Optimal Distributed Online Prediction

Ofer Dekel

Ran Gilad-Bachrach
Microsoft Research

1 Microsoft Way
Redmond, WA 98052, USA

Ohad Shamir

Microsoft Research

1 Memorial Drive
Cambridge, MA 02142, USA

Lin Xiao

Microsoft Research

1 Microsoft Way
Redmond, WA 98052, USA

December, 2010

Abstract

using Mini-Batches

OFERD@MICROSOFT.COM
RANGQ@QMICROSOFT.COM

OHADSH@MICROSOFT.COM

LIN.XIAO@MICROSOFT.COM

Online prediction methods are typically presented as serial algorithms running on a single
processor. However, in the age of web-scale prediction problems, it is increasingly common
to encounter situations where a single processor cannot keep up with the high rate at which
inputs arrive. In this work we present the distributed mini-batch algorithm, a method of
converting any serial gradient-based online prediction algorithm into a distributed algo-
rithm. We prove a regret bound for this method that is asymptotically optimal for smooth
convex loss functions and stochastic inputs. Moreover, our analysis explicitly takes into ac-
count communication latencies between nodes in the distributed environment. Our method
can also be used to solve the closely-related distributed stochastic optimization problem,
attaining an asymptotically linear speedup. We demonstrate the merits of our approach

on a web-scale online prediction problem.

Keywords: distributed learning, online learning, stochastic optimization, regret bounds,

convex optimization

1. Introduction

Many natural prediction problems can be cast as stochastic online prediction problems.
These are often discussed in the serial setting, where the computation takes place on a
single processor. However, when the inputs arrive at a high rate and have to be processed
in real time, there may be no choice but to distribute the computation across multiple
cores or multiple cluster nodes. For example, modern search engines process thousands
of queries a second, and indeed they are implemented as distributed algorithms that run
in massive data-centers. In this paper, we focus on such large-scale and high-rate online
prediction problems, where parallel and distributed computing is critical to providing a

real-time service.

First, we begin by defining the stochastic online prediction problem. Suppose that we
observe a stream of inputs z1, 22, . . ., where each z; is sampled independently from a fixed
unknown distribution over a sample space Z. Before observing each z;, we predict a point
wj; from a set W. After making the prediction w;, we observe z; and suffer the loss f(w;, 2;),
where f is a predefined loss function. Then we use z; to improve our prediction mechanism
for the future (e.g., using a stochastic gradient method). The goal is to accumulate the
smallest possible loss as we process the sequence of inputs. More specifically, we measure
the quality of our predictions using the notion of regret, defined as

m

Rim) = 3 (Flwi,z) — fw,2) |

i=1
where w* = arg min,, cy E.[f(w, 2)]. Regret measures the difference between the cumulative
loss of our predictions and the cumulative loss of the fixed predictor w*, which is optimal
with respect to the underlying distribution. Since regret relies on the stochastic inputs z;,
it is a random variable. For simplicity, we focus on bounding the expected regret E[R(m)],
and later use these results to obtain high-probability bounds on the actual regret. In this
paper, we restrict our discussion to convex prediction problems, where f is convex in its
first argument and W is a closed convex subset of R™.

Before continuing, we note that the stochastic online prediction problem is closely re-
lated, but not identical, to the stochastic optimization problem (see, e.g., Wets, 1989; Birge
and Louveaux, 1997; Nemirovski et al., 2009). The main difference between the two is
in the goal: in stochastic optimization, the goal is to generate a sequence wi,ws, ... that
quickly converges to the minimizer of the function F(-) = E,[f(-, z)]. The motivating appli-
cation is usually a static (batch) problem, and not an online process that occurs over time.
Static optimization problems can always be solved using a serial approach, at the cost of
a longer running time. In online prediction, the goal is to generate a sequence of predic-
tions that accumulates a small loss along the way, as measured by regret. The relevant
motivating application here is providing a real-time service to users, so our algorithm must
keep up with the inputs as they arrive, and we cannot choose to slow down. In this sense,
distributed computing is critical for large-scale online prediction problems. Despite these
important differences, our techniques and results can be readily adapted to the stochastic
online optimization setting.

We model our distributed computing system as a set of k nodes, each of which is an
independent processor, and a network that enables the nodes to communicate with each
other. Each node receives an incoming stream of examples from an outside source, such as
a load balancer/splitter. As in the real world, we assume that the network has a limited
bandwidth, so the nodes cannot simply share all of their information, and that messages
sent over the network incur a non-negligible latency. However, we assume that network
operations are non-blocking, meaning that each node can continue processing incoming
traffic while network operations complete in the background.

How well can we perform in such a distributed environment? At one extreme, an ideal
(but unrealistic) solution to our problem is to run a serial algorithm on a single “super”
processor that is k times faster than a standard node. This solution is optimal, simply
because any distributed algorithm can be simulated on a fast-enough single processor. It is
well-known that the optimal regret bound that can be achieved by a gradient-based serial

algorithm on an arbitrary convex loss is O(y/m) (e.g., Nemirovski and Yudin, 1983; Cesa-
Bianchi and Lugosi, 2006; Abernethy et al., 2009). At the other extreme, a trivial solution
to our problem is to have each node operate in isolation of the other £—1 nodes, running
an independent copy of a serial algorithm, without any communication over the network.
We call this the no-communication solution. The main disadvantage of this solution is that
the performance guarantee, as measured by regret, scales poorly with the network size k.
More specifically, assuming that each node processes m/k inputs, the expected regret per
node is O(y/m/k). Therefore, the total regret across all k nodes is O(vkm) - namely, a
factor of vk worse than the ideal solution. The first sanity-check that any distributed online
prediction algorithm must pass is that it outperforms the naive no-communication solution.

In this paper, we present the distributed mini-batch (DMB) algorithm, a method of
converting any serial gradient-based online prediction algorithm into a parallel or distributed
algorithm. This method has two important properties:

e [t can use any gradient-based update rule for serial online prediction as a black box,
and convert it into a parallel or distributed online prediction algorithm.

o If the loss function f(w, z) is smooth in w (see the precise definition in Eq. (5)), then
our method attains an asymptotically optimal regret bound of O(y/m). Moreover,
the coefficient of the dominant term ,/m is the same as in the serial bound, and
independent of k and of the network topology.

The idea of using mini-batches in stochastic and online learning is not new, and has been
previously explored in both the serial and parallel settings (see, e.g., Delalleau and Bengio,
2007; Shalev-Shwartz et al., 2007; Gimpel et al., 2010). However, to the best of our knowl-
edge, our work is the first to use this idea to obtain such strong results in a parallel and
distributed learning setting (see Sec. 7 for a comparison to related work).

Our results build on the fact that the optimal regret bound for serial stochastic gradient-
based prediction algorithms can be refined if the loss function is smooth. In particular, it can
be shown that the hidden coefficient in the O(y/m) notation is proportional to the standard
deviation of the stochastic gradients evaluated at each predictor w; (Juditsky et al., 2008;
Lan, 2009; Xiao, 2010). We make the key observation that this coefficient can be effectively
reduced by averaging a mini-batch of stochastic gradients computed at the same predictor,
and this can be done in parallel with simple network communication. However, the non-
negligible communication latencies prevent a straightforward parallel implementation from
obtaining the optimal serial regret bound.! In order to close the gap, we show that by
letting the mini-batch size grow slowly with m, we can attain the optimal O(y/m) regret
bound, where the dominant term of order \/m is independent of the number of nodes k& and
of the latencies introduced by the network.

The paper is organized as follows. In Sec. 2, we present a template for stochastic
gradient-based serial prediction algorithms, and state refined variance-based regret bounds
for smooth loss functions. In Sec. 3, we analyze the effect of using mini-batches in the
serial setting, and show that it does not significantly affect the regret bounds. In Sec. 4,

1. For example, if the network communication operates over a minimum-depth spanning tree and the
diameter of the network scales as log(k), then we can show that a straightforward implementation of the
idea of parallel variance reduction leads to an O(mlog(k)) regret bound. See Sec. 4 for details.

Algorithm 1: Template for a serial first-order stochastic online prediction algorithm.
for j=1,2,...do
predict w;
receive input z; sampled i.i.d. from unknown distribution
suffer loss f(wy, ;)
define g; = V, f(wj, 25)
compute (wjt1,a;541) = ¢ (a5, 95, ;)
end

we present the DMB algorithm, and show that it achieves an asymptotically optimal serial
regret bound for smooth loss functions. In Sec. 5, we show that the DMB algorithm attains
the optimal rate of convergence for stochastic optimization, with an asymptotically linear
speed-up. In Sec. 6, we complement our theoretical results with an experimental study on
a realistic web-scale online prediction problem. While substantiating the effectiveness of
our approach, our empirical results also demonstrate some interesting properties of mini-
batching that are not reflected in our theory. We conclude with a comparison of our methods
to previous work in Sec. 7, and a discussion of potential extensions and future research in
Sec. 8.

2. Variance Bounds for Serial Algorithms

Before discussing distributed algorithms, we must fully understand the serial algorithms
on which they are based. We focus on gradient-based optimization algorithms that follow
the template outlined in Algorithm 1. In this template, each prediction is made by an
unspecified update rule:

(wjt1, a541) = ¢laj, gj, ;). (1)

The update rule ¢ takes three arguments: an auxiliary state vector a; that summarizes
all of the necessary information about the past, a gradient g; of the loss function f(-, z;)
evaluated at wj, and an iteration-dependent parameter o; such as a stepsize. The update
rule outputs the next predictor wjy1 € W and a new auxiliary state vector a;;1. Plugging
in different update rules results in different online prediction algorithms. For simplicity, we
assume for now that the update rules are deterministic functions of their inputs.

As concrete examples, we present two well-known update rules that fit the above tem-
plate. The first is the projected gradient descent update rule,

1
Wit =mw | wj = 05), (2)
j

where 7y, denotes the Euclidean projection onto the set W. Here 1/«; is a decaying learning
rate, with «; typically set to be ©(y/j). This fits the template in Algorithm 1 by defining
a;j to simply be w;, and defining ¢ to correspond to the update rule specified in Eq. (2). We
note that the projected gradient method is a special case of the more general class of mirror
descent algorithms (e.g., Nemirovski et al., 2009; Lan, 2009), which all fit in the template
of Eq. (1).

Another family of update rules that fit in our setting is the dual averaging method
(Nesterov, 2009; Xiao, 2010). A dual averaging update rule takes the form

wj+1_argmln{<zgzv >+0‘j h(w)}7 (3)

Where h : W — R can be any strongly convex function, and «; is a monotonically increasing
sequence of positive numbers, usually set to be O(y/7). The dual averaging update rule
fits the template in Algorithm 1 by defining a; to be Z] 1 9i- In the special case where
h(w) = (1/2)]|w||3, the minimization problem in Eq. (3) has the closed-form solution

J
Wiy = TW (-1 Z%‘) : (4)
4 =

For stochastic online prediction problems with convex loss functions, both of these up-
date rules have expected regret bound of O(y/m). In general, the coefficient of the dominant
v/m term is proportional to an upper bound on the expected norm of the stochastic gradient
(e.g., Zinkevich, 2003). Next we present refined bounds for smooth convex loss functions,
which enable us to develop optimal distributed algorithms.

2.1 Optimal Regret Bounds for Smooth Loss Functions

As stated in the introduction, we assume that the loss function f(w, z) is convex in w and
that W is a closed convex set. For convenience, we use the notation F(w) = E,[f(w, 2)]
and assume w* = argmin, cy F'(w) always exists. Our main results require a couple of
additional assumptions:

e Smoothness - we assume that f is L-smooth in its first argument, which means that
for any z € Z, the function f(-, z) has L-Lipschitz continuous gradients. Formally,

VzeZ, Vwuw €W, |Vuf(w,2)=VufW,2)| <Lijw-w]. (5

e Bounded Gradient Variance - we assume that V,, f(w, z) has a o?-bounded variance
for any fixed w, when z is sampled from the underlying distribution. In other words,
we assume that there exists a constant ¢ > 0 such that

VweW, B [|[|[Vof(wz) - VE@)|’| <o

Using these assumptions, regret bounds that explicitly depend on the gradient variance
can be established (Juditsky et al., 2008; Lan, 2009; Xiao, 2010). As discussed above, this
dependence is a crucial ingredient for our mini-batch approach.

In particular, for the projected stochastic gradient method (Eq. (2)), we have the fol-
lowing result:

Theorem 1 Let f be an L-smooth convex loss function and assume that the stochastic
gradient V., f (w, z) has o-bounded variance for all w € W. In addition, assume that W is

bounded, and let D = \/maxuyvew |u—v]|3/2. Then using o = L+ (0/D)+\/7 in (2) gives

E[R(m)] < (F(w1)— F(w*)) + DL +2Do+/m.

Similarly, for the dual averaging method defined in Eq. (3), we have:

Theorem 2 Let f be an L-smooth convex loss function and assume that the stochastic
gradient ¥V, f(w, z) has o?-bounded variance for all w € W. Let D = \/h(w*). Then by
using wy = arg min, ey h(w) and aj = L+ (6/D)\/j in the dual averaging method (3), we
have

E[R(m)] < (F(w1)— F(w*)) + DL +2Do+/m.

For both of the above theorems, if VF(w*) = 0 (which is certainly the case if W = R"),
then the expected regret bounds can be simplified to

E[R(m)] < 2D*L+ 2Do+/m . (6)

Proofs for these two theorems, as well as the above simplification, are given in Appendix A.
Although we focus on expected regret bounds here, our results can equally be stated as
high-probability bounds on the actual regret (see Appendix B for details).

Euclidean gradient descent and dual averaging are not the only update rules that can be
plugged into Algorithm 1. The analysis in Appendix A (and Appendix B) actually applies
to a much larger class of update rules, which includes the family of mirror descent updates
(Nemirovski et al., 2009; Lan, 2009) and the family of (non-Euclidean) dual averaging
updates (Nesterov, 2009; Xiao, 2010). For each of these update rules, we get an expected
regret bound that closely resembles the bound in Eq. (6).

Similar results can also be established for loss functions of the form f(w,z) + ¥ (w),
where W¥(w) is a simple convex regularization term that is not necessarily smooth. For
example, setting ¥(w) = Allw||; with A > 0 promotes sparsity in the predictor w. To
extend the dual averaging method, we can use the following update rule in Xiao (2010):

1 »
wj41 = argmin { <j Zgi, w> + U (w) + (?h(w)} :
i=1

weW

Similar extensions to the mirror descent method can be found in, e.g., Duchi and Singer
(2009). Using these composite forms of the algorithms, the same regret bounds as in Thm. 1
and Thm. 2 can be achieved even if ¥(w) is nonsmooth. The analysis is almost identical to
Appendix A by using the general framework of Tseng (2008).

Asymptotically, the bounds we presented in this section are only controlled by the
variance o and the number of iterations m. Therefore, we can think of any of the bounds
mentioned above as an abstract function (o2, m), which we assume to be monotonically
increasing in its arguments.

2.2 Analyzing the no-communication parallel solution

Using the abstract notation (02, m) for the expected regret bound simplifies our presen-
tation significantly. As an example, we can easily give an analysis of the no-communication
parallel solution described in the introduction.

In the naive no-communication solution, each of the k nodes in the parallel system
applies the same serial update rule to its own substream of the high-rate inputs, and no
communication takes place between them. If the total number of examples processed by

Algorithm 2: Template for a serial mini-batch algorithm.
for j=1,2,...do
initialize g; := 0
fors=1,...,bdo
definei:=(j—1)b+s
predict w;
receive input z; sampled i.i.d. from unknown distribution
suffer loss f(wj, 2;)
gi := wa(wj, z;)

9=+ %
end
set (wjy1,a41) = ¢>(aj79_j’ aj)

end

the k nodes is m, then each node processes at most [m/k] inputs. The examples received
by each node are i.i.d. from the original distribution, with the same variance bound o2
for the stochastic gradients. Therefore, each node suffers an expected regret of at most
Y¥(o?, [m/k]) on its portion of the input stream, and the total regret bound is obtain by
simply summing over the k nodes, that is,

E[R(m)] < kw(a2, {%D

If (02, m) = 2D%L + 2Do+/m, as in Eq. (6), then the expected total regret is
9 m
E[R(m)] < 2kD*L + 2Dok {ﬂ

Comparing this bound to 2D%L + 2Do+/m in the ideal serial solution, we see that it is
approximately vk times worse in its leading term. This is the price one pays for lack of
communication in the distributed system. In the section 4, we show how this vk factor can
be avoided.

3. Serial Online Prediction using Mini-Batches

The expected regret bounds presented in the previous section depend on the variance of the
stochastic gradients. The explicit dependency on the variance naturally suggests the idea
of using averaged gradients over mini-batches to reduce the variance. Before we present the
distributed mini-batch algorithm in the next section, we first analyze a serial mini-batch
algorithm.

In the setting described in Algorithm 1, the update rule is applied after each input is
received. We deviate from this setting and apply the update only periodically. Letting b
be a user-defined batch size (a positive integer), and considering every b consecutive inputs
as a batch. We define the serial mini-batch algorithm as follows: Our prediction remains
constant for the duration of each batch, and is updated only when a batch ends. While

processing the b inputs in batch 7, the algorithm calculates and accumulates gradients and
defines the average gradient

b
i 1
9; = b vaf<wjaz(jfl)b+s) :
s=1

Hence, each batch of b inputs generates a single average gradient. Once a batch ends, the
serial mini-batch algorithm feeds g; to the update rule ¢ as the 4% gradient and obtains
the new prediction for the next batch and the new state. See Algorithm 2 for a formal
definition of the serial mini-batch algorithm.

The appeal of the serial mini-batch setting is that the update rule is used less frequently,
which may have computational benefits. In the next section, where we discuss distributed
algorithms, we exploit the mini-batch idea to decrease network traffic and to overcome
communication latencies.

Theorem 3 Let f be an L-smooth convex loss function and assume that the stochastic
gradient YV, f(w, z;) has o%-bounded variance for all w. If the update rule ¢ has the serial
regret bound 1)(c?, m), then the expected regret of Algorithm 2 over m inputs is at most

a2 rm
b (S5
» (5 15)
If (0, m) = 2D%L + 2Do+/m, then the expected regret is bounded by
2bD*L + 2Dov/m + b.

Proof Assume without loss of generality that b divides m, and that the serial mini-batch
algorithm processes exactly m /b complete batches.? Let Z° denote the set of all sequences
of b elements from Z, and assume that a sequence is sampled from Z° by sampling each
element i.i.d. from Z. Let f: W x Z° — R be defined as

b

fw, (z1,...,2)) = %Zf(w,zs) .

s=1

In other words, f averages the loss function f across b inputs from Z, while keeping the
prediction constant. It is straightforward to show that w* = argmin,cy E.cz f(w, 2) is
also a minimizer of the function F(w) = E;cz f(w, 2).

Using the linearity of the gradient operator, we have

b
Vil (0,1 3) = 3 D0V (w,%)
s=1

Let z; denote the sequence (z(j_l)b+1, ..., %jp), namely, the sequence of b inputs in batch j.
The vector g; in Algorithm 2 is precisely the gradient of f(-, Z;) evaluated at w;. There-
fore the serial mini-batch algorithm is equivalent to using the update rule ¢ with the loss
function f.

2. We can make this assumption since if b does not divide m then we can pad the input sequence with
additional inputs until m/b = [m/b], and the expected regret can only increase.

Since V,, f(w,) has a 02-bounded variance and the inputs Z(j—1)bt1s - - - 5 b are L.i.d., we
conclude that V., f (w, z;) has a o*/b-bounded variance for each j and each w € W. Moreover,
if f is L-smooth then f is L-smooth as well due to the triangle inequality. Therefore, if the
update rule ¢ has a regret bound v (c?,m) for the loss function f over m inputs, then its
regret for f over m/b batches is bounded as

m/b B - 02 m
B | S (Flwsz) -z | < v (55)
j=1
By replacing f above with its definition, and multiplying both sides of the above inequality
by b, we have

m/b jb

02 m
E1>. > (flwjz)—fwz)| < by <b’b>'

Jj=li=(j—1)b+1

If (02, m) = 2D%L+2Do+/m, then simply plugging in the general bound b (o*/b, [m/b])
and using [m/b] < m/b + 1 gives the desired result. However, we note that the opti-
mal algorithmic parameters, as specified in Thm. 1 and Thm. 2, must be changed to
aj = L+ (7/vbD)\/j to reflect the reduced variance o2 /b in the mini-batch setting. |

The bound in Thm. 3 is asymptotically equivalent to the 2D?L +2Do+/m regret bound
for the basic serial algorithms presented in Sec. 2. In other words, performing the mini-
batch update in the serial setting does not significantly hurt the performance of the update
rule. On the other hand, it is also not surprising that using mini-batches in the serial
setting does not improve the regret bound. After all, it is still a serial algorithm, and the
bounds we presented in Sec. 2.1 are optimal. However, our experiments demonstrate that
in real-world scenarios, mini-batching can in fact have a very substantial positive effect on
the performance of the online prediction algorithm, even in the serial setting (see Sec. 6 for
details). This positive effect is not captured by the worst-case analysis.

4. Distributed Mini-Batch for Stochastic Online Prediction

To make our setting as realistic as possible, we assume that any communication over the
network incurs a latency. More specifically, we view the network as an undirected graph G
over the set of nodes, where each edge represents a bi-directional network link. If nodes u
and v are not connected by a link, then any communication between them must be relayed
through other nodes. The latency incurred between u and v is therefore proportional to the
graph distance between them, and the longest possible latency is thus proportional to the
diameter of G.

In addition to latency, we assume that the network has limited bandwidth. However,
we would like to avoid the tedious discussion of data representation, compression schemes,
error correcting, packet sizes, etc. Therefore, we do not explicitly quantify the bandwidth
of the network. Instead, we require that the communication load at each node remains
constant, and does not grow with the number of nodes k or with the rate at which the
incoming functions arrive.

Algorithm 3: Distributed mini-batch (DMB) algorithm.
for j=1,2,... do
initialize g; := 0
for s=1,...,b/k do
predict w;
receive input z sampled i.i.d. from unknown distribution
suffer loss f(wj, 2)
compute g := V,, f(wj, 2)
9i=9i+g
end
call the distributed vector-sum to compute the sum of g; across all nodes
receive p/k additional inputs and continue predicting using w;
finish vector-sum and compute average gradient g; by dividing the sum by b
set (wjr1,aj41) = 6(aj, 95, ;)
end

Although we are free to use any communication model that respects the constraints of
our network, we assume only the availability of a distributed vector-sum operation. This is
a standard® synchronized network operation. Each vector-sum operation begins with each
node holding a vector v;, and ends with each node holding the sum Z;‘;l v;. This operation
transmits messages along a rooted minimum-depth spanning-tree of G, which we denote by
T first the leaves of T send their vectors to their parents; each parent sums the vectors
received from his children and adds his own vector; the parent then sends the result to his
own parent, and so forth; ultimately the sum of all vectors reaches the tree root; finally, the
root broadcasts the overall sum down the tree to all of the nodes.

An elegant property of the vector-sum operation is that it uses each up-link and each
down-link in 7 exactly once. This allows us to start vector-sum operations back-to-back.
These vector-sum operations will run concurrently without creating network congestion
on any edge of 7. Furthermore, we assume that the network operations are non-blocking,
meaning that each node can continue processing incoming inputs while the vector-sum oper-
ation takes place in the background. This is a key property that allows us to efficiently deal
with network latency. To formalize how latency affects the performance of our algorithm,
let 11 denote the number of inputs that are processed by the entire system during the period
of time it takes to complete a vector-sum operation across the entire network. Usually p
scales linearly with the diameter of the network, or (for appropriate network architectures)
logarithmically in the number of nodes k.

4.1 The DMB Algorithm

We are now ready to present a general technique for applying a deterministic update rule ¢
in a distributed environment. This technique resembles the serial mini-batch technique
described earlier, and is therefore called the distributed mini-batch algorithm, or DMB for

3. For example, all-reduce with the sum operation is a standard operation in MPI.

10

short. Algorithm 3 describes a template that runs in parallel on each node in the network.
Again, let b be a batch size, which we will specify later on, and for simplicity assume that k
divides b and pu. The DMB algorithm processes the input stream in batches 7 = 1,2,.. .,
where each batch contains b+ 1 consecutive inputs. During each batch j, all of the nodes use
a common predictor w;. While observing the first b inputs in a batch, the nodes calculate
and accumulate the stochastic gradients of the loss function f at w;. Omnce the nodes
have accumulated b gradients altogether, they start a distributed vector-sum operation
to calculate the sum of these b gradients. While the vector-sum operation completes in
the background, p additional inputs arrive (roughly p/k per node) and the system keeps
processing them using the same predictor w;. The gradients of these additional y inputs
are discarded (to this end, they do not need to be computed). Although this may seem
wasteful, we show that this waste can be made negligible by choosing b appropriately.

Once the vector-sum operation completes, each node holds the sum of the b gradients
collected during batch j. Each node divides this sum by b and obtains the average gradi-
ent, which we denote by g;. Each node feeds this average gradient to the update rule ¢,
which returns a new synchronized prediction w;{1. In summary, during batch j each node
processes (b+ p)/k inputs using the same predictor w;, but only the first b/k gradients are
used to compute the next predictor. Nevertheless, all b+ p inputs are counted in our regret
calculation.

If the network operations are conducted over a spanning tree, then an obvious variants
of the DMB algorithm is to let the root apply the update rule to get the next predictor,
and then broadcast it to all other nodes. This saves repeated executions of the update rule
at each node. Moreover, this guarantees all the nodes having the same predictor even with
update rules that depends on some random bits.

Theorem 4 Let f be an L-smooth convex loss function and assume that the stochastic
gradient ¥V, f(w, z;) has o?-bounded variance for all w € W. If the update rule ¢ has the
serial regret bound (%, m), then the expected regret of Algorithm 3 over m examples is at

most
e (5 [555])

Specifically, if (02, m) = 2D?L + 2Do+/m, then setting the batch size b = m'® gives the
expected regret bound

2Dov/m 4 2Dm"* (LD + o\/ii) + 2Dom"® + 2Dopm™"° + 2uD?L. (7)
In fact, if b=mP for any p € (0,1/2), the expected regret bound is 2Do+/m + o(y/m).

To appreciate the power of this result, we compare the specific bound (7) with the
ideal serial solution and the naive no-communication solution discussed in the introduction.
It is clear that our bound is asymptotically equivalent to the ideal serial bound (o2, m)
— even the constants in the dominant terms are identical. Our bound scales nicely with
the network latency and the cluster size k, because p (which usually scales logarithmically
with k) does not appear in the dominant y/m term. On the other hand, the naive no-
communication solution has regret bounded by ki (UQ,m/k) = 2kD?L + 2DoVkm (see
Sec. 2.2). If 1 < k < m, this bound is worse than the bound in Thm. 4 by a factor of v/k.

11

Finally, we note that choosing b as m” for an appropriate p requires knowledge of m in
advance. However, this requirement can be relaxed by applying a standard doubling trick
(Cesa-Bianchi and Lugosi, 2006). This gives a single algorithm that does not take m as
input, with asymptotically similar regret. If we use a fixed b regardless of m, the dominant
term of the regret bound becomes 2Do+/log(k)m/b; see the following proof for details.

Proof Similar to the proof of Thm. 3, we assume without loss of generality that k divides
b+ u, we define the function f: W x 2%+ R as
b

- 1
Flw (asm) = 53 flwz)
s=1
and we use z; to denote the first b inputs in batch j. By construction, the function fis
L-smooth and its gradients have o°/t-bounded variance. The average gradient g; computed
by the DMB algorithm is the gradient of f(-,%;) evaluated at the point w;. Therefore,

m/(btp)) -) 2,
2| 3 (s -Twrz)| < <v(G). 0

This inequality only involve the additional p examples in counting the number of batches
as ™/b+p. In order to count them in the total regret, we notice that

B 1 J(b+u)
1
=@{G-1)(b+p)+

and a similar equality holds for f(w*, z;). Substituting these equalities in the left-hand-side
of the inequality (8) and multiplying both sides by b + u yields

m/(b+p) J(btp) 2

E Z o (fwyz) = f(w*, z)) £<b+“>¢(2’&>‘

i=(j—1)(b+u)+1

Again, if (b+ p) divides m, then the left-hand side above is exactly the expected regret of
the DMB algorithm over m examples. Otherwise, the expected regret can only be smaller.

For the concrete case of (02, m) = 2D?L + 2Do+/m, plugging in the new values for o2
and m results in a bound of the form

(b+ p)?
e

Using the inequality /= +y + z < /x+,/y+ /2, which holds for any nonnegative numbers
z, y and z, we bound the expression above by
b+

b+)DL + 2Dov/m + 2Do | " 4 9Do
2(b+ p) vm \/ ; Y

It is clear that with b = Cm?” for any p € (0,1/2) and any constant C' > 0, this bound
can be written as 2Do\/m + o(y/m). Letting b = m'/3 gives the smallest exponents in the

o(y/m) terms.]

2(b+ p)D*L + 2Da\/m - %m +

12

4.2 Improving Performance on Short Input Streams

Theorem 4 presents an optimal way of choosing the batch size b, which results in an asymp-
totically optimal regret bound. However, our asymptotic approach hides a potential short-
coming that occurs when m is small. Say that we know, ahead of time, that the sequence
length is m = 15,000. Moreover, say that the latency is p = 100, and that ¢ = 1 and
L = 1. In this case, Thm. 4 determines that the optimal batch size is b ~ 25. In other
words, for every 25 inputs that participate in the update, 100 inputs are discarded. This
waste becomes negligible as b grows with m and does not affect our asymptotic analysis.
However, if m is known to be small, we can take steps to improve the situation.

Assume for simplicity that b divides . Now, instead of running a single distributed mini-
batch algorithm, we run ¢ = 1 + p/b independent interlaced instances of the distributed
mini-batch algorithm on each node. At any given moment, ¢ — 1 instances are asleep and
one instance is active. Once the active instance collects b/k gradients on each node, it starts
a vector-sum network operation, awakens the next instance, and puts itself to sleep. Note
that each instance awakens after (c—1)b = p inputs, which is just in time for its vector-sum
operation to complete.

In the setting described above, ¢ different vector-sum operations propagate concurrently
through the network. The distributed vector sum operation is typically designed such that
each network link is used at most once in each direction, so concurrent sum operations that
begin at different times should not compete for network resources. The batch size should
indeed be set such that the generated traffic does not exceed the network bandwidth limit,
but the latency of each sum operation should not be affected by the fact that multiple sum
operations take place at once.

Simply interlacing ¢ independent copies of our algorithm does not resolve the afore-
mentioned problem, since each prediction is still defined by 1/c¢ of the observed inputs.
Therefore, instead of using the predictions prescribed by the individual online predictors,
we use their average. Namely, we take the most recent prediction generated by each in-
stance, average these predictions, and use this average in place of the original prediction.

The advantages of this modification are not apparent from our theoretical analysis. Each
instance of the algorithm handles m/c inputs and suffers a regret of at most

0'2 m
b —, 14+ —
71[) < ba + bC))

and, using Jensen’s inequality, the overall regret using the average prediction is upper

bounded by
o? m
b — 14+ —
¥ < gt bc>

The bound above is precisely the same as the bound in Thm. 4. Despite this fact, we
conjecture that this method will indeed improve results when the batch size b is small
compared to the latency term u.

5. Stochastic Optimization

As we discussed in the introduction, the stochastic optimization problem is closely related,
but not identical, to the stochastic online prediction problem. In both cases, there is a loss

13

function f(w, z) to be minimized. The difference is in the way success is measured. In online
prediction, success is measured by regret, which is the difference between the cumulative
loss suffered by the prediction algorithm and the cumulative loss of the best fixed predictor.
The goal of stochastic optimization is to find an approximate solution to the problem

migienullize F(w) 2 E,[f(w, 2)] ,
and success is measured by the difference between the expected loss of the final output of
the optimization algorithm and the expected loss of the true minimizer w*. As before, we
assume that the loss function f(w, z) is convex in w for any z € Z, and that W is a closed
convex set.
We consider the same stochastic approximation type of algorithms presented in Algo-
rithm 1, and define the final output of the algorithm, after processing m i.i.d. samples, to

be
m
_ 1
Wy — — E wj .
m <
J=1

In this case, the appropriate measure of success is the optimality gap

Notice that the optimality gap G(m) is also a random variable, because w,, depends on
the random samples z1, ..., z,. It can be shown (see, e.g., Xiao, 2010, Theorem 3) that for
convex loss functions and i.i.d. inputs, we always have

1
ElG(m)] < —E[R(m)] .
m
Therefore, a bound on the expected optimality gap can be readily obtained from a bound
on the expected regret of the same algorithm. In particular, if f is an L-smooth convex loss

function and V,, f(w, z) has o?-bounded variance, and our algorithm has a regret bound of
(o2, m), then it also has an expected optimality gap of at most

P07 m) = ap(o,m)

For the specific regret bound v (0?,m) = 2D?L + 2Do\/m, which holds for the serial
algorithms presented in Sec. 2, we have

— 2D?L N 2Do

5.1 Stochastic Optimization using Distributed Mini-Batches

Our template of a DMB algorithm for stochastic optimization (see Algorithm 4) is very
similar to the one presented for the online prediction setting. The main difference is that
we do not have to process inputs while waiting for the vector-sum network operation to
complete. Again let b be the batch size, and the number of batches » = |m/b|. For simplicity
of discussion, we assume that b divides m.

14

Algorithm 4: Template of DMB algorithm for stochastic optimization.

= [3]
for j=1,2,...,r do
reset g; = 0
for s=1,...,b/k do
receive input zg sampled i.i.d. from unknown distribution
calculate g5 = V,, f(wj, 25)
calculate g; < g; + g;
end
start distributed vector sum to compute the sum of g; across all nodes
finish distributed vector sum and compute average gradient g;
set (wjr1,aj41) = ¢(aj, 95, 7)
end
Output: 2 D1 W)

Theorem 5 Let f be an L-smooth convexr loss function and assume that the stochastic
gradient Vo f(w, z) has o?-bounded variance for all w € W. If the update rule ¢ used
in a serial setting has an expected optimality gap bounded by ¥ (o* m), then the expected
optimality gap of Algorithm /J after processing m samples is at most

—O'2m
¢<b’b)'

If (02, m) = % + %, then the expected optimality gap is bounded by

2bD?L N 2Do
The proof of the theorem follows along the lines of Thm. 3, and is omitted.
We comment that the accelerated stochastic gradient methods of Lan (2009) and Xiao
(2010) can also fit in our template for the DMB algorithm, but with more sophisticated up-

dating rules. These accelerated methods have an expected optimality bound of 1&(02, m) =
AD?L/m? + 4D/ /m which translates into the following bound for the DMB algorithm:

- (0 m\ 4¥’D?L 4Do
1/) e 2 + .
b’ b m vm
Most recently, Ghadimi and Lan (2010) developed accelerated stochastic gradient methods
for strongly convex functions that have the convergence rate 1)(0,m) = O(1) (L/m? + 7> /um),

where p is the strong convexity parameter of the loss function. The corresponding DMB
algorithm has a convergence rate

—(o® m VL o?
—— | =01) | —+— .
d}(b’b) ()<m2+,u,m>
Apparently, this also fits in the DMB algorithm nicely.

15

The significance of our result is that the dominating factor in the convergence rate is
not affected by the batch size. Therefore, depending on the value of m, we can use large
batch sizes without affecting the convergence rate in a significant way. Since we can run the
workload associated with a single batch in parallel, this theorem shows that the mini-batch
technique is capable of turning many serial optimization algorithms into parallel ones. To
this end, it is important to analyze the speed-up of the parallel algorithms in terms of the
running time (wall-clock time).

5.2 Parallel Speed-Up

Recall that k is the number of parallel computing nodes and m is the total number of i.i.d.
samples to be processed. Let b(m) be the batch size that depends on m. We define a time—
unit to be the time it takes a single node to process one sample (including computing the
gradient and updating the predictor). For convenience, let § be the latency of the vector-
sum operation in the network (measured in number of time-units) *. Then the parallel
speed-up of the DMB algorithm is

oyl

m

S(m) = = :

If b(m) is monotonically increasing in m, then we have S(m) — k as m — oco. Therefore,
we obtain an asymptotically linear speed-up, which is the ideal result that one would hope
for in parallelizing the optimization process (see Gustafson, 1988).

In the context of stochastic optimization, it is more appropriate to measure the speed-up
with respect to the same optimality gap, not the same amount of samples processed. Let €
be a given target for the expected optimality gap. Let mgi(€e) be the number of samples that
the serial algorithm needs to reach this target and let mpyp(€) be the number of samples
needed by the DMB algorithm. Slightly overloading our notation, we define the parallel
speed-up with respect to the expected optimality gap ¢ as

- msrl(e)
S(E) - le\/IB(€) (g + 6) .
b k

In the above definition, we intentionally leave the dependence of b on m unspecified. Indeed,
once we fix the function b(m), we can substitute it into the equation v(o*/b,m/b) = € to solve
for the exact form of mpyp(€). As a result, b is also a function of e. The following theorem
gives a concrete example of how to calculate S(e),

Theorem 6 Let f be an L-smooth convexr loss function and assume that the stochastic
gradient YV, f(w, z) has o?-bounded variance for all w € W. For any constant § > 0,
if the update rule ¢ used in the serial setting has an expected optimality gap bounded by

P(o?,m) = % + %, then using the batch size b(m) = (99/DL)\/m gives

2 \? &k (24 6)0?
S(e)2< > T where b(e) = ——F— .

6 9
240 mk Le

4. The relationship between ¢ and p defined in the online setting (see Section 4) is roughly u = kd.

16

From this theorem, we can see that as the requirement for optimality increases, we have

92 2
. S (2
iy S(e) = <2+9> K

Obviously, the asymptotic speed-up can be made very close to k by choosing a small 6. We
have chosen the batch size b = ©(y/m) for the simplicity of its analysis. The analysis for
b = ©(m”) where p € (0,1/2) involves more tedious calculation, but it is possible to show
asymptotic speed-up of exactly k.

For the accelerated stochastic gradient methods of Lan (2009), Xiao (2010), and Ghadimi
and Lan (2010), the batch size b has a even smaller effect on the convergence rate (see
discussions after Thm. 5), which implies a better parallel speed-up.

Proof By solving the equation

2D2], N 2Do
=€
m vm '

we see that the number of samples that the serial algorithm needs is at least

2
D252 2Le 4D%52
Mg (€) = & 1+4/1+ =) > e

Using the batch size b(m) = (99/DL)\/m, we can solve the equation

2b(m)D?L . 2Do (2+6)Do

m vm Vm

to obtain

9 4 0)2D2%2
mows(e) = (6)20.

Correspondingly, we can express the batch size as a function of e:

(2+ 9)02'

ble) = Le

Finally, the parallel speed-up against the same target optimality gap € is

Mg (€ 2 2 k
S(e) = > (525) s
Dblzg()(%_‘_(;) 246 1+@k

This concludes the proof. |

17

6. Experiments

We conducted experiments with a large-scale online binary classification problem. First, we
obtained a log of one billion queries issued to a commercial Internet search engine. Each
entry in the log specifies a time stamp, a query text, and the id of the user who issued the
query (using a temporary browser cookie). A query is said to be highly monetizable if, in
the past, users who issued this query tended to then click on online advertisements. Given
a predefined list of one million highly monetizable queries, we observe the queries in the log
one-by-one and attempt to predict whether the next query will be highly monetizable or
not. A clever search engine could use this prediction to optimize the way it presents search
results to the user. A prediction algorithm for this task must keep up with the stream of
queries received by the search engine, which calls for a distributed solution.

The predictions are made based on the recent query-history of the current user. For
example, the predictor may learn that users who recently issued the queries “island weather”
and “sunscreen reviews” (both not highly monetizable in our data) are likely to issue a
subsequent query which is highly monetizable (say, a query like “Hawaii vacation”). In the
next section, we formally define how each input, z;, is constructed.

First, let n denote the number of distinct queries that appear in the log and assume
that we have enumerated these queries, ¢, ..., q,. Now define z; € {0,1}" as follows

{1 if query g; was issued by the current user during the last two hours
t7j =

0 otherwise

Let 4; be a binary variable, defined as

_J+1 if the current query is highly monetizable
v —1 otherwise

In other words, 1 is the binary label that we are trying to predict. Before observing z; or
Y, our algorithm chooses a vector w; € R™. Then z; is observed and the resulting binary
prediction is sign({wy, x¢)). Next, the correct label y; is revealed and our binary prediction
is incorrect if y;(wy, x4) < 0. We can re-state this prediction problem in an equivalent way
by defining z; = y;z¢, and saying that an incorrect prediction occurs when (wy, z;) < 0.

We adopt the logistic loss function as a smooth convex proxy to the error indicator
function. Formally, define f as

flw,z) = logy (1+ exp(—(w,z)))

Additionally, we introduced the convex regularization constraint ||w|| < C, where C' is a
predefined regularization parameter.

We ran the synchronous version of our distributed algorithm using the Euclidean dual
averaging update rule (4) in a cluster simulation. The simulation allowed us to easily
investigate the effects of modifying the number of nodes in the cluster and the latencies in
the network.

We wanted to specify a realistic latency in our simulation, which faithfully mimics the
behavior of a real network in a search engine datacenter. To this end, we assumed that the
nodes are connected via a standard 1Gbs Ethernet network. Moreover, we assumed that

18

0.95

o
©

o
o
[3)

average loss
o
3 =
a1 [ee]

o©
3

0.65

number of inputs

Figure 1: The affects of of the batch size when serial mini-batching on average loss. The
mini-batches algorithm was applied with different batch sizes. The x-axis presents
the number of instances observed, and the y-axis presents the average loss. Note
that the case b = 1 is the standard serial dual-averaging algorithm.

the nodes are arranged in a precomputed logical binary-tree communication structure, and
that all communication is done along the edges in this tree. We conservatively estimated
the round-trip latency between proximal nodes in the tree to be 0.5ms. Therefore, the total
time to complete each vector-sum network operation is log, (k) ms, where k is the number
of nodes in the cluster. We assumed that our search engine receives 4 queries per ms (which
adds up to ten billion queries a month). Overall, the number of queries discarded between
mini-batches is p = 4logy (k).

In all of our experiments, we use the algorithmic parameter ov; = L+v+/j (see Thm. 2).
We set the smoothness parameter L to a constant, and the parameter v to a constant
divided by v/b. This is because L depends only on the loss function f, which does not
change, while v is proportional to o, the standard deviation of the gradient-averages. We
chose the constants by manually exploring the parameter space on a separate held-out set
of 500 million queries.

We report all of our results in terms of the average loss suffered by the online algorithm.
This is simply defined as %2221 f(w;, z;). We cannot plot regret, as we do not know the
offline risk minimizer w*.

6.1 Serial Mini-Batching

As a warm-up, we investigated the effects of modifying the mini-batch size b in a standard
serial Euclidean dual averaging algorithm. This is equivalent to running the distributed
simulation with a cluster size of k£ = 1, with varying mini-batch size. We ran the experiment
with b =1,2,4,...,1024. Fig. 1 shows the results for three representative mini-batch sizes.

19

k=1024, u=40, b=1024 k=32, p=20, b=1024

25 ; — : 2.5 - :
= = =no—comm *. = = =no—comm
batch no—comm * batch no-comm
o serial * o serial
27 —DMB I 2r * —DMB
) . 0 . .
99} . 99} .
=} “ =] .
— 5 N — 3 .
o ‘., (N
& 15t AN o B S .
3 \\ < .
5 | & .
~ ~
1 1t S
,,,,,,,,,,,,,,,,,,,,, S ~ed
05 L L L 0-5 L L L
10° 10° 10 10° 10° 10° 10° 10 10° 10°
number of inputs number of inputs

Figure 2: Comparing DBM with the serial algorithm and the no-communication distributed
algorithm. Results for a large cluster of kK = 1024 machines are presented on the
left. Results for a small cluster of &k = 32 machines are presented on the right.

The experiments tell an interesting story, which is more refined than our theoretical upper
bounds. While the asymptotic worst-case theory implies that batch-size should have no
significant effect, we actually observe that mini-batching accelerates the learning process on
the first 10% inputs. On the other hand, after 10® inputs, a large mini-batch size begins to
hurt us and the smaller mini-batch sizes gain the lead. This behavior is not an artifact of
our choice of the parameters v and L, as we observed a similar behavior for many different
parameter setting, during the initial stage when we tuned the parameters on a held-out set.
Understanding this behavior is an interesting issue, which we leave to future research.

6.2 Evaluating DBM

Next, we compared the average loss of the DBM algorithm with the average loss of the
serial algorithm and the no-communication algorithm (where each cluster node works in-
dependently). We tried two versions of the no-communication solution. The first version
simply runs k independent copies of the serial prediction algorithm. The second version
runs k independent copies of the serial mini-batch algorithm, with a mini-batch size of 128.
We included the second version of the no-communication algorithm after observing that
mini-batching has significant advantages even in the serial setting. We experimented with
various cluster sizes and various mini-batch sizes. As mentioned above, we set the latency
of the DBM algorithm to p = 4log, (k). Taking a cue from our theoretical analysis, we set
the batch size to b = m!/3 ~ 1024. We repeated the experiment for various cluster sizes
and the results are very consistent. Fig. 2 presents the average loss of the three algorithms
for clusters of sizes k = 1024 and k = 32. Clearly, the simple no-communication algorithm
performs very poorly compared to the others. The no-communication algorithm that uses
mini-batch updates on each node does surprisingly well, but is still outperformed quite
significantly by the DMB solution.

20

b=1024

0.76 ‘ I
— =40
I e u=320 ||
0.74r “~o - - ~u=1280

~. u=5120

/)
,,,,,

0.72

o©
3

average loss
o
[*)]
(o]

0.66

0.64

0625 16 17 18 9

10 10 10 10 10
number of inputs

Figure 3: The effects of increased network latency. The loss of the DMB algorithm is
reported with different latencies as measured by p. In all cases, the batch size is
fixed at b = 1024.

6.3 The Effects of Latency

Network latency results in the DMB discarding gradients, and slows down the algorithm’s
progress. The theoretical analysis shows that this waste is negligible in the asymptotic
worst-case sense. However, latency will obviously have some negative effect on any finite
prefix of the input stream. We examined what would happen if the single-link latency were
much larger than our 0.5ms estimate (e.g., if the network is very congested or if the cluster
nodes are scattered across multiple datacenters). Concretely, we set the cluster size to
k = 1024 nodes, the batch size to b = 1024, and the single-link latency to 0.5,1,2,...,512
ms. That is, 0.5ms mimics a realistic 1Gbs Ethernet link, while 512ms mimics a network
whose latency between any two machines is 1024 times greater, namely, each vector-sum
operation takes a full second to complete. Note that p is still computed as before, namely,
for latency 0.5-2P, u = 2P4logy (k) = 2P-40. Fig. 3 shows how the average loss curve reacts to
four representative latencies. As expected, convergence rate degrades monotonically with
latency. When latency is set to be 8 times greater than our realistic estimate for 1Gbs
Ethernet, the effect is minor. When the latency is increased by a factor of 1024, the effect
becomes more noticeable, but still quite small.

6.4 Optimal Mini-Batch Size

For our final experiment, we set out to find the optimal batch size for our problem on a
given cluster size. Our theoretical analysis is too crude to provide a sufficient answer to

21

p=20, m=10° p=20, m=10°
0.74 — 0.66 o
0.72 0.65
07 0.64
1 0.63
0.68
] 0.62
0.66
0.61
3456 7 8 9101112 3456 7 8 9101112 3456 7 8 9101112
logy (b) log,(b) log,(b)

Figure 4: The effect of different mini-batch sizes (b) on the DBM algorithm. The DMB algo-
rithm was applied with different batch sizes b = 8, ...,4096. The loss is reported
after 107 instances (left), 10% instances (middle) and 10° instances (right).

this question. The theory basically says that setting b = m? is asymptotically optimal for
any p € (0,1/2), and that b = m'/3 is a pretty good concrete choice. We have already seen
that larger batch sizes accelerate the initial learning phase, even in a serial setting. We set
the cluster size to k = 32 and set batch size to 8,16,...,4096. Note that b = 32 is the
case where each node processes a single example before engaging in a vector-sum network
operation. Fig. 4 depicts the average loss after 107,108, and 10? inputs. As noted in the
serial case, larger batch sizes (b = 512) are beneficial at first (m = 107), while smaller batch
sizes (b = 128) are better in the end (m = 107).

6.5 Discussion

We presented an empirical evaluation of the serial mini-batch algorithm and its distributed
version, the DMB algorithm, on a realistic web-scale online prediction problem. As ex-
pected, the DMB algorithm outperforms the néive no-communication algorithm. An in-
teresting and somewhat unexpected observation is the fact that the use of large batches
improves performance even in the serial setting. Moreover, the optimal batch size seems to
generally decrease with time.

We also demonstrated the effect of network latency on the performance of the DMB
algorithm. Even for relatively large values of u, the degradation in performance was modest.
This is an encouraging indicator of the efficiency and robustness of the DMB algorithm,
even when implemented in a high-latency environment, such as a grid.

7. Related work

In recent years there has been a growing interest in distributed online learning and dis-
tributed optimization.

Langford et al. (2009) address the distributed online learning problem, with a similar
motivation to ours: trying to address the scalability problem of online learning algorithms
which are inherently sequential. The main observation Langford et al. (2009) make is that in

22

many cases, computing the gradient takes much longer than computing the update accord-
ing to the online prediction algorithm. Therefore, they present a pipeline computational
model. Each worker alternates between computing the gradient and computing the update
rule. The different workers are synchronized such that no two workers perform an update
simultaneously.

Similar to results presented in this paper, Langford et al. (2009) attempted to show that
it is possible to achieve a cumulative regret of O (y/m) with k parallel workers, compared
to the O(\/%) of the naive solution. However their work suffers from a few limitations.
First, due to a technical error in one of their lemmas, their proofs only hold when the convex
optimization problem is unconstrained and boundedness of the gradients and compactness
of the domain can still be implicitly guaranteed. Second, since they work in a model where
one node at a time updates a shared predictor, while the other nodes compute gradients,
the scalability of their proposed method is limited by the ratio between the time it takes to
compute a gradient to the time it takes to run the update rule of the serial online learning
algorithm.

In another related work, Duchi et al. (2010) present a distributed dual averaging method
for optimization over networks. They assume the loss functions are Lipschitz continuous,
but their gradients may not be. Their method does not need synchronization to average
gradients computed at the same point. Instead, they employ a distributed consensus al-
gorithm on all the gradients generated by different processors at different points. When
applied to the stochastic online prediction setting, even for the most favorable class of com-
munication graphs, with constant spectral gaps (e.g., expander graphs), their best regret
bound is O(\/% log(m)). This bound is no better than one would get by running k parallel
machines without communication (see Section 2.2).

In another recent work, Zinkevich et al. (2010) study a method where each node in the
network runs the classic stochastic gradient method, using random subsets of the overall
data set, and only aggregate their solutions in the end (by averaging their final weight
vectors). In terms of online regret, it is obviously the same as running & machines indepen-
dently without communication. So a more suitable measure is the optimality gap (defined in
Section 5) of the final averaged predictor. Even with respect to this measure, their expected
optimality gap does not show advantage over running k& machines independently. A similar
approach was also considered by Nesterov and Vial (2008) and an experimental study of
such a method was reported in Harrington et al. (2003).

Beyond the asymptotic optimality of our bounds, our work has other features that set
it apart from previous work. As far as we know, we are the first to propose a general prin-
cipled framework for distributing any gradient-based update rule, with a concrete regret
analysis for the large family of mirror descent and dual averaging update rules. Addi-
tionally, our work is the first to explicitly include network latency in our regret analysis,
and to theoretically guarantee that a large latency can be overcome by setting parameters
appropriately.

23

8. Conclusions and Further Research

The increase in serial computing power of modern computers is out-paced by the growth
rate of web-scale prediction problems and datasets. Therefore, it is necessary to adopt
techniques that can harness the power of parallel and distributed computers.

In this work we studied the problems of distributed stochastic online prediction and
distributed stochastic optimization. We presented a family of distributed online algorithms
with asymptotically optimal regret and optimality gap guarantees. Our algorithms use
the distributed computing infrastructure to reduce the variance of stochastic gradients,
which essentially reduces the noise in the algorithm’s updates. Our analysis shows that
asymptotically, a distributed computing system can perform as well as a hypothetical fast
serial computer. This result is far from trivial, and much of the prior art in the field did
not show any provable gain by using distributed computers.

While the focus of this work is the theoretical analysis of a distributed online prediction
algorithm, we also presented experiments on a large-scale real-world problem. Our exper-
iments showed that indeed the DMB algorithm outperforms other simple solutions. They
also suggested that improvements can be made by optimizing the batch size and adjusting
the learning rate based on empirical measures.

Our formal analysis hinges on the fact that the regret bounds of many stochastic online
update rules scale with the variance of the stochastic gradients when the loss function is
smooth. It is unclear if smoothness is a necessary condition, or if it can be replaced with
a weaker assumption. In principle, our results apply in a broader setting. For any serial
update rule ¢ with a regret bound of ¥ (0%, m) = Co\/m+ o (y/m), the DMB algorithm and
its variants have the optimal regret bound of Co/m + o (y/m), provided that the bound
(%, m) applies equally to the function f and to the function

b
Flw, (21,0 2) = %Zf(w,zs) .
s=1

Note that this result holds independently of the network size k and the network latency pu.
Extending our results to non-smooth functions is an interesting open problem. A more
ambitious challenge is to extend our results to the non-stochastic case, where inputs may
be chosen by an adversary.

This work leaves additional questions unanswered. For example, In Sec. 4.2 we outlined
a version of our algorithm that uses interleaving to provide better performance on short
input streams. We conjectured that this technique will work better than other methods,
but we did not provide any theoretical or empirical evidence supporting this claim.

An important future direction is to develop distributed learning algorithms that perform
robustly and efficiently on heterogeneous clusters and in asynchronous distributed environ-
ments. A possible first step in this direction is the following simple reformulation of the
DMB algorithm in a master-workers setting: each worker process inputs at its own pace
and periodically sends the accumulated gradients to the master; the master applies the
update rule whenever the number of accumulated gradients reaches a certain threshold and
broadcasts the new predictor back to the workers. In a dynamic environment, where the
network can be partitioned and reconnected and where nodes can be added and removed, a
new master (or masters) can be chosen as needed by a standard leader election algorithm.

24

A central property of our method is that all of the gradients in a batch must be taken
at the same prediction point. In an asynchronous distributed computing environment (see,
e.g., Tsitsiklis et al., 1986; Bertsekas and Tsitsiklis, 1989), this can be quite wasteful. In
order to reduce the waste generated by the need for global synchronization, we may need
to allow different nodes to accumulate gradients at different yet close points. Such a modi-
fication is likely to work since the smoothness assumption precisely states that gradients of
nearby points are similar. There have been extensive studies on distributed optimization
with inaccurate or delayed subgradient information, but mostly without the smoothness
assumption (e.g., Nedi¢ et al., 2001; Nedi¢ and Ozdaglar, 2009). We believe that our main
results under the smoothness assumption can be extended to asynchronous and distributed
environments as well.

Appendix A. Smooth Stochastic Online Prediction in the Serial Setting

In this appendix, we prove expected regret bounds for stochastic dual averaging and stochas-
tic mirror descent applied to smooth loss functions. In the main body of the paper, we
discussed only the Euclidean special case of these algorithms, while here we present the
algorithms and regret bounds in their full generality. In particular, Thm. 1 is a special case
of Thm. 9, and Thm. 2 is a special case of Thm. 7.

Recall that we observe a stochastic sequence of inputs z1, 22, ..., where each z; € Z.
Before observing each z; we predict w; € W, and suffer a loss f(w;, z;). We assume W is
a closed convex subset of a finite dimensional vector space V with endowed norm || - ||. We
assume that f(w, z) is convex and differentiable in w, and we use V,, f(w, z) to denote the
gradient of f with respect to its first argument. V,,f(w, z) is a vector in the dual space V*,
with endowed norm || - ||..

We assume that f(-, z) is L-smooth for any realization of z. Namely, we assume that
f(-, z) is differentiable and that

Vze Z, Vww €W, IV f(w,2) = Vi f(w, 2)]« < Ljjw—w'| .

We define F(w) = E,[f(w, z)] and note that V,, F(w) = E,[Vyf(w, z)] (see (Rockafellar
and Wets, 1982)). This implies that

Vww' €W, |[[VyF(w) = VyF(w)|. < Lijw —w'|| .
In addition, we assume that there exists a constant ¢ > 0 such that
VweW, E|Vif(w,2) - VeEs[f(w,2)]|Z] <o? .

We assume that w* = arg min, ¢y F'(w) exists, and we abbreviate F* = F(w*).
Under the above assumptions, we are concerned with bounding the expected regret
E[R(m)], where regret is defined as

R(m) = > (f(wiz) = fw*,2)) .

i=1

In order to present the algorithms in their full generality, we first recall the concepts of
strongly convex function and Bregman divergence.

25

A function h : W — RU {+o0} is said to be p-strongly convexr with respect to | - || if

Va € [0,1], Yu,v e W, h(au+ (1—a)v)<ah(u)+ (1—a)h(v)— %a(l —a)||u—vl|?.

If h is p-strongly convex then for any u € dom h, and v € dom h that is sub-differentiable,
Vs € Oh(v) h(u) > h(v) + (s,u —v) + guu e

If a function h is strictly convex and differentiable (on an open set contained in domh),
then we can defined the Bregman divergence generated by h as

dp(u,v) = h(u) — h(v) = (Vh(v), u —v) .

We often drop the subscript i in dj, when it is obvious from the context. Some key properties
of the Bregman divergence are:

e d(u,v) > 0, and the equality holds if and only if u = v.
e In general d(u,v) # d(v,u), and d may not satisfy the triangle inequality.

e The following three-point identity follows directly from the definition:

d(u,w) = d(u,v) + d(v,w) + (Vh(v) = Vh(w),u —v) . 9)

A.1 Stochastic Dual Averaging

The proof techniques for the stochastic dual averaging method are adapted from those for
the accelerated algorithms presented in Tseng (2008) and Xiao (2010).

Let h : W — R be a 1-strongly convex function. Without loss of generality, we assume
ming,ew hA(w) = 0. In the stochastic dual averaging method, we predict each w; by

w41 = argmin <Zgjv > L+B7«+1) () ’ (10)

weW

where g; denotes the stochastic gradient V,, f(wj, z;), and (5;)i>1 is a sequence of positive
and nondecreasing parameters (i.e., ;41 > ;). As a special case of the above, we initialize
wi to

wp = argmin h(w) . (11)
weW

We are now ready to state a bound on the expected regret of the dual averaging method,
in the smooth stochastic case.

Theorem 7 The expected regret of the stochastic dual averaging method is bounded as

Vm, E[R(m)] < (F(w1) — F(w")) + (L + Bm)h(w”) + % Z 51

=1

26

The optimal choice of §; is exactly of order v/i. More specifically, let 3; = vv/4, where
is a positive parameter. Then Thm. 7 implies that

0.2
EmwmS(ﬂwﬁ—FWﬂﬂJﬁmﬂ+<me%%V)Mm

Choosing v = o /+/h(w*) gives
E[R(m)] < (F(w:) — F(w*)) + Lh(w*) + (20\/h(w*)) Jm.
If VF(w*) = 0 (this is certainly the case if W is the whole space), then we have
* L * (|2 *
Flun) — F(uw) < 5 llwn —w | < Lh(w).

Then the expected regret bound can be simplified as

E[R(m)] < 2Lh(w*) + <2ox/h(w*)) NS

To prove Thm. 7 we require the following fundamental lemma, which has appeared in
(Nesterov, 2005; Tseng, 2008; Xiao, 2010). Here we give its proof for completeness.

Lemma 8 Let W be a closed convez set, ¢ be a convex function on W, and h be p-strongly
convex on W with respect to || - ||. If

wt = argmin{p(w) + h(w)},
weWw

then
Vo eW, p(w)+hw) > pwh) +hwh) + Lo —w|P,

Proof Note that we do not assume differentiability of either ¢ or h. By the optimality
condition for wt (e.g. Rockafellar, 1970, §27), there exist u € dp(w™) and v € Ih(w™)
such that

(u+v,w—w") >0, Vwe W.

Since ¢ is convex and h is o-strongly convex, we have for all w € W,

p(w) > p(w) + (u,w —w),
h

(@) + (v, w = w) + Sflw — w2

Combining the three inequalities above gives the desired result. |

With Lemma 8, we are now ready to prove Theorem 7.
Proof First, we define the linear functions

li(w) = F(w;) + (VF(w;), w — w;), Vi>1,

27

and (using the notation g; = V f(wj, z;))
Ci(w) = F(w;) + (gi,w — w;) = G(w) + (gi, w — w;),

where

G = 9i — VF(w;).

Therefore, the stochastic dual averaging method (10) is equivalent to

w; = argmin i + (L + Bi)h(w) (12)

weW

Using the smoothness assumption, we have (e.g., (Nesterov, 2004, Lemma 1.2.3))

L
Fwit1) < &‘(wz‘+1)+§\\wz‘+1—wz‘|l2

L+ p;
2
L+ 3

= Li(wit1) +

/8‘
wis1r — wil|* — (gi, wir1 — wi) — Elei—l—l — wi)?

wirr — will® + [l gills wiss — wil| — JHWH — w;]?

. L+5 2
= i) + zﬁzuwm—wi\\t(ol =y F s - wzu> e

L+ 6 -
B g+ L2, (13)

< éi(wi-‘rl) +

IN

éi(wi—‘rl) +

; L+ 5
Zf (i) + (L -+ Bo)h(wien) = 3 o) + (L4) + 52 s — i,
j=1
Combining the above inequality with (13), we have

; N 5 [k
Fwit1) < Lli(wipr) +) L(wirr) + (L + Bi)h(wipr) — Y €i(wi) — (L + Bi)h(wi) + 225,*
Jj=1 j=1 g

~; 5 lai

< Y i(wiga) + (L A+ Bir)h(wigy) = Y Li(wi) — (L + Bi)h(ws) + 2?3* ,
Jj=1 j=1 2

28

where in the last inequality, we used the assumptions 8;y1 > 8; > 0 and h(w;4+1) > 0.
Summing the above inequality from ¢ =1 to i = m — 1, we have

3
3

m— 2
SS P < 3) + (L bt + 5 L9
=2 i=1 i=1
1 _
< mz D (0% * HQZH
< Y hw) + (L gt + 3 1]
i=1 i=1 ¢
m—1 m—1 Hq H2 m—1
(A
<)+ (Lt Buh(wt) + 30 B 4 Y (g
=1 =1 v =1
= uq H2 —
< (m—=1F(W") + (L + B)h(w") + -+
i=1 i=1
Therefore,
m m—1 HQH2 m—1
S (F(w) = F@h) < (L+B)h(u) + 3 008 + 3 (g —w). (14
i=2 i=1 ! i=1
Notice that each w; is a deterministic function of z1,...,2;_1, so

E., ({5, w* —wi) |21, .., 2zim1) = 0.

Taking expectation of both sides of (14) with respect to the sequence z1,. .., z,, and adding
the term F(w;) — F(w*), we have

m m—1 0_2
E Y (Flwi) = F(w') < Flwn) = F(w") + (L+ Bm)h(w’) + 3 5o
i=1 i=1

Theorem 7 is proved by further noticing
E f(w;, z;) = E F(w;), E f(w*, z;) = F(w*), Vi>1,

which are due to the fact that w; is a deterministic function of zg, ..., z;_1.

A.2 Stochastic Mirror Descent

Variance-based convergence rates for the stochastic Mirror Descent methods were due to
Juditsky et al. (2008), and they were extended to an accelerated stochastic Mirror Mescent
method by Lan (2009). For completeness, here we adapt their proofs in the context of
regrets for online prediction problems.

Again let h : W — R be a differentiable 1-strongly convex function with min, ey h(w) =
0. Also let d be the Bregman divergence generated by h. In the stochastic mirror descent

29

method, we use the same initialization as in the dual averaging method (11) and then we
set

Wit1 = arg min{(gi,w) +(L+ Bi)d(w,wi)}, i>1. (15)
weW

As in the dual averaging method, we assume that the sequence (f3;)i>1 to be positive and
nondecreasing.

Theorem 9 Assume that the convexr set W is closed and bounded. In addition assume
d(u,v) is bounded on W and let

D? = max d(u,v).
u,veW

Then the expected regret of the stochastic mirror descent method is bounded as

9 m—1

E[R(m)] < (F(w;) — F(w)) + (L+ Bn)D? + 2 3
=1

1
2 ;

Bi
Similar to the dual averaging case, using the sequence of parameters 3; = (o/D)/i gives
the expected regret bound

E[R(m)] < (F(w1) — F(w*)) + LD* 4 (20D) y/m.

Again, if VF(w*) = 0, we have F(w;) — F(w*) < (L/2)|Jw; — w*||?* < Lh(w*) < LD?, thus
the simplified bound
E[R(m)] < 2LD?* + (20 D) \/m.

We note that here we have stronger assumptions than in the dual averaging case. These
assumptions are certainly satisfied by using the standard Euclidean distance d(u,v) =
(1/2)||u — v||3 on a compact convex set W. However, it excludes the case of using the
KL-divergence d(u,v) = Y ", u;log(u;/v;) on the simplex, because the KL-divergence is
unbounded on the simplex. Nevertheless, it is possible to remove such restrictions by
considering other variants of the stochastic mirror descent method. For example, if we
use a constant 3; that depends on the prior knowledge of the number of total steps to be
performed, then we can weaken the assumption and replace D in the above bounds by

\/h(w*). More precisely, we have

Theorem 10 Suppose we know the total number of steps m to be performed by the stochas-
tic mirror descent method ahead of time. Then by using the initialization (11) and the

constant parameter
o
/B' = Vi,
' 2h(w*)

we have the expected regret bound

E[R(m)] < (F(w1) — F(w")) + Lh(w?) + o/2h(w*)y/m.

Thm. 10 is essentially the same as a result in (Lan, 2009), who also developed an accelerated
versions of the stochastic mirror descent method. To prove Thm. 9 and Thm. 10 we need
the following standard Lemma, which has appeared in (Chen and Teboulle, 1993; Lan et al.,
2006; Tseng, 2008). Here we give its proof for completeness.

30

Lemma 11 Let W be a closed convex set, ¢ be a convexr function on W, and h be a
differentiable, strongly convex function on W. Let d be the Bregman divergence generated

by h. Givenu e W, if

wh = argmin {p(w) + d(w, u)},
weW
then
o(w) + d(w,u) > o(w™) +d(w", u) + dw,w"). (16)

Proof The optimality condition for w* states that there is a sub-gradient g € dp(w™)
such that

(g+Vid(w",u), w—w®) >0, YweW, (17)
where Vid(w™,u) = Vh(w") — Vh(u). Now using the three-point identity (9), we have for
all w e W,

) + (Vh(w®) = Vh(u), z — w?) + d(w,w") + d(w", u)
(w+) + v+ Vh(w") = Vh(u), 2 —w™) + dw,w™) + dw™, u)
o(wh) +d(wh,u) + d(w,w™),

p(w) + d(w,u)

I
’§

(A\VARAYS

where in the first inequality above we used convexity of ¢, and in the second inequality we
used the optimality condition (17). |

We are ready to prove Thm. 9 and Thm. 10.
Proof We start with the inequality (13), and use the inequality (1/2)|wit1 — wil|? <
d(w;+1,w;), which gives

12

F(wit1) < Li(wis1) + (L + Bi)d(wir1,wi) + |2%ﬁ”.*' (18)

Now using Lemma 11 with o(w) = £;(w) yields
li(wi) + (L + B)d(wit1,wi) < Gi(w*) + (L + Bi)d(w*, wi) — (L + B;)d(w*, wis1).

Combining with (18) gives

A 12
Fwit1) < Li(w*) + (L + Bi)d(w*, wi) — (L + Bi)d(w*, wit1) + ”32’,*

= Li(w*) + (L + Bi)d(w*,w;) — (L + Biy1)d(w*, wiy1) + (Bix1 — Bi)d(w*, wit1)
||¢Iz||2

< F(w*) + (L + Bi)d(w*, wi) — (L + Bip1)d(w*, wit1) + (Biy1 — Bi) D
+ ”;’glg + {ais w* — w),

31

where in the last inequality, we used the definition of D? and the assumption that 3;11 > f3;.
Summing the above inequality from ¢ = 1 to i = m — 1, we have

Z Fw)) < (m—1Fw*) + (L+ B)dw*,wy) — (L4 Bm)d(w*, wm) + (Bm — B1)D?

Notice that d(w*,w;) > 0 and d(w*,w;) < D?, so we have

m 2 m—1
S Flw) < (m— DF@*) + (L + f) D + Z ”26” £3 gw — w).
i=2 ‘ i=1

The rest of the proof for Thm. 9 is similar to that for the dual averaging method; see
arguments following the inequality (14).
Finally we prove Theorem 10. From the proof of Theorem 9 above, we see that if

Bi = Bm is a constant for all i = 1,...,m, then we have
m)) O- m—
E;(Fw) — F(w") < (L + fn)d(w",w1) + z_j

Notice that for the above result, we do not need to assume boundedness of W, nor bound-
edness of the Bregman divergence d(u,v). Since we use w; = arg min, y, h(w) and assume
h(wy) = 0 (without loss of generality), it follows

d(w*;wy) < h(w®).

Plugging in £, = (¢/+1/2h(w*))y/m gives the desired result. |

Appendix B. High-Probability Bounds

For simplicity, the theorems stated throughout the paper involved bounds on the expected
regret, E[R(m)]. A stronger type of result is a high-probability bound, where R(m) itself
is bounded with arbitrarily high probability 1 — §, and the bound having only logarithmic
dependence on §. Here, we demonstrate how our theorems can be extended to such high-
probability bounds.

First, we need to justify that the expected regret bounds for the online prediction rules
discussed in Appendix A have high-probability versions. For simplicity, we will focus on a
high-probability version of the regret bound for dual averaging (Thm. 7), but exactly the
same technique will work for stochastic mirror descent (Thm. 9 and Thm. 10).

With these results in hand, we will show how our main theorem for distributed learning
using the DMB algorithm (Thm. 4) can be extended to a high-probability version. Identical
techniques will work for the other theorems presented in the paper.

32

Before we begin, we will need to make a few additional mild assumptions on the problem
setting. First, we assume that there are positive constants B, G such that |f(w,z)| < B
and ||V f(w,2)|| < G for all w € W and z € Z. Second, we assume that there is a positive
constant & such that Var,(f(w,z) — f(w*,z)) < % for all w € W (note that 62 < 4B2
always holds). Third, that W has a bounded diameter D, namely ||w — «'|| < D for all
w,w € W.

Under these assumptions, we can show the following high-probability version of Thm. 7.
As mentioned earlier, similar versions of Thm. 9 and Thm. 10 can be proven using an
identical technique.

Theorem 12 For any m and any § € (0,1], the regret of the stochastic dual averaging
method is bounded with probability at least 1 — § over the sampling of z1, ..., zm by

R(m) < (F(w1) = F(w") + (L + B)h(w") %

H'MS

LR
7
G023y ", é + D2%02m
1 7
90 log(2/3)

+ 2log(2/9) (DG + 2G2>
5

/ 18ma?
+4log(2/8)By |1+ Tos(2/0)"

Proof The proof of the theorem is identical to the one of Thm. 7, up to Eq. (14):

m m— m—1
S (Fwi) — F(w*)) < (L + B Z I 5 w19
=1 1=1

=2

In the proof of Thm. 7, we proceeded by taking expectations of both sides with respect to
the sequence z1, ..., z,,. Here, we will do things a bit differently.

The main technical tool we use is a well-known Bernstein-type inequality for martingales
(e.g., Cesa-Bianchi and Lugosi, 2006, Lemma A.8), an immediate corollary of which can be
stated as follows: suppose z1,...,T, is a martingale difference sequence with respect to
the sequence z1, ..., 2y, such that |z;| < b, and let

m
v = ZVar(xﬂzl, ey Zie1)-
i=1

Then for any § € (0, 1), it holds with probability at least 1 — ¢ that

i < blog(1/6),/1 + 18 (20)
T —.
- log(1/2)
We will first use this result for the sequence
. z — o2
€T = H%HQﬁi + {gi, w* — w;).

33

It is easily seen that E., [z;|z1,...,2i—1] = 0, so it is indeed a martingale difference sequence
W.r.t. 21,...,2m. Moreover, |{g;,w* —w;)| < D| ¢l < 2DG, |¢|? < 4G?. In terms of
the variances, let Var,, and E,, be shorthand for the variance (resp. expectation) over z;
conditioned over zy,...,z;_1. Then

ar,, (z;) < 2Var,, T + 2Var,, ((¢i, w* — w;))
3
1 1|}
< 35 (121 4 2. (g0 - wi?)
i

2 laill? x 2 112 212 2 2

<2G°E,, 52 + 2||w* — w;||“Ey, [||@])7] < 2G 52 +2D"0".
i i

Combining these observations with Eq. (20), we get that with probability at least 1 — 4,

m—1 G223 " L 4 D202m
lg: |12 — o * < 4G? i=1 37
— (g, w* —w;) < | 2DG + —— | log(1/0)4| 1 + 36 :

; Bi <) B 5(1/9) log(1/4)

(21)
A similar type of bound can be derived for the sequence z; = (f(w;, z;) — f(w*, z)) —
(F(w;) — F(w*)). It is easily verified to be a martingale difference sequence w.r.t. z1,..., zm,
since
E[(f (wi, 1) = f(w", 1)) = (F(w;) = F(w")) |21, 2i-1] = 0.
Also,
|(f(wi, 20) = f(w”, zi)) = (F(wi) — F(w"))| < 4B,
and
Varzi ((f(w2> zl) - f(w*> zl)) - (F(wl) - F(w*))) = Va’rzi (f(w2> zl) - f(w*a ZZ))
< 6%,
So again using Eq. (20), we have that with probability at least 1 — § that
3 (f(ws, z) — f(w*, 2)) — (F(w;) — F(w*)) <4Blog(1/8)4/1 + 18mo”. (22)
1y <1 y 21) > g log(l/é) .

=1

Finally, adding F'(w;) — F(w*) to both sides of Eq. (19), and combining Eq. (21) and
Eq. (22) with a union bound, the result follows. [

Comparing the theorem to Thm. 7, and assuming that 8; = ©(1/i), we see that the
bound has additional O(y/m) terms. However, the bound retains the important property
of having the dominant terms multiplied by the variances ¢2,5%. Both variances become
smaller in the mini-batch setting, where the update rules are applied over averages of b such
functions and their gradients. As we did earlier in the paper, let us think of this bound as
an abstract function ¢(0%, 52,5, m). Notice that now, the regret bound also depends on the
function variance 62, and the confidence parameter §.

34

Theorem 13 Let f is an L-smooth convex loss function. Assume that the stochastic gra-
dient V. f (w, 2;) is bounded by a constant and has o?-bounded variance for all i and all w,
and that f(w,z) is bounded by a constant and has 62-bounded variance for all i and for
all w. If the update rule ¢ has a serial high-probability regret bound (o2, 62,6, m). then
with probability at least 1 — &, the total regret of Algorithm 8 over m examples s at most

(b+u)¢((j,f 5,1+ bf’: >+o< \/(1+‘b‘)1og(1/5)m>

Comparing the obtained bound to the one in Thm. 4, we note that we pay an additional
O(y/m) factor.
Proof The proof closely resembles the one of Thm. 4. We let z; denote the first b inputs on
batch j, and define f as the average loss on these inputs. Note that for any w, the variance
of f(w,z;) is at most 62/b, and the variance of V., f(w, z) is at most o2 /b. Therefore, with
probability at least 1 — §, it holds that

2

Zm: flwj, zj) — flw, Z]))§¢< 6:5m> . (23)

J=1

where m is the number of inputs given to the update rule ¢. Let Z; denote the set of all
examples received between the commencement of batch j and the commencement of batch
j + 1, including the vector-sum phase in between (b + p examples overall). In the proof of
Thm. 4, we had that

T T I SR I
E[(f<wjvzj)_f(wvz]))‘wj] =K b+:uzgz:,(f(7 z) f(72)) j s

and thus the expected value of the left-hand side of Eq. (23) equals the total regret, divided
by b+ p. Here, we need to work a bit harder. To do so, note that the sequence of random
variables

1 1

EZ(f(wjvz)_f(w*vz)) - b+ Z(f(wj,z)—f(w*,z)))
ZEZJ‘ ILL ZEZj
indexed by j, is a martingale difference sequence with respect to Zi, Zs,.... Moreover,
conditioned on Zi,...,Z;_1, the variance of each such random variable is at most 462 /b.

To see why, note that the first sum has conditional variance 62 /b, since the summands are
independent and each has variance 2. Similarly, the second sum has conditional variance
62/(b+ p) < 62/b. Applying the Bernstein-type inequality for martingales discussed in the
proof of Thm. 12, we get that with probability at least 1 — 9,

i Z (wg,2) = f(w’, 2) Si 2./ wjvz)—f(w*,z*))JrO(& T?Llogé)(l/d)>’

zeZ j=1 zez]

where the O-notation hides only a (linear) dependence on the absolute bound over |f(w, z)|
for all w, z, that we assume to hold.

35

Combining this and Eq. (23) with a union bound, we get that with probability at least
1-9,

&< o? 62 m mlog(1/9)
Z::ZZ: (wj, 2) — f(w*,2)) < (b+u)@b<b i >+O<(b+u) b).

If b+ p divides m, then m = m/(b+ p), and we get a bound of the form

(b+ p) ("b % 3, w) +0 (&\/(1 + %) 10g(1/5)m> .

Otherwise, we repeat the ideas of Thm. 3 to get the regret bound. |

References

J. Abernethy, A. Agarwal, A. Rakhlin, and P. L. Bartlett. A stochastic view of optimal regret
through minimax duality. In proceedings of the 22nd Annual Conference on Learning
Theory (COLT), 20009.

D. P. Bertsekas and J. N. Tsitsiklis. Paralle and Distributed Computation: Numerical
Methods. Prentice Hall, 1989.

J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer-Verlag,
New York, 1997.

N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University
Press, 2006.

G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization algorithm
using Bregman functions. SIAM Journal on Optimization, 3(3):538-543, August 1993.

O. Delalleau and Y. Bengio. Parallel stochastic gradient descent. Talk presented at CIFAR
Summer School on Neural Computation and Adaptive Perception, Toronto, Canada,
2007.

J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting.
Journal of Machine Learning Research, 10:2873-2898, 2009.

J. Duchi, A. Agarwal, and M. Wainwright. Distributed dual averaging in networks. In
Neural Information Processing Systems (NIPS), 2010.

S. Ghadimi and G. Lan. Optimal stochastic approximatin algorithms for strongly con-
vex stochastic composite optimization. Technical report, Department of Industrial and
System Engineering, University of Florida, Gainesville, FL, 2010.

K. Gimpel, D. Das, and N. A. Smith. Distributed asynchronous online learning for natural
language processing. In proceedings of the Conference on Computational Natural Language
Learning, 2010.

36

J. L. Gustafson. Reevaluating Amdahl’s Law. Communications of the ACM, 31(5):532-533,
1988.

E. Harrington, R. Herbrich, J. Kivinen, J. Platt, and R. C. Williamson. Online bayes point
machines. In proceedings of the Seventh Packfic-Asia Conference on Knowledge Discovery
and Data Mining, pages 241-252, 2003.

A. Juditsky, A. Nemirovski, and C. Tauvel. Solving variational inequalities with stochastic
mirror-prox algorithm. Manuscript, Georgia Institute of Technology, Atlanta, GA, 2008.
Submitted to SIAM Jorunal on Control and Optimization.

G. Lan. An optimal method for stochastic composite optimization. Technical report, Geor-
gia Institute of Technology, 2009.

G. Lan, Z. Lu, and R. D. C. Monteiro. Primal-dual first-order methods with O(1/¢)
iteration-complexity for cone programming. Manuscript, School of Industrial and Systems
Engineering, Georgia Institute of Technology, December 2006.

J. Langford, A. J. Smola, and M. Zinkevich. Slow learners are fast. In Neural Information
Processing Systems (NIPS), 2009. URL http://arxiv.org/abs/0911.0491.

A. Nedi¢ and A. Ozdaglar. Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48-61, 20009.

A. Nedi¢, D. P. Bertsekas, and V. Bokar. Distributed asynchronous incremental subgradient
methods. In D. Butnarin, Y. Censor, and S. Reich, editors, Inherently Parallel Algorithms
in Feasibility and Optimization and Their Applications, Studies inComputational Math-
ematics, pages 381-407. Elsevier, 2001.

A. Nemirovski and D. Yudin. Problem complexity and method efficiency in optimization.
Series in Discrete Mathematics. Wiley-Interscience, 1983.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609,
20009.

Yu. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer,
Boston, 2004.

Yu. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming,
103:127-152, 2005.

Yu. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Pro-
gramming, 120(1):221-259, August 2009.

Yu. Nesterov and J.-Ph. Vial. Confidence level solutions for stochastic programming. Au-
tomatica, 44(6):1559-1568, 2008.

R. T. Rockafellar. Convezr Analysis. Princeton University Press, 1970.

37

R. T. Rockafellar and R. J-B Wets. On the interchange of subdifferentiation and conditional
expectation for convex functionals. Stochastics: An International Journal of Probability
and Stochastic Processes, 7(3):173-182, 1982.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient
solver for SVM. In proceedings of the 24th International Conference on Machine Learning
(ICML), pages 807-814, 2007.

P. Tseng. On accelerated proximal gradient methods for convex-concave optimization.
Submitted to SIAM Journal on Optimization, 2008.

J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asynchronous deterministic and
stochastic gradient optimization algorithms. IEEE Transactions on Automatic Control,

31(9):803-812, 1986.

R. J-B Wets. Stochastic programming. In G. Nemhauser and A. Rinnnooy Kan, editors,
Handbook for Operations Research and Management Sciences, volume 1, pages 573-629.
Elsevier Science Publishers, Amsterdam, The Netherlands, 1989.

L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
Journal of Machine Learning Research, 11:2543-2596, 2010.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In proceedings of the 20th International Conference on Machine Learning (ICML), pages
928-936, Washington DC, 2003.

M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent. In
Neural Information Processing Systems (NIPS), 2010.

38

