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ABSTRACT

Our work aims at building probabilistic tools for construct-
ing and maintaining large-scale knowledge bases containing
entity-relationship-entity triples (statements) extracted
from the Web. In order to mitigate the uncertainty inherent
in information extraction and integration we propose
leveraging the “wisdom of the crowds” by aggregating truth
assessments that users provide about statements. The
suggested method, CoBayes, operates on a collection of
statements, a set of deduction rules (e.g. transitivity),
a set of users, and a set of truth assessments of users
about statements. We propose a joint probabilistic model
of the truth values of statements and the expertise of
users for assessing statements. The truth values of
statements are interconnected through derivations based
on the deduction rules. The correctness of a user’s
assessment for a given statement is modeled by linear
mappings from user descriptions and statement descriptions
into a common latent knowledge space where the inner
product between user and statement vectors determines the
probability that the user assessment for that statement will
be correct. Bayesian inference in this complex graphical
model is performed using mixed variational and expectation
propagation message passing. We demonstrate the viability
of CoBayes in comparison to other approaches, on real-
world datasets and user feedback collected from Amazon
Mechanical Turk.
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1. INTRODUCTION

In recent years, there have been several projects aiming
at extracting and organizing Web content into large-
scale knowledge bases [7, 6, 3]. The majority of these
knowledge bases build on the Semantic Web formalism
of the Resource Description Framework Schema (RDFS)
[1], a schema language for knowledge representation. The
popularity of RDF'S can be explained by its flexibility and its
practical logical reasoning capabilities, including reasoning
over properties of relationships (e.g., reflexivity, transitivity,
domain, and range). However, the framework is missing a
crucial ingredient: it does not allow the representation and
reasoning with uncertainty, which may come from various
sources:

Extraction & Integration Uncertainty Information
extraction and integration use inherently noisy tech-
niques such as natural language processing, pattern
matching, statistical learning, etc.

Information Source Uncertainty Web sources may
be unreliable, non-authoritative or even deliberately
misleading.

Inherent Knowledge Uncertainty Knowledge itself is
often inherently uncertain; e.g., nobody knows when
exactly Plato was born.

Consistency checking in uncertain knowledge is a very
difficult task, and in fact, sound knowledge curation and
provenance are considered to be major challenges by the
community of probabilistic databases [8]. We argue that
in order to achieve these goals we need a framework
for information extraction, integration, corroboration,
querying, and inference which has uncertainty management
built in as a first-class citizen. As a first step towards
these goals, in this paper, we demonstrate that the “wisdom
of the crowds”, as represented by user assessments, can
be leveraged to quantify the uncertainty in state-of-the-art
knowledge bases, while taking into account the specific areas
of expertise of the human assessors.

The scenario we address is the following. Let us assume
that m users wui,...,u, give feedback on n statements
fiy.ooy fn from a knowledge base. The statements may
depend on each other through logical deduction rules (e.g.,
such as the ones provided by RDFS). For simplicity, let
us assume that the feedback will be in form of a truth



assessment, i.e., users will say whether a statement is true
or false. The underlying assumption of this work is that
in general users will tend to report the truth. The goal
then would be to exploit the feedback and the logical
dependencies among statements in order to learn both the
truth values of the statements and the reliabilities of the
users. However, as the background knowledge of users may
vary across knowledge domains, in some cases, it may be
crucial to give preference to the expertise of specific users
rather than to the “wisdom of the crowds”. For example,
the majority of the people from the “crowd” may not know
that Barack Obama has won a Grammy Award. In such
a case, it would be important to automatically identify
the few experts in the “crowd” who may know the truth.
This example also highlights the problem of majority voting
techniques (in which the correct label is determined by the
majority). One could address this problem by introducing
a weight for the expertise of each user. But how could the
performance of an expert be measured when there is no gold
standard available?

1.1 Contributions and OQutline

This paper presents a system, coined CoBayes. CoBayes
exploits user feedback and logical deduction rules in a
Bayesian corroboration process that jointly learns the
truth values of knowledge fragments (i.e., statements) and
the trustworthiness of users. As users may often act
inconsistently or unreliably, and give inaccurate feedback
across knowledge domains, the joint inference mechanism
learns the latent affinity between users’ expertise and
statements by taking user and statement features into
account. This is achieved by mapping users and statements
into a common latent knowledge space. Finally, the
logical deduction rules interconnect the statements under
assessment and propagate the truth values thus mitigating
feedback sparsity. CoBayes is implemented as a modular
system. Each of the modules comes with its own Bayesian
inference algorithm. Their powerful composition is achieved
through efficient, approximate message passing.  The
different configurations of CoBayes are carefully evaluated
in this paper. Our experimental evaluation on real-
world datasets and feedback from Amazon Mechanical Turk
demonstrates the system’s viability.

The paper is organized as follows. Section 2 gives an
overview of related work. In Section 3, we introduce
our knowledge representation formalism and its abstraction
into a Bayesian network. Section 4, explains the different
components of CoBayes as well as their interaction. We
present the experimental evaluation of our model in
Section 5 and conclude in Section 6.

2. RELATED WORK

The knowledge corroboration problem has previously been
addressed in various contexts, such as user preferences,
reliabilities, or authorities. [11, 12, 13, 14]. For example,
Dawid et al. [11] propose an EM approach to estimating the
error rates of patients with respect to yes-no classification
of medical symptoms. For a given a list of symptoms, the
patients (who are known to have a certain disease) identify

and mark the symptoms they have. Based on the true
symptoms of the disease, the EM algorithm can estimate
error rates of the patients. Our work is more general
in that the medical symptoms could be represented as
features, and the trustworthiness (or, analogously, the error
rates) of patients could be estimated through the Bayesian
corroboration process. In general, we are interested in
a joint corroboration process that can learn the truth
values of knowledge fragments and the trustworthiness of
users who give feedback. From this point of view, more
related to our approach is the work presented in [15, 16,
17]. [15] presents three probabilistic fix-point algorithms
for aggregating disagreeing views about statements and
learning their truth values as well as the trust in the views.
However, as admitted by the authors, their algorithms
cannot be used in an online fashion, while our approach
builds on a Bayesian framework and is inherently flexible
to online updates. Furthermore, [15] does not deal with
the problem of logical inference, which is a core ingredient
of our approach. Neither does it consider the issue of
inconsistent user performance across knowledge domains.
A very recent article [16] proposes a supervised learning
approach to the above problem. In contrast to our approach,
the solution proposed in [16] is not fully Bayesian and does
not deal with logical deduction rules. In general, our work
distinguishes itself from prior work in this realm by dealing
with uncertainty on top of the practically viable knowledge
representation formalism of RDF'S, which could be exploited
by the Semantic Web community to integrate uncertainty as
a first-class citizen into its formalisms. This work extends
the approach of [17], which presents a family of Bayesian
models for jointly learning the trustworthiness of users and
truth values for statements in the presence of disagreeing
user opinions and logical deduction rules. However, none
of the presented models provide an expertise model for
capturing the latent affinity between users’ expertise and
statements. We argue that a principled expertise model is
very important, as without it the “ignorance of the crowds”
could prevail.

3. KNOWLEDGE REPRESENTATION
3.1 From RDFS to RDFS#

The most popular Semantic-Web formalism for knowledge
representation is the Resource Description Framework
Schema (RDFS). RDF'S allows the specification of a common
syntax for data exchange. It builds on the entity-
relationship (ER) formalism and enables the definition of
domain resources (i.e., entities), such as individuals (e.g.
AlbertEinstein, NobelPrize, Germany, etc.), classes (e.g.
Physicist, Prize, Location, etc.) and relationships (or so-
called properties, e.g. type, hasWon, locatedIn, etc.).
Table 1 depicts the correspondence of ER and RDFS
terminology.

The basis of RDFS is RDF which comes with three basic
symbols: URIs (Uniform Resource Identifiers) for uniquely
addressing resources, literals for representing values such
as strings, numbers, dates, etc., and blank nodes for
representing unknown or unimportant resources. Another



ER term RDFS term
entity resource
relationship (type) property
relationship instance / fact | statement / RDF triple / fact

Table 1:
terminology.

Correspondence of ER and RDFS

important RDF construct for expressing that two entities
stand in a binary relationship is a statement. A statement
is a triple of URIs and has the form <Subject, Predicate,
Object>, for example <AlbertFEinstein, bornln, Ulm>. An
RDF statement can be thought of as an edge from an ER
graph, where the Subject and the Object represent entity
nodes and the Predicate represents the relationship label
of the corresponding edge. Consequently, a set of RDF
statements can be viewed as an ER graph. RDFS extends
the set of RDF symbols by new URIs for predefined class
and relation types such as rdfs:Resource (the class of all
resources), rdfs:subClassOf (for representing the subclass-
class relationship), etc. One of the strengths of RDF'S is that
it allows light-weight logical reasoning over the represented
knowledge. For example, it allows the inference of the types
of entities through the domains or ranges of relationships
they occur in. Furthermore, RDFS enables reasoning over
the reflexivity and transitivity of the relationships.

However, in the current specification of RDFS, reasoning
over transitivity is defined only for rdfs:subClassOf and
rdfs:subPropertyOf. This is too restrictive, as there are
many more useful transitive relationships, such as locatedIn,
influences, partOf, ancestorOf, etc. Furthermore, the RDFS
formalism provides no means for representing uncertainty.
The more expressive Web Ontology Language (OWL) [2],
which builds on RDFS, allows the above properties to
be defined for arbitrary relationships, but its expressive
power makes consistency checking undecidable. The
recently introduced YAGO model [7] permits the definition
of arbitrary acyclic transitive relationships but has the
advantage that it still remains decidable. Being able to
define transitivity for arbitrary relationships can be a very
useful feature for ontological models, since many practically
relevant relationships, such as isA, locatedIn, containedIn,
partOf, ancestorOf, siblingOf, etc., are transitive. Hence,
we introduce a slightly different variant of RDFS that can
represent the uncertainty of statements and reason about
any transitive relationship.

DErFINITION 1 (RDFS#). RDFS# ' 4s the RDFS
model, in which each statement f is assigned a probabilistic
value p(f), the blank nodes are forbidden, and the reasoning
capabilities are derived from the following deductive rules.
Forall XY, Z € Ent,R,R' € Rel with X #Y,)Y # Z,X #
Z,R#+ R':

1. <X, type, Y> A <Y, subClassOf, Z>
— <X, type, Z>

Read: RDFS sharp.

2. <X, R, Y> ALY, R, Z> A <R, type, TransitiveRel>
— <X, R, Z>

3. <R, subPropertyOf, R'> N <X, R, Y>
- <X, R, Y>

4. <R, hasDomain, Dom> N <X, R, Y>
— <X, type, Dom>

5. <R, hasRange, Ran> A <X, R, Y>
— <Y, type, Ran>

It can be shown (by a straight-forward extension of the
proof of tractability for RDFS entailment, when blank nodes
are forbidden [5]) that the deductive closure of any RDFS#
knowledge base can be constructed in polynomial time in
the size of the knowledge base.

The problem setting is as follows. Consider an RDFS#
knowledge base K with statements fi, fo,..., fn. Note that
the deductive rules (as described in Definition 1) provide
logical dependencies among the statements’ truth values.
Furthermore, consider users u1, us, ..., um who give feedback
on the statements. Given descriptive user and statement
features, we are interested in jointly learning the truth values
of the statements and the expertise of the users by leveraging
the logical dependencies among statements and the latent
affinities between statements and users.

3.2 Graphical Model for Inference in RDFS#

An RDFS# knowledge base K in which p(f) = 1, for
each statement f, is consistent when there is no cycle along
deduction paths, or in other words, when no statement of
the form <X, R, X> (for any X € Ent) can be derived by
grounding the above rules. This is what we denote as logical
consistency. However, when p(f) # 1 for some statements
f in IC, logical consistency is no longer defined and we need
an alternative notion of probabilistic consistency, in which
case the deduction rules are viewed as soft constraints.

Let us first consider the purely logical case. Let ¢ be a
statement in K and let

(a1/\b1) —>c,...,(al/\bl) —c (1)

be all deductions of the conclusion ¢ in K, where the a; and
the b; can be previously derived. The following must hold:

\/(ai/\bi) —c& <\/abi> —c

i=1 i=1

/\((ai/\bi)—>c)<:>

ab;

l
<:><\/abi)\/d<—>c (2)
i=1
where d represents the missing evidence, i.e., all missing
deductions that could lead to ¢ and only c¢. Note that
this semantic interpretation of the variable d makes the
equivalence (\/2:1 abi) V d <+ ¢ possible.

Now we can turn the logical formula into a Bayesian
network using deterministic conditional probability tables
(CPTs) that represent the logical relationships. Figure 1
depicts the corresponding directed graphical model with



Figure 1: A graphical model illustrating the logical
derivation for the formula ¢ = (a1 Ab1) V...V (a; Ab) V
d. Deterministic CPTs representing AND gates are
marked as A and those representing OR gates as V.

additional auxiliary variables ab; representing pairwise
conjunctions.
The conditional probability at a node ab; is given by:

1 ifa; Ab;
P(ab; = Tlais, b)) =4 = " (3)

0 otherwise
This simplifies our disjunctive normal form to the expression
c = ab1 V..Vab Vd Finally, we connect ¢ with all the
variables in the disjunctive normal form by a conditional
probability:

1 ifabiV..VabVvd

P(c="Tlaby,...,ab;,d) = 4
( jabs d) {0 otherwise “)

4. THE COBAYES MODEL

The goal of the CoBayes model is to use assessments a;; €
{T, F'} that users ¢ make about statements j in order to infer
truth values t; € {T, F'} of statements j. The model consists
of three interacting model components:

1. An assessment model which relates an assessment
a;; with the truth value t; of the statement, the
correctness u;; of user i’s assessment, and the guessing
probability ¢ of users. This model is based on
the assumption that users will tend to make correct
assessments.

2. A logical model which describes the dependency
between the truth value ¢; of statement j and truth
values ¢ € D; of statements from which j can be
derived.

3. An expertise model which models the expertise @;; of
user i for statement j in terms of user features x;
and statement features y;, which interact via a latent
expertise space.

We denote the partially observed matrix of assessments by
A € {T, F}™*™, the vector of truth values of the statements
by t € {T,F}™, and the matrix of correctness of user
assessments by U € {T, F}"*™. A variable ¢ ~ Beta(a, 3)
represents the probability that users will guess the correct
answer. The matrix of statement-based user expertise is
denoted by U € R™™, and the parameter tuple of the
user-statement expertise model by © := (ro,v,w,V, W) €
R x R% x R% x R¥*ds x RF¥4y Furthermore, the latent
user expertise vectors are denoted by s; € R¥ and the latent

statement vectors by z; € R*. These variables are jointly
modeled conditional on the observed user feature vectors
x; € R statement feature vectors y; € R, logical
dependencies D; € 28\ and prior probabilities of truth
m; € [0,1], as expressed by the following joint probability
density:

p(ta Ua f}a q, {Si}?:lv {Zj};n:h ®|Qa E) =

p(A, U, qlt, U, a, B) x p(t{D;})%1, {m;}721) %

Assessment Model

Logical Model

p(ﬁv{si}?:l’{Zj};n:h@'{xi}?:l?{yj};n:hz)v (5)

Expertise Model

where 2 = {{Dj}qj'n:h {ﬂ-j};?l:h {Xi ?:15 {yj};n:17a76} rep-
resents the parameters of the prior distributions over the
components of the expertise model © are jointly denoted
by ¥. A complete reference of our notation is given in the
Appendix, in Table 4.

4.1 Logical Model

Each statement f; in K is assigned a binary variable
t; € {T, F}. In CoBayes, each truth value t; of a statement
that can be logically deduced by a set of premises D;
from K is connected with the truth values of statements
in D; through p(t;|D;,%;) as described in the previous
section.  Each statement f; for which there exist no
premises in K is assigned p(Z;) := Bernoulli(w;) as a prior,
where the binary variable f; accounts for the deduction
through missing premises. Defining p(t;|t;, D;, m;) =
gggsrggéz}ai(tj|tj,Dj)p(tj|7rj) the "prior” distribution for t

m

p{D; s, {mi ¥ i) = [ [ p(t1E5, Dy m)), (6)

j=1

where Equations (3) and (4) specify the conditional
distribution p(t;|;, D;).

4.2 Assessment Model

Two of the assessment models presented in [16, 17] are
based on the simple idea that the user is going to report
the true truth value of a statement with probability p and
the opposite with probability 1 — p, where p represents the
reliability value of the user. Such a model is too restrictive,
as it assumes that the user is always going to report the
opposite truth value with probability 1 — p. Our model is
more flexible in that it can capture cases in which users
may guess the correct answer. In our model, as shown in
the conditional probability table (CPT) of Figure 2, when
user i assesses statement j, he will report the true truth
value of j if uw;; = T, that is, if he knows j’s truth value.
Otherwise, with probability ¢ ~ Beta(a, 3) the user will
guess the true truth value of j and with probability 1 —
q he will guess the opposite truth value, where the o and
B values are learned. Consider the set {a;;} of observed
true/false feedback labels for statement-user pairs. The joint
probability distribution for assessments A and correctness
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Figure 2: The graphical model of CoBayes. The subgraph highlighted on the left represents the Expertise
Model, the one in the middle the Assessment Model, and the one on the right the Logical Model. The
shaded nodes are observed; the remaining ones are latent variables. We are interested in the marginals of

user expertise u;; and correctness u;;, as well as the statement truths ¢;. For visualization purposes it is also
interesting to infer the knowledge space embeddings of z; and s;.

» ti T F
T [uii] +q(1 = [uiy]) (1 =) = [uyl)
F (1 =) = [ui]) [uii] + q(1 — Juis])

Table 2: The deterministic conditional probability
distribution p(a;lt;, ui;,q) for feedback signal a;;
given assessment correctness u;; and truth ¢;. [u;]
is 1 if u;; =T and 0 otherwise.

values U given truth values t € {T, F'}" is

n m

p(A,U,qlt, U, a, 8) = [ [ [ [ plassts, wis, )p(us; i )p(ale, B),

i=1j=1
B (7)
where U holds the corresponding prior parameters for the
components of U.
Figure 3 depicts the user feedback model. The CPT for
p(aij|tj, uij, q) is depicted in Figure 2. The function [ui;]
maps T and F to 1 and 0, respectively.

Figure 3: The graphical model for feedback signal
a;;j, assessment correctness u;;, and truth ¢;.

The variables @;; € {T, F'} represent the expertise of user
¢ for a specific statement j. In previous work [17], these have
been modeled independently of the statement j as a general
reliability u;; = w; of user i. Instead, we are now proposing
to model the specific areas of expertise of a user through
a sub model similar to a recommender system. Note that
in the above model, due to the assumed independence of
assessments, the agreement of assessments acts as a truth
amplifier.

4.3 Expertise Model

In general, different users specialize in good assessments
for particular groups of statements (i.e., for particular
knowledge domains). The expertise model takes the form
of a recommendation system like Matchbox [22]. However,
instead of explicit user-statement ratings, the predictions
ri; feed via the expertise variables #;; into the correctness
variables wu;;. In algebraic terms, the expertise model from
(5) factorizes as

p(fL {si}?:h {Zj };n:h @|{Xi}?:1, {Yj };n:h E) =

n m
[TV GsssTzs +xTv + v w+ 7o, 8%)x

i=1j=1

k
H(S(Szk — XZTV]C)(S(ZJ‘]C - y?wk)W(T07V7W7V7W)7 (8)
=1

where 7(ro,v,w,V, W) is a fully factorizing Gaussian
prior over 1o, v, w, V, and W whose parameters are jointly
denoted by X above. Intuitively, the model can be thought
of as mapping both users x; and statements y; into a k-
dimensional latent knowledge space, with s; = VTx; and



z; = W”y;. The statement-dependent user expertise ;; is
then modeled as the inner product s} z; between the latent
expertise vectors. In addition, purely user or statement
related effects are modeled with linear models, x7v and
y}”w7 together with an overall threshold rg.

The user and statement features, as represented by the
vectors x;, y;, can be seen as characterizing descriptions
that allow generalizations across users and statements. This
leads to two main advantages. First, the features help
mitigate the data sparsity. Second, as reported in [22],
the features can be helpful when dealing with the cold-
start problem, i.e., when new users join the feedback crowd
or when new statements are added to the knowledge base.
As we will see in the experimental section, the embedding
of users and statements into a latent knowledge space
remarkably improves the corroboration process.

4.4 Gaussian-to-Beta Approximation

The assessment model and the expertise model are
i
1+eﬂij ’
Since the expertise model achievies efficient inference using
a fully factorised Gaussian approximation we approximate
the marginal distribution, p(@;;) using a Gaussian. This
is achieved by using a Laplace approximation to a Beta
distribution Beta(m;a,b) after changing the basis of the
Beta distribution via the sigmoid, following [18]. For
p(iij) ~ N (u, %) this gives us p(uij) = Ber(uyj, ;%) where

P —u
= ea—ﬁl and b= ¢ 02“.

connected by a sigmoid factor p(uij|ui;) = © =

4.5 Approximate Message Passing

We implemented the model based on the Infer.net?
library for probabilistic inference in factor graphs. There
are six types of factors in CoBayes: (1) logical factors
connecting Bernoulli variables, (2) Beta-Bernoulli factors
in the assessment model, (3) product factors, (4) linear
combination factors, and (5) Gaussian factors in the
expertise model, and (6) Gaussian-to-Beta factors for
connecting the real-valued output of the expertise model
with the Boolean variables of the assessment model®.
Inference in the CoBayes model can be performed using
approximate message passing based on a combination of
expectation propagation (EP) [9] and variational message
passing (VMP) [19]. VMP is necessary for the product factor
in the inner product of the expertise model as discussed
in [22], where the reader can find more details about the
inference in this type of model. On the remaining part of
the model (i.e., on the assessment and logical model), the
inference is handled by EP. The inference in the expertise
model is run based on Gaussian messages; the assessment
model uses Beta and Bernoulli messages; and the logical
model runs inference based on Bernoulli messages. Note that
each of the models can be used as an independent module.
This makes CoBayes a flexible compositional corroboration

2Infer.net can be downloaded from http://research.
microsoft.com/en-us/um/cambridge/projects/
infernet/

3Note that the Beta distribution is a conjugate prior of the
Bernoulli distribution

system. For the inference schedule across the modules,
we start out by running inference on the expertise model
and then switch iteratively between this and the remaining
modules of CoBayes. The runtime complexity for the
approximate message passing in CoBayes is linear in the
number of user assessments. In this paper, however, the
focus is on the prediction accuracy of CoBayes. A detailed
investigation of CoBayes’ efficiency and scalability are part
of our future work.

S. EXPERIMENTAL EVALUATION

5.1 Dataset

For the empirical evaluation of the system we used the
dataset of [17]. This dataset was constructed by choosing a
subset of 833 interconnected statements about prominent
physicists, philosophers, and politicians from the YAGO
knowledge base [7]. Since the majority of statements in
YAGO are correct, the dataset was extended by a subset
of 271 false, but semantically meaningful statements (e.g.,
<BarackObama, bornln, Tirana>), that were randomly
generated from YAGO entities and relationships, resulting
in a final set of 1,104 statements. The statements from this
dataset were manually labeled as true or false, resulting in
a total of 803 true statements and 301 false statements.

YAGO provides transitive relationships, such as locatedIn,
isA, influences, etc. Hence, we are in the RDFS# setting.
We computed the deductive closure of the dataset with
respect to the transitive relationships. This resulted in 329
pairs of statements from which another statement in the
dataset could be derived.

For the above statements, feedback labels were collected
from Amazon Mechanical Turk (AMT). The users were
presented with tasks of at most 5 statements each and asked
to label each statement in a task with either true or false.
This setup resulted in 221 AMT tasks to cover the 1,104
statements in the dataset. Additionally, the users were
offered the option to use any external Web sources when
assessing a statement. 111 AMT users completed between
1 and 186 tasks each. For each task the users were paid 10
US cents. At the end the total number of collected feedback
labels was 11,031.

For each statement in the dataset, we use as features
its relationship type (i.e., the relation label between the
two entities), its topic, (i.e., physics, philosophy, politics,
and general knowledge?), and its ID. For users we use only
the ID as a feature. We also tried to collect a second
dataset with user features such as age, location and gender
(i.e. continent) from AMT, but controlling the quality of
the collected features turned out to be quite difficult; for
example, a large number of users would report that they
were from Antarctica. As a result, the user features collected
in the second dataset did not improve the learning process
for the methods presented below. Hence, we present here
the results from the first dataset in which we use only the
above statement features and the user id as a user feature.

4e.g., <physicist, isA, scientist>



| Approach ID | Features | # Trait Dim. |
NULL no features 0
Fact only fact ID 0
User only user ID 0
FactUser fact ID and user 1D 0
ALL all fact and user features 0
MB1 all fact features except ID | 1
MB2 all fact features except ID | 2
MB_UF1 fact ID and user ID 1
MB_UF2 fact ID and user 1D 2
MB_ALL1 all fact and user features 1
MB_ALL2 all fact and user features 2
Table 3: Different approaches resulting from

different configurations of our system. The left-most
column contains the ID of the approach. The middle
column shows the features used by each method, and
the right-most column reports the number of trait
dimensions used.

5.2 Evaluated Approaches

We evaluated 11 different configurations of our system.
Table 3 shows the resulting approaches, which we describe
in the following paragraph.

The NULL approach does not take any statement or user
features into account. It simply infers the posteriors of
statement truths by considering the number of times a fact
was labeled as true versus the number of times it was labeled
as false. In this sense, the NULL approach is very similar
to a majority voting approach (up to the priors used in the
model). The Fact and User approaches learn truth values
by considering only statement and user IDs, respectively.
The User approach is similar to the corroboration approach
presented in [17]. FactUser uses both, the user and the
statement IDs. Finally, the approach coined ALL uses all
available features. Note that for all approaches mentioned so
far the model component which maps users and statements
into a common latent expertise space is not used. This is
different for the remaining models. All of them use either a
one-dimensional or a two-dimensional trait space into which
users and statements are mapped. We refer to the latter
type of approaches as MB approaches (for Matchbox [22]).
The MBI and MB2 models use only statement features;
they use all statement features except the statement ID.
MB_UF1 and MB_UF2 use only the user and the statement
IDs as features, and finally, MB_ALL1 and MB_ALL2 use
all statement and user features.

5.3 Evaluation Measure

As a measure of accuracy for evaluating the learning
methods, we choose the normalized negative log score (in
bits). For a Bernoulli variable b; with posterior p; the
negative log score is defined as

nls(ps, bi) := ~ log, (i)

if ground truth for b; is true
if ground truth for b; is false

The negative log score represents how much information in
the ground truth is captured by the posterior derived by

the corresponding learning method. More specifically, when
pi = [bs] the negative log score is zero.

Let pi1,...,pn be the posterior values for the Bernoulli
variables bi,...,bn. The normalized negative log score
(NNLS) is defined as

Zi\;l nls(pi7 bl)

NNLS(p1, .., pn, b1, .., by) = N ©)

5.4 Experimental Results

The above approaches were evaluated based on two
questions:

1. How well can they predict the truth values of
statements?

2. How well can they predict the assessments users are
going to give?

Predicting Truth Values. First, we evaluate how well the
above methods predict the truth values of the statements
with respect to the ground truth. For every approach the
NNLS is computed for nested subsets of feedback labels. for
each of the subsets, all 1,104 statements are used. Figure 4
shows the NNLS for each of the above approaches. It
can be seen that the MB approaches have a lower NNLS,
and outperform the non-MB approaches. Furthermore,
the best performance is achieved by MB_All2 and MB2,
whereas, as expected, the NULL model performs worst. This
indicates that the linear mapping of users and statements
into a common latent knowledge space indeed improves the
corroboration process.

In addition we compare the performance of the best-
performing MB and non-MB approaches, namely ALL and
MB2, when the logical deduction rules are employed. The
corresponding approaches that use the logical deduction
rules are denoted by ALL T and MB2 T. The results
are depicted in Figure 5. It is interesting to see that
the logical deduction rules already reduce the NNLS when
there are no feedback labels at all. In general we observe
that the deduction rules help reducing the NNLS for small
subsets of feedback labels. However, when the amount
of labels grows, the methods that use the deduction rules
seem to become overconfident. We hypothesize that the
rigidity of the rules thwarts the learning capabilities of the
approaches. This happens at around 40-45% of the feedback
labels (which corresponds to approximately 4 labels per
statement). Interestingly, in Figure 6, where we plot the
ROC curves of the MB2 T approach for various sparsity
levels of feedback signals, we see that already with 40% of
the feedback labels MB2 T achieves almost perfect accuracy.
Furthermore, the AUC increases consistently as the number
of feedback signals increases. These results are in lines with
the findings of [17], where the logical deduction rules were
reported to improve the learning process in the presence of
fewer feedback labels.

Predicting User Assessments. In order to evaluate the
predictive capabilities of the approaches with respect to the
assessment that users may give, we treat the assessment
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Figure 4: The NNLS for the task of predicting
the truth values of statements computed on nested
subsets of feedback labels. For each subset, the
NNLS of each method is evaluated on all 1,104
statements. 100% of feedback labels correspond to
approximately 10 labels per statement.
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Figure 5: Comparison of All and MB2 with their
configurations All T and MB2 T which employ the
logical deduction rules. The NNLS for each method
is computed for nested subsets of feedback labels on
all 1,104 statements.

variable a;; of our model as unobserved and compute their
posterior probabilities. Note that this is an unambiguous
evaluation since we have both, the actual assessments and
our models prediction of the assessments. For each of the
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Figure 6: The ROC curves for MB2 T computed for
different sparsity levels of feedback labels, i.e. from
0% to 40%, on all 1,104 statements.

above approaches, the NNLS is computed with respect to the
prediction of the assessments. Figure 7 depicts the results
of this experiment. Again, the plots show that that the
MB approaches achieve a lower NNLS and hence a better
predictive performance than the non-MB approaches. As in
the previous experiment, MB_All2 and MB2 show the best
performance.
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Figure 7: The NNLS for the task of predicting
user assessments, computed on nested subsets of
feedback labels on all 1,104 statements.

To visualize the role of the linear mapping of users
and statements into a common latent knowledge space, in
Figure 8 we present the learned embedding of the users and



statements into a 2-dimensional trait space. The small dots
represent user traits and the bold dots represent the traits
of the relationship labels for the statements in the dataset.
Note that the CoBayes model employs the inner products to
compute the similarity between the latent knowledge vectors
of users and statements. This means that the similarity
of users and statements is given by the cosine value of the
angle between the corresponding vectors. For example, in
Figure 8, small dots that fall in the shaded triangular area
represent users who did a good job at answering historical
questions such as when or where a person was born.
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Figure 8: The latent embedding of users and
statements for the MB_All2 approach. The small
dots represent user traits and the bold dots
represent the traits of the relationship labels.

6. CONCLUSION

The efforts towards a more semantic Web in which
knowledge is derived from content that is created and
validated by users could highly benefit from sound evidence
corroboration that treats uncertainty as a first-class citizen.
In a joint learning process, CoBayes traces uncertainty from
users to logically interdependent knowledge fragments and
back again. It exploits features from users and statements
to map both the users and the statements into a latent
knowledge space, thus identifying the expertise of users
on certain knowledge domains.  Furthermore, because
of its compositionality CoBayes can be used in various
configurations on different corroboration tasks. We are
currently investigating the extension of the CoBayes model
to capture the trustworthiness of extraction tools and Web
pages from which the statements were extracted. Note

that this is different from the user feedback scenario, as
extraction tools and Web pages give us mainly positive
feedback (namely only the extracted triples). We are looking
into more complex logical rules among statements for dealing
with this problem. Finally, in an active learning scenario it
would be important to identify the appropriate users for a
given assessment task in an online fashion. The feature-
based model of CoBayes offers a considerable potential for
such scenarios. We are exploring active learning strategies
to optimally leverage the feedback in an online fashion.
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APPENDIX

A. NOTATION

Symbol Meaning
t; e {T,F} Truth value of statement j
D; Set of truth values from which statement
7 can be derived
Qij Assessment of user ¢ about statement j
ui;j € {T,F} | Correctness of user i’s
assessment of statement j
u;; € R Expertise of user ¢ when assessing
statement j
x; € R% Feature vector describing user ¢
yji € R Feature vector describing
statement j
s; € RF Latent expertise vector of user ¢
z; € RF Latent expertise vector of statement j
V € R% x R* | Linear mapping from user feature
space to latent expertise space
W € R% x R* | Linear mapping from statement
feature space to latent expertise space
rij €ER Affinity of user 7 and statement j
in latent expertise space
vo € R% Weight vector of linear expertise
model from user features
wo € R% Weight vector of linear expertise
model from statement features
ro € R Threshold variable for expertise

Table 4: Notation




