanced 7 unbalanced
2y/logk
> ) E[MECH|T]-Pr(]> Pr[H]<1— /s )-dH
7 balanced 7 balanced
2vIogk\ k'3 —2 ~ (1

O

It is possible to omit the logarithmic factor from the second part of the theorem, that is,

replace the ratio of 14+O(1/k'/3) with a ratio of 1+ O(1/k'/3), by using significantly more detailed
probabilistic arguments.

C The Sliding Partition Mechanism

We first give a formal specification of the Sliding Partition Mechanism, informally presented in
Section Ml

The Sliding Partition Mechanism.
1. Let S = 0.

2. While |S| < n — 1, choose i ¢ S that has minimum indegree based on incoming edges from
agents in S, breaking ties randomly. Let S = S U {i}.

3. Select the agent in NV \ {S}.

When an agent is added to .S, we say that it is eliminated. It is easy to see that this mechanism
is SP. Indeed, only the outgoing edges of the eliminated agents are taken into account at any stage.
Once an agent is eliminated, it no longer has a chance to be selected, therefore it is indifferent to
the outcome of the mechanism.

Another interesting observation is that the Sliding Partition Mechanism gives a 2-approximation
on the example where the analysis of the 2-RP mechanism is tight: a graph with only one edge.
Indeed, if G has one edge (i, j), then j is certainly elected once i is eliminated (since then it is the
only agent in N \ S with an incoming edge from S), and i is eliminated before j with probability
1/2.

Unfortunately, it is possible to construct an example where the mechanism does very poorly.
Indeed, we consider a tree with agent 1 at the root. There is a set T C N of size n3/ of agents
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with outgoing edges to 1, that is, indeg(1) = n3/%. In addition, each agent in T has n?/® incoming
edges from agents in N \ ({1} UT). The agents in N \ ({1} UT') have an indegree of zero.

Notice that while there are agents in N\ S that have no incoming edges from .S, the mechanism
randomly selects one of these agents to be eliminated. We consider the first stage o when all the
agents in T that were not yet eliminated have at least one incoming edge from S; we can assume
without loss of generality that at this stage agent 1 has not been eliminated. We claim that if
at stage to less than n?/5 agents from T were eliminated, then agent 1 will be eliminated later
on. Indeed, there is a phase that starts at tp when all the surviving agents in N \ ({1} UT) are
eliminated (in random order), as they have degree zero and the other surviving agents have at
least one incoming edge from S. After all the agents of N \ ({1} UT') have been eliminated, each
surviving agent of 7' has n2/5 incoming edges from S, whereas agent 1 has less, therefore agent 1 is
the next to be eliminated.

We now claim that with high probability agent 1 has less than n%/® incoming edges from S at
time to. Each agent i € T contributes an edge to 1 at time ¢y if and only if it is eliminated before
any of the agents in its incoming neighborhood; this happens with probability roughly 1/n2/°.
Therefore, by the linearity of expectation the expected number of edges to agent 1 at time tg is
roughly only n'/?. The claim now follows directly from Chernoff’s inequality.

We conclude that the approximation ratio yielded by the mechanism cannot be smaller than
Q(nl/ %). Clearly by optimizing the parameters of the example it is possible to obtain an even
stronger lower bound.
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