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Abstract

This paper examines two fundamental issues pertain-
ing to virtual machines (VM) consolidation. Current
virtualization management tools, both commercial
and academic, enable multiple virtual machines to be
consolidated into few servers so that other servers can
be turned off, saving power. These tools determine
effective strategies for VM placement with the help
of clever optimization algorithms, relying on two in-
puts: a model of resource utilization vs performance
tradeoff when multiple VMs are hosted together and
estimates of resource requirements for each VM in
terms of CPU, network and storage. This paper in-
vestigates the following key questions: What factors
govern the performance model that drives VM place-
ment, and how do competing resource demands in
multiple dimensions affect VM consolidation? It es-
tablishes a few basic insights about these questions
through a combination of experiments and empirical
analysis. This experimental study points out poten-
tial pitfalls in the use of current VM management
tools and identifies promising opportunities for more
effective performance consolidation algorithms. In
addition to providing valuable guidance to practition-
ers, we believe this paper will serve as a starting point
for research into next-generation virtualization plat-
forms and tools.

1 Introduction

Virtualization has become an important trend in data
centers [11] and cloud computing [15, 16]. One of
its attractive features is the ability to utilize com-
pute power more efficiently. Specifically, virtualiza-
tion provides an opportunity to consolidate multiple
virtual machine (VM) instances running on under-
utilized computers into fewer hosts, enabling many of
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the computers to be turned-off, and thereby result-
ing in substantial energy savings. In fact, commercial
products such as the VMware vSphere Distributed
Resource Scheduler [19] (DRS), Microsoft System
Center Virtual Machine Manager [18] (VMM), and
Citirix XenServer [20] offer VM consolidation as their
chief functionality.

VM consolidation tools typically have optimization
algorithms to decide which virtual machine should be
placed on which physical host. Research on VM con-
solidation has generated several clever heuristics for
effective VM consolidation [12, 13, 14]. These heuris-
tics take as input estimated resource requirements of
the virtual machines and the capacities of the phys-
ical hosts, and decide which VM instance should be
placed on which host, while trying to minimize the
total number of physical hosts utilized.

In this paper, we take a step away from designing
the most appropriate heuristic. Instead, we take a
look at deeper, fundamental aspects that lie at the
heart of VM consolidation. Specifically, we ask two
questions about VM consolidation heuristics. First,
what assumptions do these heuristics typically make
about how virtual machines operate when hosted to-
gether, and to what extent do these assumptions hold
in practice? Second, how sophisticated should the
heuristics be in dealing with resource requirements
that span different dimensions such as CPU, memory,
and I/O bandwidth; in other words, to what extent
can sophisticated heuristics improve the benefits of
VM consolidation?

These questions and their answers have impor-
tant implications for understanding how VM consol-
idation will work in practice. For instance, most
heuristics assume that the virtualization platform
provides perfect performance isolation; that is, re-
source utilization of a VM, and correspondingly its
performance, will remain the same irrespective of
whether it is run in isolation or along with other VMs.
However, when this assumption is violated—the re-
source utilization drops because of adverse interfer-
ence from other VMs, the performance of the applica-
tions hosted on that VM might be severely degraded.
Even though a VM consolidation tool might be able



to tolerate a small degree of performance degrada-
tion by holding small amounts of resources as a re-
serve [9], severe degradation in performance can be
counter productive to the goals of consolidation.

Similarly, VM consolidation heuristics vary in in-
creasing sophistication depending on how they treat
demands for multiple resource types. At one extreme,
they might choose a single primary resource dimen-
sion to optimize for and ignore others; for example,
a simple heuristic might only consider CPU require-
ments and ignore memory and disk usage. At the
other extreme, heuristics might be influenced by re-
source demands across every resource dimension such
as CPU, memory, and disk. The latter, more so-
phisticated heuristics have higher overhead, both for
obtaining accurate estimates of the information they
need and the time they take to compute the results.
It is essential to understand what workload charac-
teristics will lead to benefits commensurate with the
additional overhead.

We answer these questions in this paper through
a combination of experiments and empirical analysis.
To answer the first question, we run controlled ex-
periments on machines running Microsoft’s Hyper-V
hypervisor, using micro-benchmarks to examine how
each of CPU, cache, network, and storage resources
aggregate. The second question is answered by study-
ing the effectiveness of multi-dimensional heuristics.
We start with resource utilization data collected from
a real compute cluster running Dryad jobs [8] and
analyze the performance of five VM consolidation
heuristics drawn from existing proposals.

This experimental study—even though specific to
the selected workloads, heuristics, and virtualization
environment—highlights many interesting properties
of a virtualized system. We find that the perfor-
mance of a virtualized environment depends heav-
ily on many factors such as the resource type, num-
ber of virtual machines, and the quality of the work-
loads. For example, for a random write workload,
disk utilization decreases as more VMs are co-hosted,
whereas utilization improves in a solid state drive for
the same workload. We also find that sophisticated,
multi-dimensional heuristics provide significant re-
turns for specific scenarios where the VM workloads
have a mixture of complementing resource demands,
but simpler heuristics suffice for other scenarios.

This paper is organized as follows. It starts with a
brief background on a few representative VM consol-
idation heuristics in the next section. The two fun-
damental questions are then taken up in Sections 3
and 4 respectively. Finally, Section 5 summarizes the
implications of our findings and concludes.
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Figure 1: Intuition for 2D-bin packing. The outer
rectangle is the capacity of a host. A tight packing
will get the VMs (smaller rectangles) as close to
the top right corner as possible.

2 VM Consolidation Heuristics

The problem of VM consolidation maps to the clas-
sical optimization problem called vector bin packing,
where the hosts are conceived as bins and the VMs
as objects that need to be packed into the bins. Each
host is characterized by a d-dimensional vector called
the host’s vector of capacities H = (h1, h2, ..., hd).
Each dimension represents the host’s capacity corre-
sponding to a different resource such as CPU utiliza-
tion, memory utilization, or disk bandwidth. Simi-
larly, each VM is represented by its vector of demands
V = (v1, v2, .., vd). The goal is to place all the VMs
in as few hosts as possible, ensuring that, across any
dimension, the total demand of VMs placed in a host
does not exceed the capacity of the host.

Vector bin packing is an NP hard problem. How-
ever, good heuristics with measurable performance
are well known and appear in surveys and text-
books [5, 7]. We next outline a set of the com-
mon heuristics for the problem, describing them in
increased order of sophistication. The heuristics we
describe, or their variants, are used by research pro-
totypes as well as real VM management tools (sum-
marized in Section 2.3). This description helps us
understand the inherent assumptions that underlie
VM consolidation heuristics.

First Fit Decreasing: A natural heuristic for one-
dimensional bin packing is FFD (First Fit Decreas-
ing). This heuristic orders the bins and the objects in
decreasing order of size. Starting with the first bin,
it iterates over the objects, placing any object it can
into the first bin till no more objects can be placed
into it. It then considers the first bin to be filled and
proceeds to the second bin, repeating the same pro-
cedure. It is known that this algorithm gives a 11/9
worst case approximation [5] if all bins are of equal
size.
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2.1 FFD-based heuristics

If the placement problem is effectively constrained by
a single resource, say all VM’s are CPU bound, then
the problem is in essence one dimensional and FFD
is the algorithm of choice. If the problem instance
is constrained by more than one dimension then we
need some generalization of FFD for multiple dimen-
sions. The typical approach is to map the vector of
capacities and demands into a single scalar called the
Volume of the vector, and then perform a one dimen-
sional FFD based on the calculated volumes. We call
these types of algorithm FFD-based.

There are many ways one can compute the volume.
One option is to set the volume as the product of the
values; i.e., V olume(V ) = Πivi. We call the FFD
algorithm based on this function the FFDProd algo-
rithm. An attractive feature of this algorithm is that
the order in which the VM’s are sorted is indepen-
dent of the units used for measuring each dimension
(as long as the same unit is used across all VMs). A
second approach, which we call FFDSum, is to set the
volume to be some weighted sum of the values; i.e., for
each dimension i, V olume(V ) =

∑
i wivi, where wi

is the assigned weight to that resource. The weights
reflect the scarcity of the resource. A suitable defi-
nition for the weight could be the ratio between the
total demand for resource i and the capacity of the
host, expressed as

∑
VM vi/hi.

The main drawback of FFD-based algorithms is
that they do not take into account correlations across
dimensions. Consider a case where there are two
kinds of VMs, one is memory intensive and one is
CPU intensive. An FFD-based algorithm would or-
der the VMs such that all VMs of a certain type are
first, followed by all the VMs of the second type. As
a result it would try and pack the maximum number
of CPU intensive VMs in each host, possibly prevent-
ing the host from accepting any other VMs. A better
solution would have been to pack memory intensive
and CPU intensive VMs on the same host, keeping
resource allocation across dimensions as balanced as
possible.

2.2 Dimension-aware heuristics

The next set of heuristics, which we call dimension-
aware, take advantage of such complimentary require-
ments for different resources. Their key intuition can
be understood from the two dimensional example il-
lustrated in Figure 1. The capacity of a host is rep-
resented using a rectangle, its sides representing the
capacity across the two dimensions. Each VM is also
a vector and as a VM is added to a host, their cor-

responding demand vectors are added with the con-
straint that the point corresponding to the total load
given by the sum of these vectors must lie within the
rectangle. To best utilize the capacity of the host
along both dimensions (resources) it is desirable that
the final sum of the demand vectors end as close as
possible to the top right corner of the rectangle; it is
undesirable to end in a situation where the combined
vector hits the upper edge or the side edge while wast-
ing space in the other dimension. This implies that
at any point it is desirable to choose the next VM
in such a way that the point representing the current
load moves towards the top right corner.

We present two heuristics that achieve this, one
picks the next vector by comparing its direction to
that of the direction to the top right corner. The
second heuristic picks the next vector by comparing
its distance to the top right corner.

Dot-Product (DotProduct) When choosing the
next VM to place into an open host, this heuristic
takes into account not only the VMs total demand,
but also how well its demands align with the remain-
ing capacities. It does this by looking at the angle
(dot product) between the vector of remaining capac-
ities along the dimensions and the vector of demands
for a VM. At time t let H(t) denote the vector of
remaining or residual capacities of the current open
host, i.e. subtract from the host’s capacity the total
demand of all VMs currently assigned to it. It places
the VM that maximizes the dot product

∑
i wivih(t)i

with the vector of remaining capacities without vio-
lating the capacity constraint. The weights wi are
calculated in the same manner as described in the
FFDSum algorithm.

Norm-based Greedy: (L2) This heuristic looks at
the difference between the vectors v and h under a
certain distance metric (norm), instead of the dot
product. For example, for the `2 norm distance met-
ric, from all unassigned VMs, it places the VM v that
minimizes the quantity

∑
i wi(vi−hi(t))2 and the as-

signment does not violate the capacity constraints.

2.3 Related heuristics from literature

There are several VM consolidation heuristics cur-
rently used in research prototypes and real VM man-
agement tools. We briefly outline how they are re-
lated to the heuristics described in this section. There
are also other heuristics for server consolidation in
non-virtualized environments [2, 4, 3, 10], which we
omit from this study.

Sandpiper [14], a research system that enables live
migration of VMs around overloaded hosts, uses a
heuristic corresponding to FFDProd, taking the prod-
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uct of CPU, memory, and network loads. Another
work from IBM research [13], an application place-
ment controller for data centers, performs application
assignment/consolidation handling resource demands
for CPU and memory. This work combines the two
dimensions into a scalar by taking the ratio of the
CPU demand to the memory demand. Even though
this heuristic does not fit into the FFDSum or FFD-
Prod, it shares the similar characteristic of ignoring
complementary distributions of resource demands in
different dimensions.

Microsoft’s Virtual Machine Manager [18] inter-
nally uses the dimension-aware, Dot-Product and
Norm-based Greedy, heuristics described above. A
recent research work [12] proposes to use Euclidean
distance between resource demands and residual ca-
pacity as a metric for consolidation, a heuristic anal-
ogous to Norm-based Greedy.

3 Validating Assumptions

The heuristics we just described make critical as-
sumptions about how resource utilization and perfor-
mance of virtual machines aggregate when they are
hosted together. As mentioned earlier, a basic as-
sumption they make is perfect performance isolation:
Each VM’s resource consumption even when hosted
with others would be the same as estimated from an
individual execution; or, in terms of performance,
the throughput realized by each VM when hosted
together is the same as the throughput it achieves
when hosted individually. If this assumption holds,
then the residual capacity in a host for a given re-
source can indeed be computed by subtracting the
sum of the estimated resource requirement of each of
the VMs assigned to that host from the host’s total
capacity.

In practice, however, the amount of resources a
VM utilizes (and the performance it realizes) might
not be preserved when co-hosted with other VMs.
Performance degradation occurs due to multiple rea-
sons. 1. Virtualization overhead: There might be
overhead or bottlenecks introduced by the hypervi-
sor that consumes some of the host’s capacity. For
instance, the scheduler and other background pro-
cesses in the hypervisor and the host OS might con-
sume CPU cycles and I/O bandwidth. 2. Cross-
interference: Multiple VMs running together could
interfere with each other, degrading their perfor-
mance or consuming more of the resources than they
would if hosted individually. For instance, contention
for a shared L2 cache or cache flushes that occur as a
result of context-switching decreases the effectiveness

of caching and adversely impacts VM performance.
3. Resource over-subscription: Even in the absence
of overhead and interference, a VM’s resource utiliza-
tion during actual execution might be different from
the estimate due to errors in the estimation process
or unpredictable changes in the VM’s workload.

Since the above causes are often unavoidable, VM
consolidation tools expect and even tolerate some
amount of performance degradation for co-hosted
workloads. The key concern then is the extent of per-
formance degradation. The most common method to
tolerate performance degradation, employed in Mi-
crosoft System Center VMM for example, is to pro-
vide for some slack while allocating resources. For
example, if the residual capacity of a host goes below
a certain threshold, say 20% of the total capacity,
then VMs are not allocated to that host anymore.
This slack accommodates for certain amount of de-
viation in how resources are consumed and tolerates
performance degradation to a limited extent. How-
ever, if the performance degradation due to cross-
interference or resource oversubscription is too steep,
the system could start thrashing, and the VMs would
be unable to complete their tasks in time. A patho-
logical scenario occurs, for example, when the co-
hosted VMs take even longer time to finish than the
time taken to run the VMs sequentially in isolation—
entirely defeating the goal of saving power through
consolidation.

Finally, it is also essential to understand whether
resource allocation, especially when performance
degradation kicks in, is fair across multiple VMs.
For example, assume that a VM consumes excessive
amount of computation resources, say 50%, than its
estimated value of say 20%. When computation re-
sources are scarce, the hypervisor would meet this
VMs requirement by stealing resources allocated to
other VMs. If the overall resource allocation is not
fair, an unfortunate VM could be starved off its re-
source cycles. In general, accommodating a non-
uniform degree of performance degradation between
VMs is hard as simple solutions, such as reserving a
slack, do not produce desired results1.

In summary, the above assumptions, critical for
current VM consolidation heuristics to work well,
translate to the following three questions: 1. Do
resource utilization and performance aggregate ad-
ditively, according to their estimates, when multiple

1A sophisticated hypervisor might handle this by reserving
resource to each VM according to its estimated needs (per-
haps with a slack) and ensuring that each VM gets its promised
quantity of each resource. In that case, oversubscription would
only affect the VM that has exceeded its resource requirement.
Unfortunately, current hypervisors only support resource reser-
vation for some resource types.
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Figure 2: Experimental setup.

VMs are hosted together? 2. When does performance
degradation kick in, and is the degradation gradual?
3. Under high utilization, are resources shared fairly
so that any performance degradation would affect all
VMs equally? In the rest of this section, we ex-
amine these questions separately for four types of
resources—namely CPU, cache, network, and stor-
age.

3.1 Experiments setup

We performed our experiments on a computer with
the following hardware specification: a 2.83 GHz In-
tel Core 2 Quad Processor, 8 GB RAM, a Broadcom
NetXtreme Gigabit Ethernet card, and 4 spare SATA
ports. The processor has four cores, of which, each
pair shares an L2 cache of 6 MB. We added addi-
tional storage hardware to this computer, consisting
of either four Seagate Momentus 7200 RPM SATA
drives or three Intel X-25M MLC SSDs. We also re-
peated some experiments on an alternative setup, a
computer with four 1.9 GHz AMD Opteron 6168 pro-
cessors with 12 cores each (total 48 cores) and 128 GB
total RAM. We used the second setup, to verify the
observations of our experiments in a multi-processor
machine with much a larger number of cores.

We setup the computers with a 64-bit Windows
2008 Server host operating system, which supports
virtualization through Microsoft’s Hyper-V platform.
Hyper-V uses the native virtualization support (In-
tel VT and AMD-V) provided by the processor. The
guest virtual machines were also configured with the
64-bit Windows 2008 Server OS. We statically allo-
cated 1 GB RAM to each guest virtual machine be-
cause Hyper-V does not yet support dynamic memory
allocation. To avoid interference, we used a separate
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Figure 3: Normalized CPU throughput of each
VM with time. A new VM workload was started
after every 10 minutes for up to 6 VMs.

hard disk to store the root volume of the host and
guest virtual machines.

We used the Windows Logman to collect and man-
age performance counter values. We collected a num-
ber of performance counters including the percentage
of total processor runtime, bytes sent and received
over the network interface, and average disk usage as
bytes per second both from the host and the virtual
machines. Figure 2 illustrates the architecture of the
machine and the experimental setup.

3.2 CPU

Workload. We first present results from the CPU
experiments. To study CPU performance, we used
a matrix multiplication program written in C as a
micro-benchmark. This program repeatedly performs
a matrix multiplication of the form ATA on a matrix
A of R rows and C columns. We chose this workload
because it allows us to precisely control the tradeoff
between memory/cache utilization and computation
cycles. Choosing a small matrix, and executing many
iterations of the multiplication, enables us to mini-
mize the effects of cache contention. On the other
hand, increasing the matrix size allows us to study
the effects of cache contention in a controlled man-
ner.

Procedure. We examined how computation resources
aggregates by hosting up to six simultaneous VM in-
stances on the four-core machine. Each instance ran
the matrix multiplication workload on a 128x128 ma-
trix for 60 minutes. However, we staggered the start
time of the workload by 10 minutes for each VM.
That is, at the start of the experiment, only one VM
starts running the workload; the second VM starts 10
minutes later, and so on. The staggering allows us to
examine resource aggregation for different numbers
of active VMs.
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Results. We measure and plot the throughput real-
ized by each VM workload in terms of the number
of matrix multiplications completed per second. The
throughput of different VMs is an indication of how
resources are shared between the different VMs. If
resources combine additively then the throughput of
the existing VMs remains the same as new VMs are
added to the system, and the new VMs also realize
the same throughput. However, if there are perfor-
mance bottlenecks then the throughput will decrease.

Figure 3 plots the throughput versus time as each
of the six VMs run their workload. We normalize the
throughput with respect to the maximum throughput
seen by a single VM. Since the machine is quad-core
we expect to achieve, in the best case, four times
the maximum throughput achieved by a single VM.
In fact, the figure shows this additive increase in
throughput for the first two VMs. They both achieve
close to 100% normalized throughput each with min-
imal interference from other overheads.

However, as more VMs are added to the system,
the throughput decreases for all the VMs. Through-
put degradation is expected to occur when there are
more than four VMs because the system needs to
share its four cores with 5 or 6 VMs. However, the
throughput degradation for the 3- and 4-VM cases is
somewhat surprising. Figure 3 shows that sharing 4
VMs only increases the aggregate throughput 3.2 fold
compared to 1 VM. It appears that there are bottle-
necks that decrease the effective sharing of 4 cores
with 4 VMs. Subsequent experiments showed that
this bottleneck is due to cache contention created by
processes running on the host OS. When there are
three VMs running on one core each, host OS pro-
cesses run on the fourth core and contend for the L2
cache that the fourth core shares with another core
allocated to one of the VMs.

Figure 4 plots the average normalized throughput
seen by each VM. Each cluster of bars in the figure
corresponds to a certain number of active VMs. The
bars plot the normalized throughput realized by each
VM in that cluster; the exact identification of each
VM is not relevant. Figure 4 summarizes the trends
captured in Figure 3. It also shows that where perfor-
mance degradation occurs, it affects all VMs almost
equally—that is, CPU allocation is fair. Note that
Hyper-V does not pin VMs to specific cores. Con-
sequently, the performance degradation affected all
VMs equally over time even though at specific mo-
ments different VMs saw different effects.

Multi-processors experiments. We also performed
CPU experiments on the 4-CPU, 48 cores machine
using the same procedure. In this case, we ran up to
20 simultaneous VM instances. Moreover, each VM
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Figure 4: Normalized CPU throughput realized by
each VM as the number of co-hosted VMs vary.
Each clustered set of bars shows the variation in
throughput across VMs; the exact identification
of the VMs—hence the color of the bars—is not
relevant.
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Figure 5: Normalized CPU throughput realized by
each VM as the number of co-hosted VMs vary in
the multi-processors experiments. As in Figure 4,
the color of the bars is not relevant.

instance internally ran four parallel instances of the
matrix multiplication workload, resulting in 80 par-
allel workloads on the 48 core machine. We started
the VM instances in the same staggered manner as
earlier, but in groups of 4.

Figure 5 plots the average normalized throughput
seem by each VM in the multi-core experiment, each
cluster of bars in the figure corresponding to a certain
number of active VMs. As before, the exact identifi-
cation of each VM (bar in the graph) is not relevant.
Figure 5 predominantly confirms the trends captured
in the previous experiments. There is no real perfor-
mance degradation for up to 12 VMs, which has 48
parallel workloads, equal to the number of cores in
the machine. A gradual but proportional degrada-
tion in throughput is incurred when more VMs are
added, about 75% on average for 16 VMs case and
60% average for 20 VMs case.
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Figure 6: Throughput degradation experienced by
the shared workload compared to the correspond-
ing isolated workload for different matrix sizes.

However, fairness in resource utilization and the
corresponding uniformity in performance degrada-
tion, seen in the small-cores experiments, is notice-
ably absent. Figure 5 shows that there is a discrete
granularity at which resources are utilized, causing
about 12 VMs (in the 20-VMs case) to aggregate
around the 50% throughput degradation point while
the other 8 VMs aggregate around the 75% point,
as if the first 12 VMs share the cores on two pro-
cessors while the remaining 8 VMs shared the other
two processors, evenly in both cases. This indicates
Hyper-V’s allocation of cores maintains fairness for
each processor, but perhaps not as effectively across
multiple processors.

3.3 Cache

Workload and procedure. We next examine the ef-
fects of cache contention on shared VM workloads.
We performed this study using the same matrix mul-
tiplication workload as in the CPU experiments, but
with varied matrix sizes. In each experiment, we ran
up to four simultaneous VM instances, staggering the
start time of the workload by 10 minutes as before.
Since each pair of cores in our test machine has a
shared 6 MB L2 cache, VM instances hosted on cores
with shared cache experience cache contention. We
varied the matrix size, changing the number of rows
as well as columns, to simulate different severity of
cache contention.

Results. We measure and plot the degree of through-
put degradation caused by cache contention. We de-
fine this degree as a ratio of the average through-
put of the shared, four-VMs workload to the average
throughput of running the workload on a single iso-
lated VM.

Figure 6 plots the percentage of throughput degra-
dation for different sizes of the matrix. It shows that
a small degree of performance degradation (less than
20%) occurs even for small matrixes; these matrixes
fit into the L2 cache and should not ideally incur the
penalty of cache misses. But as we already observed
this performance degradation in the CPU experi-
ments, it stems from sharing the CPU and cache with
the root VM. However, a remarkably larger percent-
age of performance degradation, where the through-
put drops to about a third of the throughput in the
isolated case, can be noticed as the matrix size in-
creases beyond a certain threshold. This experiment
evidently shows that cache contention could degrade
performance of shared workloads precipitously.

A closer look at a specific point in Figure 6 helps to
understand this cache-related behavior better. Fig-
ure 7 plots the normalized throughput produced by
each VM running the matrix multiplication workload
for a 2048 x 256 matrix, when different number of
VMs are co-hosted. Corresponding to the respective
point in the previous figure, the normalized through-
put of each VM when four-VMs are co-hosted can be
seen to be remarkably low, about 30% of the peak
thoroughput. Essentially this brings out a patholog-
ical scenario—the shared, 4-VMs workload takes a
longer time to complete compared to running two in-
stances of 2-VMs workload sequentially.

Figure 7 also provides additional insights by show-
ing the behavior when two or three VMs are co-
hosted. In the two-VM case, one of the VM expe-
riences significant throughput degradation (due to
cache contention from the root VM running in the
other core that shares its cache) while other does not.
Similarly, the three-VM case also shows non-uniform
severity in throughput degradation. Here, the VM
instance that shares the cache with the root VM ex-
periences less throughput degradation compared to
the other two VMs that contend for the shared cache
with each other.

In summary, these experiments confirm that the
hypervisor does not provide performance isolation
from cache contention, and neither does it allocate
cache resources fairly to ensure proportional resource
utilization.

3.4 Network

Workload. To measure the performance of the net-
work components, we modified the same matrix mul-
tiplication benchmark by interspersing it with net-
work packet transfers. Specifically, the network-
benchmark transmits one UDP packet to a second
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Figure 7: Normalized throughput of each VM for
the 2048 x 256 matrix multiplication workload.

computer after each iteration of the inner-most loop
of the matrix multiplication. We created two versions
of this network workload. A light workload which
sends a packet of size 4096 bytes in a single thread.
This workload is not sufficient to saturate the net-
work. Therefore, we created a multi-threaded heavy
workload, which sends packets of size 65000 bytes
(largest allowed) in 5 parallel threads.

Procedure. We examined the aggregation of the net-
work resource by hosting 5 simultaneous VM in-
stances. The workload duration for each instance was
25 minutes, and the start-time of the workload on dif-
ferent VMs was staggered by 5 minutes, similar to the
CPU and cache experiments.

Results. We again measure how resource allocation
occurs as a function of the throughput realized by
each VM. Figure 8 plots the network throughput seen
by each VM during different phases of the experi-
ment, where different number of VMs were hosted.
The throughput plotted in Figure 8 is normalized
with respect to the maximum throughput seen by
a single VM, which was about 935 Mbps measured
at the application level—quite close to the maximum
capacity of the gigabit network card.

Figure 8 shows that throughput degrades as more
VMs are added. This behavior is expected because
VMs are running the high workload, which saturates
the network card. The throughput degradation is also
almost optimal; for 5 VMs, each VM achieves about
20%, a fair share of the total network throughput.

Figure 9, on the other hand, plots the throughput
(not normalized) for the low workload. In this work-
load, each VM sends less than 120 Mbps of network
traffic. Therefore, the network card has sufficient ca-
pacity to support the combined network requirements
of all 5 VMs. Yet, there is a clear throughput degra-
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Figure 8: Normalized throughput realized by each
VM as the number of VMs vary for the high uti-
lization network workload, which saturates the
network card.

dation visible even when two VMs are active; the
throughput drops from about 120 Mbps per VM to
about 90 Mbps per VM. The throughput degradation
continues as more VMs are added, albeit more grad-
ually, settling at about 75 Mbps for the 4- and 5-VMs
cases.

The above result for network throughput is surpris-
ing especially because the previous high-workload ex-
periment indicated fair sharing with little throughput
loss. Closer examination of the anomalous through-
put degradation for the low workload indicates the
following reason: Once a network send is issued by
a process, there is a certain delay before the send
returns control back to the process2. This delay in-
creases sharply as another VM is added to the sys-
tem. Subsequent additions of VMs increase this delay
further, albeit to a lesser extent. Overall, the delay
varies from about 35 µs to 50 µs per packet. The pre-
cise cause of this behavior requires further examina-
tion. For the purposes of this study, this experiment
indicates that network throughput does not aggregate
perfectly but incurs a mild performance degradation.

3.5 Storage

Workload. Finally, we measure the utilization of stor-
age devices under multiple VMs using a simple se-
quential and random write workload. The sequential
write benchmark writes 10 MB chunks sequentially
to a 20 GB file from start to end. The random write
benchmark uses two threads to issue 4 KB writes to
random locations on a 20 GB file. In order to ensure
that the file system cache is cold, all the benchmarks

2We observed this from the fact that we were unable to satu-
rate the network using a single thread issuing network packets,
even sending packets continuously with no intermittent com-
putation and at the maximum packet size.
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Figure 9: Normalized throughput realized by each
VM as the number of co-hosted VMs vary for the
low utilization network workload.

are run after a clean mount of the volume on which
the accessed file is stored. We run these workloads
on disks and Solid State Drives (SSD).

Procedure. In all our experiments, virtual disks are
exported as storage devices to the VMs. Virtual disks
are simply files that are pre-allocated on the physical
disk or SSD on the host. We evaluated the storage
performance by running between 1 to 4 VMs under
different configurations: (a) all the virtual disks are
stored on a simple volume on a single disk or SSD,
(b) all the virtual disks are stored on a striped volume
over a set of 2 to 4 disks or 2 to 3 SSDs, and (c) each
virtual disk is stored on a separate physical disk. We
ran each experiment 5 times and averaged the results.

Disk results. Figure 10 presents the results for disks,
where the Y-axis plots the average disk aggregate
bandwidth observed by the host. X-axis presents
5 clusters of bars one for each of our configuration,
where each cluster has 4 bars; each bar in a cluster
represents the aggregate host disk bandwidth when a
specific number of virtual machines were running the
same workload.

We make two observations from this figure. First,
on configurations where the disks are shared, the disk
bandwidth decreases with more VMs. For example,
2 striped disks give about 86 MB/s with a single VM
whereas it drops to as low as 45 MB/s with 2 VMs.
This happens because of the competing sequential
stream of writes from two VMs, which result in a
random write workload to the underlying disk stor-
age. We see a similar effect on all the configurations
where the disks are shared. However, in our last con-
figuration, where each disk is allocated separately per
VM, no I/O interference occurs and therefore, the ag-
gregate disk bandwidth increases.

Second, we notice that the disk-bandwidth drop
from 1 VM to 2 VMs is much greater than the drop
from 2 to 3 VMs or 3 to 4 VMs. Specifically, for the
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Figure 10: Sequential write disk bandwidth.

striped disks configurations, the average bandwidth
reduction from 1 to 2 VMs is 49%, whereas the drop
from 2 to 3 VMs is 10-20%.

Figure 11 presents results for the random write
workload. Surprisingly, even for random workload
overall disk bandwidth drops with more VMs. We
analyzed the disk offsets to which random access re-
quests are issued and noticed that on an average, the
seek distance between two random writes increased
with more virtual machines, which could result in the
decreased disk bandwidth. Overall for the random
write workload, we observe trends similar to that of
sequential write workload.

SSD results. Figures 12 and 13 present the sequential
and random write results from similar experiments
on SSDs. From Figure 12, we observe that the aggre-
gate sequential bandwidth drops with multiple VMs
even when running on SSDs, even though SSDs have
better random access IOPS than disks; however, the
percentage of reduction in bandwidth from 1 VM to
2 VMs is smaller than that of the disks. Specifically,
for striped SSDs, the average reduction in bandwidth
from 1 VM to 2 VMs is about 20% whereas it is 49%
on disks. From Figure 13, we notice that the aggre-
gate random write bandwidth increases with multiple
VMs (as opposed to the decreasing trend on disks).
This is because of the better random access perfor-
mance of SSDs.

In summary, since hard disk drives are sensitive
to the sequentiality of the workload, sharing disks
among multiple VMs will result in bandwidth reduc-
tion. Surprisingly, this applies for random workloads
and even for SSDs, to a certain degree. In terms of
fairness, I/O bandwidth measured at each VM guests
for each of the above configuration shows that the
bandwidth allocation is proportional.

3.6 Implications

The above experiments analyzed resource aggrega-
tion, performance degradation, and fairness of re-
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Resource Is resource consumption Is performance degradation Is resource allocation
type additive at low utilization? gradual at peak utilization? fair at peak utilization?
CPU Yes Yes Yes
Cache Yes No No

Network No Yes Yes
Storage No No Yes

Figure 14: Summary of characteristics of resource-performance tradeoffs in a virtualized system.
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Figure 11: Random write disk bandwidth.
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Figure 12: Sequential write SSD bandwidth.

source allocation for four important resource types.
The key conclusion we can draw from this study is
that the specific behavior is dependent on the type of
resource and the quality of the workload. For compu-
tation, resources are additive at low utilization lev-
els. But performance degradation kicks in gradually
when the number of co-hosted VMs or their CPU de-
mand exceed. However, when the memory foot-print
of the workload is large and the pressure on cache
is higher, it appears that, cache contention can lead
to precipitous drops in performance. For network,
a mild performance degradation occurs due to addi-
tional delay in network packet processing. However,
VMs are able to utilize the entire available capacity
even under high levels of resource contention. Fi-
nally, for storage, performance degradation is quite
steep, especially for workloads with sequential I/O.
The degradation is milder for random workload or
when solid-state drives are used instead of the con-
ventional mechanical disks. Overall, VMs are unable
to share storage and cache resources as aggressively
as network and computation resources. Finally, re-
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Figure 13: Random write SSD bandwidth.

source allocation for most resources and workloads
we studied was fair, except for cache and perhaps for
multi-processor systems with large number of cores,
indicating that starvation is mostly a non-issue.

These observations have the following implications
for VM consolidation. On the positive side, simple
techniques that can account for mild performance
degradation, such as reserving an unallocated slack
capacity as proposed in [9], might be sufficient for
hosting VMs with computation and network intensive
workloads. Even if the actual resource usage differs
from the estimate by a big quantity, the resulting per-
formance degradation will be commensurate with the
difference and be spread more or less equally over all
VMs. On the negative side, consolidating VMs which
rely heavily on the storage component or sensitive on
the size of cache might be counter productive.

One approach to handle resource types that show
steep performance degradation when shared is to en-
force strict reservations on the quantity of resources
allocated to each VM. In current virtualization plat-
forms, reservation can be done at a coarse granularity
by allocating one or more cores with shared caches to
each VM exclusively or by allocating a separate disk
to each VM. This approach also comes with a limita-
tion on the maximum number of VMs a computer can
host, determined by the number of cores or number
of disks the hardware supports. Resource reservation
at a finer granularity, such as a fraction of a device,
is supported only for CPU and memory.

The insights drawn from this study calls for bet-
ter I/O and cache performance isolation in virtual-
ization platforms. A recent work called mClock [6]
addresses the variability in I/O throughput in hy-
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pervisors and proposes new mechanisms to enforce
proportional fair-sharing for I/O. While this work is
a step in the right direction, it needs to account for
locality in I/O requests in order to avoid performance
interference when I/O workloads are combined.

Cache performance isolation is an even more diffi-
cult problem to address. Current VM consolidation
tools do not take into account the cache architecture
of the servers and cache-sensitivity of their workloads.
While a few hardware-level solutions have been pro-
posed for cache performance isolation, dynamic page
coloring for example, they are difficult to be incor-
porated into hypervisors. Even so, the processor
and cache architecture are rapidly evolving: newly
planned systems have a high degree of asymmetry
in cache layout, more tiers of shared caches, and ir-
regular features, for instance no cache coherency [17].
Effective VM consolidation in future data centers and
cloud computing platforms will depend even more on
addressing this issue.

4 Evaluating Heuristics

In this section, we empirically compare the various
heuristics presented in Section 2. We seek to ad-
dress the following questions, to guide the choice of
heuristic in any given setting. 1. How well do the
simpler, FFD-based heuristics perform? 2. Are the
dimension-aware heuristics better, and if so, by how
much? 3. What properties of the inputs affect the
answers to these questions?

Towards this end, we evaluate the heuristics FFD-
Prod, FFDSum, DotProduct, and L2 on some real,
and some synthetic workloads.

4.1 Real workloads

We use data from the Dryad computing cluster [8]
for this study. Dryad represents a typical map-reduce
type of computational framework, a common source
for virtualized workload in could computing clusters
such as Amazon EC2. We recorded average usage in 5
resource dimensions namely CPU, Memory, Disk, In-
bound Network traffic, and Outbound Network traf-
fic, for four different sets of processes running on the
Dryad cluster. The four sets of processes come from
four large Dryad jobs implementing the pagerank al-
gorithm (PgRank), a wordcount application (Word-
Count), a seive algorithm for finding primes (Primes),
and a machine learning based click-bot detection al-
gorithm (Clkbot). For each process in each job, the
resource usage is averaged over measurements taken
every 10 seconds. We consider a VM for each process.

Table 15 summarizes the number of VMs and the
average normalized demands for each of the four sets
of VMs. The capacities of all hosts are set to 400%
CPU (4 cores), 4 GB of memory, 50 MBps Disk band-
width, and 128 MBps network bandwidth. The de-
mands in Table 15 are shown as a fraction of these ca-
pacities. Thus we can see, for example that PgRank
is memory-intensive while Primes is CPU-intensive.

In order to analyze the performance of the heuris-
tics, we need a base line. An immediate problem in
this approach is that vector bin packing problem is
NP-hard and thus it is difficult to find the optimum
solution (OPT). Instead we use a known lower bound.
For any dimension, the ratio of the total demand in
the dimension, to the bin capacity in that dimen-
sion can be shown to be a lower bound on OPT. We
let LB denote the maximum over all dimensions, of
this ratio. We then chose the metric percentage over-
head defined as 100 ∗ (ALG − LB)/LB, where ALG
is the number of bins used by a specific algorithm, to
compare the effectiveness of the heuristics. Since the
experiments we do will have widely varying optimal
number of hosts, we normalize our results relative to
the lower bound, and compare how much worse the
heuristics perform relative to the best possible.

We first compare the heuristics on each set of VMs
corresponding to each Dryad job. Figure 16 reports
the results. It shows that for the pagerank set, the
FFDSum does much better than FFDProduct, and is
pretty close to the lower bound. The results for the
other sets are similar. The dimension-aware heuris-
tics do not offer further improvement.

To study the efficacy of the heuristics for more
heterogenous inputs, we construct inputs by mix-
ing these sets of VMs together. To account for the
variation in the number of VMs per set, we repli-
cate smaller sets so that each set contributes ap-
proximately the same number of VMs to the input.
The merged input consists of 1,2,10 and 7 copies
of PgRank, WordCount, Primes and Clkbot respec-
tively, leading to a total of 12021 VMs. We also con-
sider Clkbot+Primes consisting of 1 copy each of Clk-
bot and Primes, giving us 692 jobs. Since the Clkbot
is disk-intensive and Primes is CPU intensive, these
give us negatively correlated dimensions. Similarly,
we consider Clkbot+PgRank, consisting of 7 copies
of PgRank and 1 copy of Primes, leading to 6034
VMs.

Figure 16 shows that for the mixed sets of pro-
cesses, dimension-aware heuristics, DotProduct and
L2, indeed make a difference and show less per-
formance overhead compared to the dimension-less
heuristics, FDProd and FDSum. Although, there is
no clear winner between DotProduct and L2. The
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Process #VMs Avg. CPU Avg. Memory Avg.Disk Avg. Network tx Avg.Network rx
PgRank 3137 0.2845 0.3804 0.0253 0.0533 0.0572
WordCount 1598 0.3000 0.2702 0.0138 0.0007 0.0003
Primes 279 0.3364 0.0144 0.0085 0.0078 0.0004
Clkbot 414 0.1469 0.0308 0.1713 0.0574 0.0753

Figure 15: Characteristics of set of Inputs. Average values above are fractions of the capacities chosen,
which are 400% of CPU, 4GB of memory, 50MBps disk bandwidth, and 128MBps network bandwidth.

difference indeed looks substantial in relative terms.
The values of the lower bound LB, 596, 3217, 104, and
1319 respectively in the four cases shown in the graph
adds more insight in to the absolute performance. In
the case of Clkbot+PgRank, the 10% difference be-
tween FFDSum and L2 translates to 132 fewer active
hosts for L2. On the other hand, in the case of Clk-
bot+Prime the absolute benefit of using dimension-
aware heuristics over dimension-less heuristics is only
about 7 hosts.

4.2 Synthetic workloads

To further understand the relation between the per-
formance of the heuristics and the correlations be-
tween the demands in the various dimensions, we
evaluate the heuristics on some synthetic workloads
as well, where we can control the correlations care-
fully. We consider four classes of synthetic inputs.
We fix the number of dimensions to two. The first
three classes are randomly generated with indepen-
dent dimensions, positively correlated dimensions,
and negatively correlated dimensions respectively.

Caprara and Toth [1] proposed ten classes of inputs
to benchmark the effectiveness of two-dimensional
bin-packing algorithms. Our three randomly gener-
ated classes are chosen from those. The first input
class, denoted Random has the size of each bin set to
h = 150. The demand for each VM, in each of the two
dimensions is drawn uniformly and independently at
random from [20, 100]. The next two input class de-
noted Positive and Negative, have correlated dimen-
sions. In both cases, h = 150 as in Random, and the
demand in the first dimension v1 is drawn randomly
and independently from [20, 100]. Demand in the sec-
ond dimension v2 is sampled from [v1−10, v1+10] for
class Positive and from [110 − v1, 130 − v1] for class
Negative. We sample 200 VMs in each case which
defines our input. Finally, the fourth input class Neg-
ativeSynth is an artificially created example to show
the extent of the worst case difference between the
heuristics. Here capacity is set to a 100 in each of the
two dimensions. There are two sets of jobs: a set of
1000 jobs with sizes (20, 1) and another set of 1000
jobs with sizes (3, 20). The results are resistant to
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Figure 16: Empirical results on inputs generated
from Dryad data.

small amounts of noise being added to these sizes. It
turns out that the optimal solution (OPT) can indeed
be computed for these classes of input. Therefore, we
use OPT as the lower bound LB in the definition of
percentage overhead. Figure 17 summarizes the re-
sults.

4.3 Implications

We see that in all cases, FFDProd is outperformed by
other heuristics. This is due to the fact that dimen-
sions for which demand is much smaller than capac-
ity contribute significantly to the ordering when we
take the product. While we would like to ignore such
dimensions and sort by decreasing sizes in the rele-
vant dimensions, FFDProd ends up with a very noisy
version of this ordering, leading to higher overhead.
FFDSum gives higher weight to to the important di-
mensions and hence is less affected by the irrelevant
dimensions3.

In the case of homogenous VMs, the multi-

3In our experiments we tested three different ways to cal-
culate weights. In the first, wi = Di/(nhi), where Di is the
total demand across all VMs for resource i and hi is the ca-
pacity of the host for dimension i. Thus the first weight func-
tion is simply the average demand as a fraction of capacity.
The second and third approaches aim to make the weight in-
crease more aggressively as the resource becomes scarce. To
this end, we set wi = exp(1/Di). In the third experiment we
set wi = exp(10/Di)
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Figure 17: Empirical results on two dimensional
synthetic inputs. The overhead for NegativeSynth
for the two FFD-based algorithms is 60%.

dimensional heuristics do not necessarily improve
on FFDSum. In the first case, this is due to the
fact that the various VMs are very similar to each
other, and have demand in one dimension much larger
than the others. Hence the input is effectively one-
dimensional. When we have a mix of jobs with
different dominant dimensions, the dimension-aware
heuristics outperform FFDSum. While we do not
know OPT in these cases, it is noteworthy that the
better heuristics come very close to the trivial lower
bound; their performance relative to OPT is likely to
be even better.

The results for the correlated input cases (Posi-
tive and Negative) are interesting. In the positive
case, all algorithms do equally well and have a less
than 3% overhead. This is not surprising since this
class is effectively one-dimensional, which makes al-
gorithms the same. In the negatively correlated case,
DotProduct and L2 all do better than FFDSum.
While we have presented results for three random 2-
dimensional input classes, the results are similar for
other random input classes studied in literature, and
for higher dimensional inputs. The fourth input class
NegativeSynth above is designed to show the starkest
contrast between the dimension aware and the single-
dimensional algorithms and shows a 60 percent differ-
ence. With higher dimensional data, this worst-case
difference can be close to d.

In summary, the experiments suggest that FFD-
Prod is dominated by FFDSum, which performs
reasonably well on some classes of inputs. The
dimension-aware heuristics can give up to 10% im-
provement over FFDSum on realistic workloads. The
experiments suggest that when there is more than
one dominant dimension, and there is mix of VMs
with different dominant resources, the dimension-
aware heuristics show the largest gain.

5 Discussions and Conclusions

This paper addressed two inter-related questions that
are critical to the design and use of VM consolida-
tion heuristics. The first question pertains to how
resource utilization and performance aggregate when
VMs are co-hosted, trying to identify bottlenecks that
might have adverse impacts on consolidation. The
second question pertains to how resource demands
and scarcities that span across different dimensions—
such as computation, network, and storage—should
be treated with reference to VM consolidation.

Through a combination of experiments and empir-
ical analysis, we draw the following insights on these
two questions. First, performance (and resource) ag-
gregation depends on the type of resource and the
quality of the workload hosted on the VMs. For com-
putation and network resources, performance and re-
source utilization stay close to their estimates while
performance degradation in the presence of high re-
source contention is gradual and fair. For cache and
storage, however, consolidation of cache-sensitive and
storage-intensive VMs is likely to lead to severely de-
graded performance. Second, it appears that heuris-
tics that have simplistic methods of treating multi-
dimensional resource requirements are reasonably ef-
fective in many common practical situations. Yet,
more sophisticated, dimension-aware heuristics pro-
vide additional benefits, especially for a mixed work-
loads with negatively correlated dependence on re-
sources.

These broad conclusions are evident even from the
limited experiments and empirical analysis presented
in this paper. Further experimentation would add
more details to these insights. 1. The experiments
could be repeated on different types of hardware and
hypervisor platforms with more intermediate points
of resource utilization. That would generate more de-
tailed performance models, which can be used to de-
sign better heuristics. 2. More complex benchmarks
that mix different resource types and run on multi-
ple hosts would add further insights into consolida-
tion of distributed workloads, throwing light on issues
such as data locality and network synchronization. 3.
Time-based models that capture the variation of re-
source demands with time is another important di-
rection to experiment with.

Overall, the insights presented here provide useful
guidance to both the customers of VM management
tools as well as the designers of new consolidation
heuristics. These observations validate the following
effective and easy-to-deploy approach to VM consol-
idation: Employ a simple FFD-based heuristic that
rely on just few critical resources, whose demands
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can be easily estimated. Pin each VM to a specific
core and a separate disk to minimize the interference
of one VM on the other and achieve better perfor-
mance isolation. For the designers of more sophisti-
cated heuristics and customers seeking more aggres-
sive benefits from VM consolidation, it points out
additional requirements to be met—namely, a more
precise model of performance aggregation specific to
each resource type and workload type and more ac-
curate estimates of the resource demands and quality
of workload running on each VM.

Finally, this paper also identifies fresh opportuni-
ties for engineers to improve current virtualization
platforms. For instance, it highlights the need for
more cache-aware resource allocation in both the vir-
tualization platform as well as by VM consolidation
tools. Another great improvement needed is better
I/O performance isolation, especially for disk I/O.
The recent work called mClock [6] on handling I/O
throughput variability in hypervisors is a step in the
right direction. Third, virtualization platforms need
to accommodate the increasing heterogeneity in the
number of processors, the larger number of cores per
processor, and more complex cache models in evolv-
ing processor architectures such as the Intel Single-
chip Cloud Computer [17]. Overall, we believe this
paper identifies pitfalls and opportunities in virtual
machines consolidation and serves as a good starting
point for future research in this area.
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