
Tools of the trade: Technical Computing on the OS
… that is not Linux!

Or how to leverage everything you‟ve learned, on a Windows box as well

Sean Mortazavi & Felipe Ayora

Typical situation with TC/HPC folks

How I use it

Outlook / Email

PowerPoint

Excel

Gaming

Technical/Scientific computing

Why I have a Windows box

It was in the office when I joined

IT forced me

I couldn't afford a Mac

Because I LIKE Windows!

It's the best gaming machine

Note: Stats completely made up!

The general impression

 “Enterprise community”

 Guys in suits

 Word, Excel, Outlook

 Run prepackaged stuff

 “Hacker community”

 Guys in jeans

 Emacs, Python, gmail

 Builds/runs OSS stuff

Common complaints about Windows

• I have a Windows box, but Windows …
• Is hard to learn…

• Doesn‟t have a good shell

• Doesn‟t have my favorite editor

• Doesn‟t have my favorite IDE

• Doesn‟t have my favorite compiler or libraries

• Locks me in

• Doesn‟t play well with OSS

• ….

• In summary:

 (More like)

My hope …

• I have a Windows box, and Windows …
• Is easy to learn…

• Has excellent shells

• Has my favorite editor

• Supports my favorite IDE

• Supports my compilers and libraries

• Does not lock me in

• Plays well with OSS

• ….

• In summary:

(or at least)

How?

• Recreating a Unix like veneer over windows to minimize your
learning curve

• Leverage your investment in know how & code

• Showing what key codes already run natively on windows just as
well

• Kicking the dev tires using cross plat languages

Objective is to:

Help you ADD to your toolbox,
not take anything away from it!

At a high level…

• Cygwin

• SUA

• Windowing systems

• Standalone shell/utils

• IDE‟s

• Editors

• Compilers / languages / Tools

• make

• Libraries

• CAS environments
And if there is time, a couple of demos…

“The Unix look & feel”

General purpose development

Dedicated CAS / IDE‟s

Cygwin

• What is it?
• A Unix like environment for Windows. Native

integration of familiar Unix tools & apps built from
source for Windows.

• How does it work?
• POSIX support is provided by the cygwin.dll library

which enables code migration w minimal changes

• The usual shells, utilities, etc are compiled as
native Windows binaries against cygwin.dll

• What it‟s not
• Cygwin doesn‟t provide emulation of Unix

programs under windows – apps must be built
from src

• Integration
• All std tools, shells, mounts, file conversions,

symlinks, ACL‟s, various langs + gcc for windows,
ssh, telnet, ftp, …

• You can use win32 API‟s and POSIX

 Sample ports
o Openoffice, Sun Java, …

 License, who
o GPL v2, redhat

 Useful links
o www.cygwin.com

http://www.cygwin.com/

SUA
Subsystem for Unix Applications

• What is it?
• A Unix-like environment for Windows as a

subsystem. Native integration of familiar Unix
tools & apps built from source for Windows.

• How does it work?
• Similar to Cygwin, but implemented as

subsystem

• All tools, shells, utils are built from source, link
to Windows C runtime. Support for msft
compilers via wcc wrapper.

• What it‟s not
• SUA doesn‟t provide emulation of Unix

programs under windows

• Integration
• All std tools/shells + better NFS, Oracle/MSFT

SQL, AD/user mgmt support

• With later version can mix win32 & posix calls

 License, who
o Free with versions of Windows, MSFT

 Useful links:
o http://bit.ly/fTVRtu for the SDK tools

o http://bit.ly/jwGCpD unix/windows
dictionary

o http://bit.ly/kK3f15 SUA community

http://bit.ly/fTVRtu
http://bit.ly/fTVRtu
http://bit.ly/jwGCpD
http://bit.ly/jwGCpD
http://bit.ly/kK3f15
http://bit.ly/kK3f15

MKS Toolkit

• What is it?
• Another Unix-like environment for Windows .

Native integration of familiar Unix tools &
apps built from source for Windows.

• How does it work?
• Native ports of unix shell/utils

• What it‟s not
• MKS doesn‟t provide emulation of Unix

programs under windows

• MKS is not free

• Integration
• Posix support DLL like cygwin

• Good Enterprise support for AD, users, pwd
sync, WMI, …

• Best of the bunch for sysadmin‟ing
heterogeneous farms

 License, who
o Proprietary, MKS

 Useful links:
o http://mkssoftware.com general

o http://www.mkssoftware.com/prod
ucts/tk/commands.asp?product=tk
dev developers

http://mkssoftware.com/
http://www.mkssoftware.com/products/tk/commands.asp?product=tkdev
http://www.mkssoftware.com/products/tk/commands.asp?product=tkdev
http://www.mkssoftware.com/products/tk/commands.asp?product=tkdev
http://www.mkssoftware.com/products/tk/commands.asp?product=tkdev

Shells & Utilities options

• All common shells are available on Windows:
• sh, bash, csh, tcsh, zsh, kshell, …

• Getting them - Option 1: “Distros”
• MKS

• SUA

• Cygwin

• MSYS

• …

• Getting them - Option 2: “Just the basics please”
• GnuWin – windows versions of gnutools

• Native ports of 150+ utils – using mingw / MSVC, no emulation

• Distributed w gnuemacs, KDE, …

• GPL

Editors

• The classics
• Vi
• Vim
• Emacs

• The newer batch
• Notepad2
• Notepad++
• E (Textmate)
• TotalEdit
• UltraEdit
• Pspad
• EditPlus
• …

• Emulation support in Visual Studio
• ViEmu
• VsVim
• Emacs

Demo: Shells

• Installation & usage of Unix shells / utilities

• PowerShell: the new msft shell – mixing & matching shells

• Vi / Emacs

IDE examples

• Eclipse
• Started a Java env, now w

C++ and various other
plug-ins

• IPython
• Interactive Python REPL w

support for parallel
computing

• Sage
• Symbolic math IDE w

Python as the scripting
language

…and of course emacs

• Visual Studio
• Various languages w

support for cross plat
compilers

• RevoAnalytics R
• A complete R development

environment w debugging
and visualization

Build environments

• MKS / CygWin / SUA

• MingW

• Cross-plat compilers

• Scripts, make, nmake, Cmake, …

• /, vs \, File vs file, drive names, …

first we add the executable that generates the table

add_executable(MakeTable MakeTable.cxx)

add the command to generate the source code

add_custom_command (

 OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/Table.h

 COMMAND MakeTable ${CMAKE_CURRENT_BINARY_DIR}/Table.h

 DEPENDS MakeTable

)

add the binary tree directory to the search path for

include files

include_directories(${CMAKE_CURRENT_BINARY_DIR})

add the main library

add_library(MathFunctions mysqrt.cxx ${CMAKE_CURRENT_BINARY_DIR}/Table.h)

The Cmake crossplat build utility

Languages, Compilers/interpreters

• Classics
• C/C++

• Fortran

• Newer on the block
• C#/Java

• Python

• R

• F#

• Dedicated CAS langs
• M

• Mathematica

• Maple

• …

• C: gcc, VC++, Intel*, clang, …

• Fortran: Intel*, PGI*, …
* generally the best FP optimizations

• JVM, CLR langs

• CPython, IronPython, Pypy, Jython, …

• Revolution R, R-Studio

• IDE + language combos

C#/F# run on linux/macos via Mono

Library/runtime Examples

• Boost

• Python: SciPy, Numpy, scikits, …

• MKL

• IMSL

• NAG

• Visual Numerics

• LibFlame

• ATLAS

• MPI, OpenMP, CUDA, …

• NetCDF, HDF5, FITS, …

• From text to image processing to large graphs & MPI

• Numeric & Scientific libraries

• Highly optimized Math libraries for native & .Net

number crunching

• OS & language neutral scientific data formats &

libraries

• Optimized || libraries for multicore, cluster and GPUs

Debugging, Profiling, Analysis

• VS plug-ins from Intel, PGI, Allinea (MPI)

• VS plug-in for Python/mpi4py

• MPI Tracing
• JumpShot

• Vampir (native windows port)

• ETW (“DTrace”)
• Event Tracing for Windows

• Marmmot for VS
• MPI call / param analysis (runtime)

• ISP
• MPI program verification

Computer Algebra Systems

Maple * MATLAB * Mathematica *

Octave IPython * Sage

C
o

m
m

e
rc

ia
l

F
re

e
/O

S
S

* Can parallelize using Windows HPC

Now that you‟re here… stuff you really should try!

• Visual Studio

• F#

• MPI.Net

• Python Tools for VS

• PowerShell

• CUDA

Visual Studio

• State of the art development environment
• Development, debugging, profiling, life-cycle mgmt, …

• Technical Computing related
• Best host for key compilers: C++, Fortran, PGI

• Free full featured Python dev plug-in

• Best host for AMD, Nvidia plug-ins: see Nsight

• Support for Vim & Emacs

• Academic / hobbyist related
• Essentially free to schools via www.dreamspark.com program

• Free to startups via www.bizspark.com program

http://www.dreamspark.com/
http://www.bizspark.com/

F#

• Multi-paradigm language

• Succinct & powerful

• Interactive mode

• Runs on MacOS & Linux too!

• Free / open source

• Check out “Units of Measure”, async

• See Christophe‟s demo at the demofest!

Python Tools for VS

• Free & Open source plug-in for
writing Python code

• Intellisense, browsing, …

• Standard REPL + IPython REPL

• Cluster support: MPI & IPython

• Debugging

• Profiling

• CPython, IronPython, Jython, …

• Soon: Big Data, Big Compute
support

Demo

• Python Tools for Visual Studio
• Intellisense

• Profiling

• Cluster MPI debugging

Noteworthy: IPython

• Interactive computing using
Python
• Advanced REPL with History, completion,

…

• Capture „var = !ls –la‟

• Inline images

• Interactive || computing
• Specify cluster headnode,

• Start # of desired engines

• Compute!

• Included in all major Python
distro‟s

• Open source & available on
Windows, Linux, Mac

Demo

Why Python

• Well suited to Technical &
Scientific Computing
• Isn‟t it interpreted? (and slow?!)

• Easy ramp up, yet powerful
language

• Incredibly rich ecosystem of high
quality libraries

• Healthy developer eco-system

• Various implementations

• Free, open source w quality
distro‟s providing support

• Interactive by design

• Easily mix in native code, even CUDA,

MPI, … see Cython, swig, ctypes

• Web, numerics, symbolics, Bio, astronomy, …

• 2D, 3D viz, …. See scipy, scikits

• #3 most popular in some surveys

• PyCon is the main conference

• CPython,IronPython, Jython, PyPy, …

• BSD like license

• Enthought Python Distro, ActivePython, …

• From CS101 to PhD thesis

Communicator comm = Communicator.world;

string[] hostnames =

 comm.Gather(MPI.Environment.ProcessorName, 0);

if (Communicator.world.Rank == 0) {

 Array.Sort(hostnames);

 foreach (string host in hostnames)

 Console.WriteLine(host);

}

MPI.Net : A high performance wrapper for MPI
C vs C#: gather cluster hostnames / sort / print

http://www.osl.iu.edu/research/mpi.net/

Optimizing MPI.Net performance
An optimal Send?

public void Send<T>(T value, int dest, int tag)

{

 if (HasMpiDatatype<T>()) {

 unsafe {

 fixed (T* valuePtr = &value) {

 Unsafe.MPI_Send(new IntPtr(valuePtr), 1,

 GetMpiDatatype<T>(), dest, tag, comm);

 }

 }

 } else {

 // Serialize and transmit

 }

}

C# MPI

short MPI_SHORT

int MPI_INT

float MPI_FLOAT

double MPI_DOUBLE

0.01

0.1

1

10

100

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Th
ro

ug
hp

ut
 (

Mb
ps

)

Message Size (Bytes)

NetPIPE Performance

C (Native)

C# (Primitive)

C# (Serialized)

• The “Dwarfs”

• Colella‟s original 7, now 13 kernels that encapsulate a large spectrum of computing
workloads

• Parallel Dwarfs: Visual Studio solutions that implement || versions of the dwarfs
(13k+ LOC)

• Languages: C++, C#, (some F#)

• Input files: small, medium, large

• Parallelization technologies:

• OpenMP, TPL, MPI, MPI.Net, (ClusterSOA, PPL soon)

• Results gathering & plotting

• Excel, JumpShot, Vampir

• “Driver” for selecting & running the benchmarks

• Open Source on codeplex.com

Parallel Dwarfs Project

Dwarf Popularity1

HPC Embed SPEC ML Games DB

1 Dense Matrix

2 Sparse Matrix

3 Spectral (FFT)

4 N-Body

5 Structured Grid

6 Unstructured

7 MapReduce

8 Combinational

9 Nearest Neighbor

10 Graph Traversal

11 Dynamic Prog

12 Backtrack/ B&B

13 Graphical Models

14 FSM

Source:“Future of Computer Architecture” by David A. Patterson 31

> >

PS1> DwarfBench -Names SpectralMethod -Size medium -Platform managed -Parallel serial,tpl,mpi –PlotExcel

PS1> DwarfBench –Names DenseAlgebra -Size medium -Platform unmanaged,managed -Parallel mpi –PlotVmampir

PS1> DwarfBench –Names *grid* -Size Large -Platform unmanaged -Parallel hybrid –PlotVmampir

Scale: Nearly 300 combinations

• Foreach (managed, unmanaged)
• Foreach (mpi, mpi.net, openmp, tpl, hybrid)

• Foreach (input.small, input.medium,input.large)
• Foreach (one..thirteenth dwarf)

• Run, Trace

• Plot Excel, Xperf

• Plot Vampir, JumpShot

• Support for mixed models:
• MPI + Openmp
• MPI.Net + TPL
• etc

32

13 Visual Studio Solutions

33

StructuredGrid code fragment using MPI.NET

Skip/Demo

Results Summary: -PlotExcel

34

Skip/Demo

Xperf: -PlotXperf

35

Skip/Demo

JumpShot: -PlotJumpshot -PlotVampir

36

Skip/Demo

Parallel Computing on Azure

• Demo:

Processing astronomical images for a TeraPixel panorama

Collect Process View

The 10 Parsec Overview

4TB of raw images

2 X 1791 X 0.5 gigapixel plates

Palomar (US) and UK Schmidt (Australia)

telescopes

Raw images have many artifacts

Data access is challenging

Local + Cloud clusters

Vignetting correction

Astrometric alignment

De-vignetting & color correction

Stich & Smooth

Final rendered image

240 (=1,099,511,627,776)

pixels (RGB)

Smooth, zoomable

Silverlight or Desktop viewers

Accessible by everyone

Creating Flat

Fields

Normalization

Matrix

Normalizing

Corners

Astrometric
Alignment

Vignetting

correction

Color
Correction

Stitching &

Smoothing
&

Collect process View

Devignetting

C
o

lo
r

P
la

te
s

G
e
n

e
ra

ti
o

n

Creating Flat

Fields

Normalization

Matrix

Normalizing

Corners

Color Plates

Generation

Vignetting

Correction

Stitching

Smoothing &

Collect process View

 Input: 1791 X 2 images; Output: matrix of correction factors

 Code: Parallel C#, C++, DryadLinq (Map/Reduce)

 HW: Local Cluster

 Input: 1791x2 images (417GB compressed, 4TB uncompressed) ;

Output: 1791 color plate files (790GB)

 Code: Parallel C#, C++. Time: 5Hrs (64 nodes).

 HW: Local Cluster + Azure

 Output: 256x64 8192x8192 RGB images and label files

 Code: Parallel C#. Time: 3Hrs (64 nodes)

 HW: Local cluster + Azure

 Final output: 1025 image pyramids (802G);

 Code: C++, MPI, Parallel C#; Time: Smooth=4Hrs; Zoom=40m

 HW: Local Cluster (64 nodes); 2.5 Hrs to move final data off cluster

(1Gpbs)

Collect process View

• Would require 500,000 HDTVs to view

• Stretched out, would fill an American football field

Technical Details/Demo

• Acquisition & node mgmt on Azure

• Visual Studio : DryadLinq

• Visual Studio : .Net Parallel Extensions

• Visual Studio : MPI

The DryadLinq Query

DryadLinq.UsePLINQ = false;
DryadLinqTools.RemoveUnwantedDllsFromResourceSet();

var pixelRows = folders.SelectMany(image => ImageToRows(image, options));
var stackedPixelRows = pixelRows.GroupBy(pixelRow => pixelRow.Position);
var finalRows = stackedPixelRows.Select(x => ReduceStackedRows(x));
var b = finalRows.Apply(x => SaveFlatField(x, options));
return b.Single();

.Net Parallel Extensions

Parallel.For(0, plate.Height, (y) =>
 {
 //Flip the y-index because a DSS plate has y=0 at the bottom of
 //the image but a bitmap has the origin at the top
 int iy = plate.Height - 1 - y;
 int pos = y * imageData.Stride;
 for (int ix = 0; ix < plate.Width; ix++)
 {
 Color c = scale.Map(plate.Data[iy][ix]);
 rgb[pos++] = c.B;
 rgb[pos++] = c.G;
 rgb[pos++] = c.R;
 }
 });

What‟s actually nicer on windows for TC work
(in my humble opinion)

• Visual Studio, C#, F#, C++ IDE

• MPI.net

• Graphics & GPGPU drivers, Nvidia Nsight, …

• Python MPI

• CAS packages

• TC / Domain Specialist support: eg run Excel at scale

• HPC cluster setup / mgmt / multi-discipline usage

• Intel & PGI‟s compiler integration

• .Net in some ways > JVM

Conclusion…

• If you haven‟t already, give your Windows box some love!

• Leverage your investments: tools, code, muscle memory, …

• Cross-platform languages/runtimes enable kicking the tires
without lock-in

Winux™ : The best features of Linux & Windows !

Backup screen shots

Python Tools for Visual Studio
Free/OSS

Burst to Azure

Development

• Porting vs developing new code

• Examine headers, code, platform dependencies

• UI layer

• Support libraries

• make

• Compile/link/build, debug, iterate

• Profile, optimize

• Package & Deploy

