Result Enrichment in Commerce Search
using Browse Trails

Debmalya Panigrahi*
Computer Science and Atrtificial Intelligence
Laboratory, MIT

debmalya@mit.edu

ABSTRACT

Commerce search engines have become popular in recent years

as users increasingly search for (and buy) products on the ke
response to an user query, they surface links to produdteindat-
alog (or index) that match the requirements specified in theryq
Often, few or no product in the catalog matches the user geery

actly, and the search engine is forced to return a set of ptedu
thatpartially match the query. This paper considers the problem of

choosing a set of products in response to an user query, eeas t
sure maximum user satisfaction. We call this tbgult enrichment
problem in commerce search.

Sreenivas Gollapudi
Microsoft Search Labs
Microsoft Research Silicon Valley

sreenig@microsoft.com

1. INTRODUCTION

pect of search engines, as users spend increasing amouirteof
searching for (and buying) products online. The quality fod t
search results surfaced by a search engine in response aducpr
query is critical to improving user satisfaction and enirighthe
search experience. In fact, the importance of effectivelydiing
commercial queries can be inferred from the plethora of wab p
tals that are dedicated to commerce search. Typicallyethegals
maintain a catalog (or index) of products, and surface afggba-
ucts from the catalog that best match the user query. In magg,w

In recent years, commerce search has become an integral as-

commerce search is different from traditional web searchlikg
in web search, the search results are a set of products, dral no

The challenge in result enrichment is two-fold: the seanmth e
gine needs to estimate the extent to which a user genuinedg ca

about an attribute that she has specified in a query; themst dis-
play products in the catalog that match the user requireoettie
importantattributes, but have similar but possibly non-identical

value on the less important ones. To this end, we proposeha tec

nique for measuring the importance of individual attributdues
and the similarity between different values of an attribugenov-
elty of our approach is that we use entire browse trails grathan
just clickthrough rates, in this estimation algorithm. Weelop a
model for this problem, propose an algorithm to solve it, anp-
port our theoretical findings via experiments conducted ainaa
user data.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]

General Terms
Algorithm, Performance

Keywords

Streaming Algorithms, Structured Search

*Work done while the author was an intern at Microsoft Search

Labs.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

WSDM'11,February 9-12, 2011, Hong Kong, China.

Copyright 2011 ACM 978-1-4503-0493-1/11/02 ...$10.00.

set of web links. These products are stored in a well-stradtu
catalog maintained by the commerce search engine, and fast
metadata. For example, each product hagtegory (e.g.,lap-
top, digital camera etc) and within a category, product data is or-
ganized into multiple fields (e.gmanufacturer, model). The
queries themselves are partially structured as well, indatset of
attribute values relevant to the product being searcheddoityp-
ically be extracted from the query string. For example, isanis
looking for digital cameras, itis likely that her query wiificlude (a
subset of) values for attributes like manufacturer, modtgbr, res-
olution, zoom, etc. Further, the goal of commerce searah hielp
users make a transaction, which is different from the gokigat
search. This necessitates the development of techniquksatkd
to solving problems in commerce search. In this paper, wigdes
such a technique for solving the problem of resutichmenithat
we describe below) in commerce search.

Let us introduce our problem through an example. Suppose a

user is searching for Bink Pentax Optio Camera. It is quite
possible that such a product is not available in the cat8ogpose,
instead the catalog contain$#lver Pentax Optio Camera, a
Pink Canon Powershot Camera, aPurple Pentax Optio Cam-
era, and aPink Vivitar ViviCam Camera. In the absence of
the exact product in the catalog (or if the number of prodircthe
catalog that exactly match the query specifications is gnthié
search engine needs to surface a set of related products.isThi
calledresult enrichment Typically, user data is used to solve this
problem. Suppose that, in the example above, users whohsehrc
for pink Pentax cameras earlier often settled for a Pentareca of

a different color, but never for a camera of a different mantifrer.

If the search engine has only two result slots, prior useabieh
indicates that the two Pentax cameras in the catalog sheutdib
faced, rather than the Canon or Vivitar cameras. What if anly
single result slot is available? Then, we might need to usk-ad
tional information—say, users who searched for pink caméara
the past often bought purple cameras but rarely silver dnabat

Fraction of browse trails

3

1 5 7 9 11 13 15 17 19 21 23 25 27

Browse trail length

Figure 1. A histogram of length of browsetrails

case, the purple Pentax camera should be surfaced ratinethiha
silver one.

To substantiate our point, we introduce the notionsmgfortance
of attribute values andimilarity between them.

e The importanceof an attribute values is a measure of the
likelihood of users who queried for products with attribute
valuev to actually end up buying products having attribute
valuev. In the previous example, Pentax has high impor-
tance.

Thesimilarity between attribute valuesandv is a measure
of the likelihood of users who queried for products with at-
tribute valuev to actually end up buying a product having
attribute valuev'. In the previous example, purple is more
similar to pink than silver.

These notions are central to what a commerce search engisérdo
response to a query; clearly, it will try to surface produbts retain
high importance attribute values in the query, while pdgsiplac-
ing the low importance ones with other similar attributeves. In
this paper, we define the importance and similarity pararaete
an attribute value, and then present a technique for estigidtese

parameters that can be used by commerce search engineg for th

purposes of result enrichment.

Some of the above aspects have been studied in the context o
general web search. Query and document classification leas be
studied to taxonomize information in web search [14, 2554d-
ies have also looked at entity extraction from queries ireotd
improve classification [17], query alterations [10], andragting
structured information from a query [21]. The problems ofneo
puting proximity in terms of related queries and similatigtween
documents has also been well-studied in the literature3J186, 8,

2]. Further to these studies, there has been a considenaiolena

of research directed toward incorporating user feedbaokétated
problems [7, 1]. An important outcome of this area of reseasc
that clicks offer one of the most important signals of usedfeack.
However, often the first click is not representative of ussrdvior

in our context. For example, a user looking for a certain pob@én

the web might choose to click on a product page and then decide
to look for another product, often following links on the grmt
page itself, e.g. recommendations. In fact, the toolbawvbedogs

of a commercial search engine confirm our hypothesis thaisbe
spends a considerable amount of time beyond the first climk$r

ing the web. Figure 1 shows the distribution of the lengthrofvse
trails in a browsing session of a user over a six-month period. We
define a browse trail to begin with a user query to a searcmengi
followed by a sequence of web pages that are visited by the use
Query reformulation or a new query to the search engine ntaeks
beginning of a new browse trail.

Browse trails have many advantages over clicks. One of the ma
jor disadvantages of using first click data is that it is extedy

sparse since most web domains do not receive a statistigy
nificant number of first clicks. For example, web domains trat
important for specific attribute values that are infrequermjueries
often have comparatively low page rank values, and thezetoely
appear in the list of urls displayed by a search engine. Asaltre
these domains do not have significant presence in first citi.d
However, users often navigate to such domains in the codrae o
long browsing session if they are interested in the atteitualues
for which these domains are relevant. Therefore, such dmeg-
pear more frequently in browse trails data. Another majobfam
with clickthrough data is that it usually has a large fractd noisy
clicks, i.e. urls that the user clicked on simply becausg siewed

up in the list returned by a search engine in response to fawy,qu
though the domains are not actually relevant to her quergli€gi-

ate this problem of noisy clicks, researchers have propeaedus
techniques, e.g. use tlasvell timeof users on these pages to sep-
arate between spurious and genuine clicks. Using browse itta
stead of first clicks automatically solves this problem sigenuine
clicks usually lead to longer browse trails and therefoneticoute
significantly more to the browse trail data corpus than stuti-
ous browse trails.

Our Contributions. In this study, we propose to use the browse
trails of users performing web search for products to eséraan-
ilarity and importance parameters of attribute values, thieteby
aid in enriching the results returned for a query submitbesl ¢com-
merce search engine. It is important to note that while tloavbr
ing data we use comes from commercial search queries in@ener
web search engines, we aim to apply the user behavior knowl-
edge gained from this data in commerce search engines. We as-
sume that queries are annotated witittribute, attribute
value> pairs (e.g., by [24]). Our main contributionastechnique
that uses these annotated queries and their correspondimgde
trails to estimate the importance and similarity of attribuval-
ues As a key step in these computations, we propasefficient
streaming algorithm that computes a list of important diite val-
ues for every domain visited in the browse trai&ven that it can

Pe implemented in the streaming model, our algorithm vesr ea

ily scales to large data sets such as browse trails fromdoddigs.
Another key feature of our algorithm is that it does not wonktloe
content of a page, thereby avoiding the common pitfalls td éa-
traction on the web (crawling issues, handling multipleglaages)
and performance bottlenecks that come with it. Finalig,perform
extensive experiments on a large corpus of browse data,henet
perimental results confirm that our technique and algorishmork
well in practice

2. MODEL AND PROBLEM DEFINITION

We will now set up the model for interpreting the browse trail
data that we obtain from web search engines. This model et |
us to the definition of similarity and importance parametsrat-
tribute values; our concrete problem will then be to esténihese
parameters for the various attribute values. We will shoat the
key step in this estimation involves annotating each webadom
with a list of attribute values that are related to it. Forrapte,

a website that only sellSony cameras should be annotated only
with the keywordSony, while one that contains reviews of various
cameras of different brands should be annotated with aflisiud-
tiple manufacturers. Our next step is to give an algorithnsfech
annotation; however, along the way, we will need to streamgtbur
model with a set of well-motivated and practical assumpstioie
will return to these assumptions in section 6 when we vaditlaém
via experimental data. Finally, we will show that we can Ureean-
notated list of web domains produced by the above algorithch a

Query
Urls

black dell laptop
http://www.bizrate.com/laptop-computers/dell/
http://www.bizrate.com/laptop-computers/dell-c610-laptop/
http://www.amazon.com/s/?ie=UTF8&keywords=d610. ..

Figure2: A typical browsetrail

our original browse trail data to compute similarity and orance
parameters of attribute values.

From this point onward, we will focus on attribute values-cor
responding to a single attribute. The algorithms that wegairg
to describe have to be run for each attribute separately tmirob
similarity and importance estimates. We will refer to ditite val-
ues (for the attribute that we have fixed) that appear in at leee
query in our browse trail data &eywords Let P denote the set of
web domains an@ the set of keywords. Leh andn respectively
denote the size of the sd?andQ. Typically, each domain contains
relevant information for a set of keywords. However, for glitity
of presentation, we will assume, for the time being, thatelhs a
single keyword associated with each domain. We will showerlat
that our techniques extend to the more realistic scenadomiains
being relevant for multiple keywords. The mapping from a dom
to its relevant keyword is given by an unknown functiarP — Q.
Functionl produces a partition d? into sets of domainBy, where
Py= I-1(q) is the set of domains relevant to keywardThe num-
ber of domains iR, is denoted byny.

The input to the algorithm is a set of browse trails, eachezorr
sponding to a particular query. Queries not containing ayword
in Q do not contain any information about the attribute we are in-
terested in—hence such queries are discarded. For exainpk,
are interested in theanufacturer attribute of queries for digi-
tal cameras, then a queRgd 10 MegaPixel Camera iS useless
for our purpose. Further, queries containing multiple kesdg in
Q are also discarded since they are ambiguous. We are therefor
left with a set of browse trails corresponding to queriestaiming
exactly one keyword irQ. A browse trail comprises a sequence
of urls, and each url can be mapped to a particular web domain.
Figure 2 depicts a typical browse trail. We convert such avbeo
trail into a set of (keyword, domain) pairs, where each pait-c
tains the keyword in the query and the domain correspondirgy t
particular url in the browse trail. The number of pairs, #gfere,
is equal to the length of the browse trail. However, all daman
a browse trail are not likely to be equally relevant to theyiol
query. For example, web domains visited by a user towards the
end of a long browse trail are unlikely to be relevant to héginal
query. Therefore, each (keyword, domain) pair is assatiaiéh
a weight, where the weight of a particular pair igpdraction of
the weight of the previous pair on the browse trail. The patam
p is a fixed constant less than 1 (typically 0.9 in our experitslen
Thus, the pair containing the first domain in the browse trag
weight 1, the second has weigpt the third has weighp?, and
so on. Note that a very small value pfis undesirable since it
would imply that we are practically ignoring the entire bemntrail
other than the first click. As an example, consider the bravak
in Figure 2. For the attributBanufacturer, we get two copies of
(dell, bizrate) (with weights 1 angb) and one(dell, amazon (with
weightp?) from this browse trail.

Let us now collect all the pairs formed by all the browse #rail
in the input data. Th&equencyof a particular (keyword, domain)
pair is the sum of weights of all its appearances in the injiia.d
We denote this frequency by the functibnQ x P —]R<O+.1 We will

1Rg is the set of non-negative reals.

often use the shorthan@p, for f(q, p). The marginal frequencies
of keywords is denoted by, i.e.ng = ¥ pep fqp- Also, let

0[S qeQpe

Similarity and Importance. Recall that the similarity of two at-
tribute values(q,d') is the likelihood that a user searching for a
product withq settles for one witly/. It is important to note that
similarity is not symmetric, i.e. the similarity dfy, o) might be
very different from that ofd/, q). For example, a user searching for
amagenta camera might settle for aed one, but not vice-versa.
The importance of an attribute valupis therefore its similarity
with itself, i.e. the likelihood that a user searching forraguct
with g settles for one witly itself and does not opt for one with a
different attribute value.

In defining similarity in our model, we assert that if a largack
tion of queries containing visit domains inPy (i.e. domains rel-
evant toq’) early on in their browse trails, then the similarity of
the (q,q') pair is high; else, their similarity value is low. Formally,
similarity is defined as theelative frequencyf queries containing
keyword(visiting domains relevant to keywoql (whereq may
or may not bej itself), and is denoted by

Y pepy fap
Sadf ng
Then, the importance of keywonlis its similarity with itself, i.e.

({Ne will now focus on presenting a technique for estimatipg
The definition above implies that this requires findimgand fqp
for all p € Py. Of thesenq is available from the input. However,
though we know the values dfp for each domairp, we do not
know which domains are iRy. This constitutes our primary algo-
rithmic challenge:annotate each domain p with the keyword it is
relevant to, i.e. (p).

2.1 Assumptions

It turns out that it is impossible to achieve our algorithmaal,
that of inferring the functioh, without additional assumptions (proof
omitted due to lack of space).

LEMMA 1. Without additional assumptions, the function | can-
not be inferred completely.

Our aim, in this section, will be to come up with a set of well-
motivated assumptions that make our goal feasible, whiniag
practicality of our model.

Positive Bias. In general, it is unlikely that queries containing a
particular keywordq visit domains containing information about
another keywordy (# q) more frequently than domains contain-
ing information about. Our first assumption formalizes this:
browse trail for a query containing keyword q is more likedwtsit
domains in i than domains in f, where ¢ # q. Mathematically,
this is expressed as

Sqq > Suq> VO, €Q.0# 0. (N

We call this thepositive biagproperty. In section 6, we will empir-
ically demonstrate that this property is typically true.

Unifor mity. For statistically significant data, it is unlikely that dif-
ferent domains iy (for some keywordy) will display significantly
different distribution of queries visiting them. We forrz this
as the(a, 8)-uniformity property: different domains in §(where

g € Q) have similar distribution of queries visiting them, ugfac-

tors ofa and . Mathematically,
chr”q) (SanQ>
a| ——) <fgp<d|——), VpePy,
(My my q

wherea < 1 andd > 1. Typically, we will assume that the pa-
rametersa andd are close to 1. As earlier, we will validate this
assumption further via experiments in section 6.
Proportionality. In practice, keywords that appear frequently in
queries also appear frequently in web domains, and vicgaver
Thus, there is a proportionality between the relative fezquy of
a keyword in queries, and the fraction of domains for whicts it
relevant. We formalize this as tH{@, y)-proportionality property,
which states thebr any keyword q, its relative frequency in queries
and domains are similar, up to factors Bfand y. Mathematically,
My Ng My
B(m)S F Sy(m)’
wheref83 <1 andy > 1. As with the other assumptions, we will
provide experimental evidence to support our conjectuat ttme
proportionality property approximately holds in typicélstions.
Unfortunately, we show below that in spite of the above agsum
tions, the problem of learning the mappihgontinues to be un-
solvable.

THEOREM 1. Foranya < 1, 8 < 1andy > 1, there exists a
0 > 1 such that the function | cannot be inferred completely, even
if the positive bias,(a, d)-uniformity and (8, y)-proportionality
properties hold.

PROOF We create two different functionk having identical
browse trails. LeQ = {qi1,q2} andP = {p1, p2, ..., P2« }; we will
determine the value & later. Instead of describing browse trails,
let us define the frequency distributidn any set of browse trails
that realizes this distribution serves our purpose.

o foup = fgop =xa V1<i<kk+1<j<2k and
o fgp = fqp =2 V1<i <kk+1<j<2k,

wherea, x andk are determined as follows. First, let us ensure that
the following two scenarios both satisfy the, §)-uniformity and
positive bias properties:

° PQl = {P17P27'- 7H(}' qu = {H(+17H(+27" '7P2k}! and
° PQl = {P17P27" '7H(71}; qu = {H(7H(+17" '7P2k}'

In the first situation, both properties are trivially true émy values

of a andd. So, we focus on the second scenario. First, consider

the positive bias property. Clearly, it holds fg. Forq;, we need
(k—1)xa > ka+xa

=X > Koo 2

Now, consider th€a, d)-uniformity property. This clearly holds
over Py, for bothq; andqp. For this property to hold over the set
Py, for a1, we need

ka+xa ka+xa
< <
a(1 >7a<ax76(]),

and forgp, we need

a (kxa+a> §a<ax§6(kxa+a).

k+1 k+1
Since
(kxa+a) — (ka+xa) = (k—1)(x—1)a> 0,

we need to satisfy only the following conditions:

a{(kxawrr:l) SaL<ax§§(ka+xa)7

k+1 k+1

ie, ake+l) <k+l<(k+Dx<dk+x). (3)

Given values ok andx, there always exist values éfthat satisfy
(k+1)x < 8(k+x)
sinced is not bounded above. So, it is sufficient to ensure that
k k+1—a
< .
k2" ka
For Eq. 4 to hold, we need

(1-a)k’—(1+a)k—2(1—a)

4)

> 0.
For 0< a < 1 andk > 0, this is ensured if
(1+a)++/(1+a)2+8(1-a)?
21-a) '
k can be made large enough to ensure this. Then, we can choose
any x satisfying Eqn. 4. Finally, we choose a large enoagio

ensure thaxais an integer.
Now, the(, y)-proportionality property holds if

k+1 1 k—1
ﬁ(7>§§§)’(7)7
k k

< — < ——V.
v v 1

Sincek is not bounded above in satisfying the positive bias and
(a,d)-uniformity properties, we can choogeo be large enough
to satisfy the(, y)-proportionality property as well. [J

k>

i.e.,

2.2 Thelist Annotation Problem

Recall that we started out to estimate similarity and imguoece
parameters of attribute values, identified that the keyrinégliate
step was to annotate web domains with relevant attributeegadnd
then saw that this problem remains unsolvable even aftengtin-
ening our model with three well-motivated assumptions. Eken
the annotation problem solvable, we now slightly relax @aquire-
ment. Instead of annotating each domain with a single kegwwee
now allow a domain to be annotated bgmalllist of keywords as
long as it satisfies the following two requirements.
Completeness. Ideally, the listL, for domainp must contain the
correctannotationl (p). In most situations however, we are inter-
ested only inmportantkeywordsg, i.e. those that havgq > 6 for
some threshold. Thus, ourcompleteness requiremeasgserts that
if g=1(p) andsyq > 6 for some threshold@, thenq must be in the
list Lp that domainp is annotated with.

Soundness. In practice, ifq = I(p) and sqq > 6, we would not
only wantq to be inLp, but would also like to ensure that all other
keywordsq' in Lp are also relevant to domaip, in that queries
containingg frequently visit pages if. Mathematically, for each
d € Lp, we need thasyq > T, for some threshold. We call this
the soundness requiremenClearly, T < 0; the larger the value of
T attained by an algorithm, the better it is.

For practicality, it is also critical that the lists be keptanall as
possible. We can show a lower bound @gBlon theaverage sizef
the lists (proof omitted due to lack of space), and therefeeaim
for this size bound in our algorithm. In summary, given a paater

6 < 1, we want to construct lists of average siz& Xor each do-
main p, which satisfy the completeness requirement with parame-
ter 8, and the soundness requirement with parameterd, where

T is as close td as possible. (We will assume that the positive
bias, (a, d)-uniformity and(f3, y)-proportionality properties hold,
for some parameteis, 3 < 1 andy,d > 1.)

3. ALGORITHM

We will now present an algorithm for computing similaritycan
importance parameters of attribute values. As discussadqusly,
the principal algorithmic challenge lies in solving thet Bsinota-
tion problem described above. Therefore, we first preseotaiw
gorithms for constructing the lists required by the list @tation
problem. The first algorithm produces a Ilsg for each domain
p that satisfies the completeness requirement. It has thécddi
property that each ligin an averageontains at mosgwig (~1/6

sinceq, 3,y ~ 1) keywords. The second algorithm produces a list
L2 for each domairp that satisfies both the completeness require-

ment and the soundness requirement with paranTeter(”Be>

(~ 62 sincea, B,y,5 ~ 1). The final listL for each domairp is
computed as the intersection of the two IislI%,and L%. Clearly,
this list satisfies the completeness requirement, the smasdre-
quirement (due td.3) and also the size bound (dueltd). In de-
scribing these algorithms, we will assume that the values, §f y
and & are known. Typical values of these parameters can be es-
timated using training data. We will also assume that theitinp
is presented in the form of the frequency distributiorwhich is
easily computable from the browse trails data. In some jmalct
situations however, the browse trails data might be vegelaand
therefore exact computation éfmight be too expensive. We will
show later how to adapt our algorithm to the streaming datdato
where the browse trails appear as elements in a data stream.
Construction of L1 This algorithm is particularly simple; we
computeggp = fqp() for each keywordg and domainp, and
addqto Ly iff ggp > aBG

THEOREM 2. Thelists l%, satisfy the completeness requirement.
PrROOF. For any domairp, letq=I(p) andsqq > 6. Then,

()

My
(3
aBsqq
ape.

v

fap

= fgp

= fan()

m
=g ()
The first equation follows from th&a, &)-uniformity property, the

second step from th3, y)-proportionality property and the final
step from the fact thagyq > 6. O

Y

Y

>

As promised, we now prove a bound on the size of the Iljéts

THEOREM 3. Theaverage sizef a list Ly is at mosta—l’;e.

PrROOF For any keywordj,

pgpgqp:<) prqp—<)”q<V”h

where the last inequality uses tfiB, y)-proportionality property.
Thus, a keywordj can feature in at mosé% lists, and the average

length of a list is at most

(%),

Construction of L2 For each keyword) and domainp, we first

AL
apo

|4

ape U

computehgp = g‘“’ LetH = maxgeqhgp. For each domaim, we
computehy, = h‘“’ and addj to the listL? iff hy, > "y—%e.

THEOREM 4. Thelists l% satisfy the completeness requirement.

PROOF. For any domairp, letq = I(p) andsqq > 6. Now, for
any keywordy,
fq/pm

By the (a, d)-uniformity property,

Ny - anF'
a(sr;‘s:])<hqp<6(

SyqM
mgF /)
By the (B, y)-proportionality property,

() woe(%)

Sincesqq > 6, we havehgp > i ; and sincesyq < 1 for any key-
o, H =maxy hyp < y6<n—q>. Hence hf, = fop a8

(©)

word

= Y5

We now prove that the Iisl% satisfy the soundness requirement.
0

THEOREM 5. If ¢’ € L3 and I(p) = g, then g§q > ("B))

PROOF. Sincesyq > 6, we haveH > a3 <n%> From Eqn. 5, it

5) 9.
p< <aV—Be> Syq- Sinceq’ € L3, we haveha, > aB

/
follows thathq, P>y

hencesyq > (D’y—%e)z. O

Algorithm for computingimportanceand similarity values. Typ-
ically, sqq >> syq for any keywordsy andg’ since browse trails for
queries with keyword] most often visit domains relevant ¢p The
soundness and completeness properties of our algorithmetfre
sure that the listep contain onlyl (p). In fact, in our experiments,
most domains had very short lists, and many of them had aesing|
keyword. In this case, we annotate the domain with the kegwor
in the list, and compute importance and similarity valugagithis
annotation of domains.

4. MIXED CONTENT OF DOMAINS

In practice, often a web domain has relevant content for mul-
tiple keywords pertaining to a single attribute. For exaanm
website offering reviews of digital cameras will typicalt re-
strict itself to a single model line, or even a single mantufear.
Hence, our assumption that the functiomaps each domain to a
single keyword is over simplistic. In reality(p) (henceforth, we
use the shorthank}) is a set of weights over the set of keywords,
where the weight of a keyword represents the amount of con-
tent in domainp that relates t@. Mathematically, for eaclp € P,

Ip: Q— R{ is a non-negative real-valued function. The relative
amount of content in domaip that is relevant to keyword is de-

noted byrp(q) = % We assume thaiy(qf) fraction of the

queries with keywordj that visit a domairp are searching for in-
formation onq in p. Then, the similarityg,y for a pair of keywords
g,q is redefined as

_ Spep fap'p(d)
ng '

Saq

To interpret this definition, note thefprp(q) represents the to-
tal weight of queries containing keyworgthat visit domainp for
information relevant to keyword'.

Our goal now is to create a list, for each domairp that sat-
isfies the following strongorrectnesgequirement (this combines
the completeness and soundness requirements): a keyvetd
iff sq> 6 and rp(q) > €, for some parameter > 0. We also give
strong guarantees on the size of the lists constructed—aove ttat
each listL, contains at mos} keywords.

Assumptions. In this model, we assume a slightly stronger version
of the positive bias property that a user visits a dongadm a query
containing keywordg usually if she is interested in information
about the keyword itself. Mathematically, this implies that

whereMq = ¥ pep Ip(0). The uniformity property needs to be rede-
fined in the new model. It now states that the relative frequexi
any domainp is proportional to the amount of information it con-
tains, i.e. o = T2, whereMp = 5 4colp(0) andM = 3 pcpMp(=
YqeoMg). We also assume the proportionality property which
states tha‘.,%q = % for any keywordg.

Algorithm for computing Lp. We computegqp = fmis for each
keyword g and domainp. We will show that we can computgg

for each keywordj using the values dqp. We now computégp =

%, and add a keyword to list Ly iff sgq > 8 and hyp > €.

fop =~

THEOREM 6. The algorithm satisfies the correctness require-
ment.

PROOF Using proportionality and the stronger positive bias prop

erty, we have
ngM MpF
—ro(@) ({02) (i) =rola).
PP AMGF /) \Mmy, P

THEOREM 7. The size of a list p produced by the above algo-
rithm is at most.

PROOF For any domainp, ¥ geohgp = Yqeqfqp = 1. Thus,
each list contains at mogtkeywords. [

Algorithm for computing importance and similarity values. We
Sy = Spep faprp(d) 3 pep fqpdp(a)
q= =

first computesyq for all keywordsa.
_ 2 peP g(21pmp
Ng SaaMq V Ng

We will show that we can compuigy,, if it is large enough, even
in a streaming model. It follows that we can compejg for all
keywordsq, provided it is large enough. Now,

g = 3pep fapp(@) _ 3 pep g pJap™Mp
Mg Sy Ma

Again, we will show that we can compuggp if it is large enough,
and also that we can compg,. It follows that we can compute

Syq for keyword pairg(q,).

5. EXTENSION: STREAMING MODEL

In reality, often the size of the data is too large to allow eom
putation of functionf for each (keyword, domain) pair. Thus, we
need to modify the list annotation algorithm so that it woiks
the data streaming model, where browse trails appear seajlyen
in a stream, and the overall space used by the algorithmnfisig
cantly less than the total space required to store fundti@vhich is
©(nm) ignoring numerical factors). We will describe the streagnin
version of the list annotation algorithm for domains withigée
relevant keyword; similar extensions can be done if dom#ias
mixed content as well.

The key observation is that the algorithm only uses (pogsibl
scaled) frequency counts. Let us first consider the cortsruof
the listsL5. Recall that the algorithm seeks to populate llistfor

a domainp with keywordsq such thatfgp > aBOF ' Eor this pur-
pose, we use a standard heavy hitters algorithm [23, 11,\8@].
maintain a list? of Saiﬁe (keyword, domain) pairg, p) and their
frequenciest’(q, p), for some paramete < 1. When a new (key-
word, domain) paifq, p) appears on the data stream, we upd#te

as follows:

e if (g,p) €&, increasef’(q, p) by 1,
e otherwise, itZ is not full (i.e. contains< SGLBG pairs), insert
(g, p) into . and setf’(qg, p) = 1,

o otherwise, decreas€d, p') for each pai(d,p') € Z by 1,
and remove all pairs whose frequency becomes 0.

After all the browse trails have been considered, we remdive a
the (query, keyword) pairgg, p) with f/(g, p) < (1—9) (%)
from .Z. L,lJ for any particular domaitp is now precisely the set of
keywordsq such that(qg, p) € .Z.

The following theorem, which is standard in the streamiteyi

ature (for e.g., in [23, 11, 20]), asserts that the algoritatisfies
the completeness requirement.

THEOREM 8. At the termination of the above algorithm, all
(9, p) pairs with §p > 9BOF are retained inZ, and have

(o, p>m> a-9(BE).

Extending the proof of Theorem 3, we also get a bound on the
average size of the lists produced by this algorithm .

THEOREM 9. The average size of a Iist‘l,Lproduced by the

above algorithm is at moshin (%BQ M)
We now need to construct the Iisn%. We use the algorithm
described in section 3, substitutirig(q, p) for fgp. We include a

keywordq in L3 iff

(1-Sapo

ys
This algorithm continues to satisfy the completeness requént
(proof omitted due to lack of space). However, the parameter

the soundness requirement has to be modified to give theviolip
theorem (proof omitted due to lack of space).

/
hgp >

THEOREM 10. If ¢’ € L3 and I(p) = g, then

. ((153501;39)2.

6. EXPERIMENTS

In this section, we do an empirical evaluation of our model an
algorithms described in the earlier sections. All our ekpents
are conducted on data extracted from Windows Live toolbgs.lo
So, we first describe the methodology for extracting browaitst
from toolbar logs that we used in this work.

Data sour ce and methodology. With functionality such as directly
searching the web without accessing the web page of anyhsearc
gine, web browser toolbars are finding increasing use imatnig
searches. Thus, they are a rich source of useful signalssotes
havior. We generate the user browse trails using the melbgyglo
described in White and Drucker [27], and Bilenko and White [5
We summarize the method here for completeness. Typically; W
dows Live toolbar logs comprise a sequence of records, eath ¢
taining an anonymous session identifier, a timestamp, andRL

of the visited webpage. For each user, her interaction waaagzd
in the form of a browse trail (i.e. a sequence of visited URAih
an associated session identifier. This identifier helpsatinigwith
concurrent writes to the backend toolbar log. Each tradioetes
with a query submission to a search engine, and containsethe s
guence of webpages visited by the user after receiving thdtge
of her search query until a point of termination where it isussed
that the user’s information need has been satisfied. We hateat
session started from a new browser or a new browser tab rasgrits
browse trail. Further, note that toolbars log the historprafvsing
behavior only for those users who consented to such logging.

Next, we describe our processing of user queries. UsingeeNai
Bayes classifier, we first classify a user query into a prodatg-
gory. For example, this creates a set of queries all pentgitai dig-
ital cameras, or to laptops, and so on. The classifier waseiiain
around 20 million product and offer titles in 26 top-level categarie
(with 609 leaf-level categories). Our dataset provided nasirzd
420 million browse trails for queries in these categorieth\ah av-
erage length of 84 hops. Each leaf category is characterized by a
set of attributes—e.gManufacturer, Product Line, Resolu-
tion, etc. for digital cameras—and each query contains paaticul
values for a subset of these attributes. To extract thesled#t val-
ues from a given query, we used the attribute extractiomiecie
described in [24].

We perform two categories of experiments. The first category
aims at verifying the correctness of the assumptions usexiin
model. The second category computes similarity and impoeta
measures of attribute values using our algorithm, and atedu
the quality of the solution produced by comparing withgegund
truth similarity and importance values obtained from restrigies
classified web domains; and b) corresponding values olut&iom
a user study.

6.1 Validating our assumptions

The Ground Truth Dataset. We need browsetrails involving al-
ready annotated pages to carry out our validation. To this en
we generated a set of browsetrails restricted to the doman
zon.com. The Amazon browsetrails begin with a searchaen-
zon.com and contain all product pages visited by the user after
issuing the query. As before, a new query marks the beginning
of a new trail. The Amazon test data consists of , 580 trails
across the three top-level categoriesemputing, digital cam-
eras, andelectronics. We annotated each page with the prod-
uct information from the page. For example, a page desgibin
theNikon Coolpix L20 10MP Digital Camera (Red) iS an-
notated with the attribute valu@enufacturer = Nikon, Model
line = Coolpix,Model = L20,Color = Red, andResolution
10. We similarly annotated the query too. For every attribute

0.6

05

0.4

AN

03
0.2

Entropy/Max Entropy

0.1

S © &
S & &
<§ SIS

SRS
& s

& S S
N G
PN

. o
o &

» & &
& MRS
& 3

Important Digital Camera Manufacturer

Figure3: Theentropy of theimportant attributevaluesin dig-
ital cameras. A small value of entropy validates the positive
bias assumption.

valueq, we used the query and product page annotations to com-
pute the frequencies of the different attribute valgé®n web-
pages visited by queries containing For example, if over all
queries containing the attribute valoenon, the users visitedma-
zon product pages containing soriékon product 10,000 times,
then the above frequency for tl{€anon, Nikon) pair is 10,000.
We will refer to this frequency data a€STSET-1. We use the same
amazon dataset as ground truth in all our experiments.

Positive Bias. Thepositive biasassumption states that queries con-
taining a particular attribute value visit pages annotatétl that
attribute value more frequently than pages annotated \titbr @t-
tribute values. From ESTSET-1, we computed the normalized fre-
quency distribution of product attribute values for a givgrery
attribute value. The entropy of this frequency distribofits an in-
dicator of its dispersion; therefore, a low entropy valuailgdomply
that these queries tend to mostly end up on pages havingtie sa
attribute value, thus validating our assumption. Figure@orts
the entropy of this frequency distribution (scaled by theximaim
possible entropy log, wheren is the number of different attribute
values) for different values of the attribut@nufacturer in the
categorydigital cameras. This ratio is small for almost all the
attribute values, i.e. most of the queries ended up on ptquhges
relevant to their corresponding attribute values. We rigukthis
experiment for other categories as well and the results siene

lar. We will report the entire set of results in a full versiofithe
paper.

Unifor mity. Theuniformityassumption states that queries contain-
ing a particular attribute valugvisit different pages annotated with
attribute valueq’ (g may or may not be equal tgf) with roughly
equal frequency. We compute the entropy of the frequendsilalis
tion of all visited product pages that contain keywqtdThe higher
this value, the more uniform is the distribution. Table 1o
the entropy of this frequency distribution (scaled by theximaim
entropy logn, as earlier) for several values of the attribtften—
ufacturer in the categorydigital cameras. We repeated the
experiment for different values of the attribiMenufacturer in
the other product categories and saw very similar resulisary,

all the values are close to 1 suggesting that(ned)-uniformity
assumption holds withr andd close to 1.

Proportionality. The proportionality assumption states that the
relative frequency of an attribute value in queries is apipnately
equal to the relative frequency of that attribute value iadpict
page annotations. Table 2 shows the frequency distribatidhe
different values of th#anufacturer attribute in the categoyig-
ital cameras in queries and in product page annotations. As the
table shows, the relative frequency of the attribute vainethe

2Entropy of a discrete random variablX is H(X)
— i1 P(%)log p(x;).

[manufacturer] sony | panasonic] nikon | casio | samsung] canon | fujifilm | olympus [kodak | pentax |
sony 0.862 0.952 0.975 | 0.968 0.949 0.974 0.775 0.949 0.919 1.000
panasonic | 0.970 0.885 0.922 | 1.000 0.970 0.947 0.920 0.931 1.000 | 1.000
nikon 0.911 0.946 0.921| 0.775 0.961 0.985 0.932 0.963 1.000 | 1.000
casio 0.960 0.971 1.000 | 0.851 0.909 0.915 1.000 1.000 1.000 1.000
samsung 1.000 1.000 1.000 | 1.000 0.956 1.000 0.963 1.000 1.000 1.000
canon 0.885 0.953 0.960 | 0.921 0.885 0.855 0.929 0.883 1.000 | 1.000
fujifilm 0.833 1.000 0.811 | 1.000 1.000 0.975 0.897 1.000 1.000 | 1.000
olympus 1.000 0.570 0.960 | 1.000 1.000 0.915 1.000 0.922 0.845 | 1.000
kodak 1.000 1.000 1.000 | 1.000 1.000 0.960 1.000 0.919 0.882 1.000
pentax 1.000 0.919 1.000 | 1.000 1.000 0.970 1.000 1.000 1.000 | 0.883

Table 1: Theratio of the entropy to the maximum entropy for theimportant attributevaluesin digital

1.0 validates the unifor mity assumption.

manufacturer| relative frequency| relative frequency
‘ ‘ in queries in products

olympus 0.076 0.062
casio 0.107 0.089
canon 0.242 0.224
fujifilm 0.031 0.039
samsung 0.024 0.037
pentax 0.020 0.013
nikon 0.069 0.064
kodak 0.049 0.038
panasonic 0.185 0.253
sony 0.197 0.179

Table 2: The relative frequency of manufacturer values (for
digital cameras)inthequeriesand product pages.

queries is correlated to the relative frequency in the pcodages.
This implies that the€ 3, y)-proportionality assumption holds with
values off3 andy close to 1.

6.2 Similarity and Importance

In this set of experiments, we run our algorithm to compute th
similarity and importance parameters using general brivaiseon
the web (i.e. we do not restrict ourselvesaitazon browsetrails
any more). As stated earlier, these browsetrails are alsergeed
from Windows Live toolbar data.

Using our algorithm for similarity computation, we compaite
list of topk (k = 20) most similarattribute values for each attribute
valueq. We also ranked these similar attribute values according
to their similarity &) to g. To verify the accuracy of the order-
ing, we compare it with the corresponding orderings obthinem
two different sources—the ground truth setSTSET-1 and a user
study. In both cases, we compute an ordered list of simillreg
for each attribute valug using techniques we describe later. Thus,
we have two ranked lists (in each case)—one desired andlibe ot
computed by our algorithm. We measure the accuracy of the sim
ilarity computation as the distance between these two chiiges.
Given the ranked list of similar attribute valuggcomputed by our
algorithm, and the ideal ranked list of similar attributdues S]
we compute the distance as

R(q) = Segm%

wherers, is the rank of attribute valugin & andrg, is the rank of

sin §,. We use a simple rank function which is the position of an
attribute value in each list after removing the entries rahmon

to both lists. We note that the functid{q) penalizes mismatches
in the higher ranked attribute values more than the lowekedn
attribute values. A small value &(q) indicates two similar lists
and hence a closer agreement of the list produced by ouritiigor
with the ideal list of similar values for a particular atuile value

1 1

s, T

cameras. A valuecloseto

[category [attribute [avg normalizedR(q) |
| I [p=1] p=0 |
Laptops Manufacturer | 0.102 0.204
Digital Camera| Manufacturer| 0.126 0.167

Product Line | 0.045 0.111
Hard Drives Manufacturer | 0.098 0.227
LCDTVs Manufacturer | 0.072 0.147

Table 3: The frequency weighted normalized distance between
thelist of nearest neighbors produced by our algorithm and an
ideal list of neighborsobtained from TESTSET-I for rho=0and
rho=1.

g. We normalized the distance values by the maximum distance
(which comes from a completely inverted list).

Using TESTSET-1. For TESTSET-1, we compute the desired order-
ing from the most frequent attribute values in the produgegavis-
ited for queries containing attribute valge Table 3 shows the av-
erage normalized distance computed for selected attslnteach
category. The results in Table 3 suggest there is a signifmaar-

lap in the list produced by our algorithm and the ground truth

User study. We carried out a user study using the Amazon Me-
chanical TurR. We used 120 randomly sampled queries consisting
of (product, attribute, attribute value) triples along with

a set of 10 similar attribute values for the chosen attrilwaiele

in the triple. These queries came from a diverse set of 21 leaf
categories such asinks, mattresses, cooktops, andgarden-

ing tools with each category contributing around 4 queries to
the test set. Each query was presented to 11 human judges: Eve
judge was asked two questions—1) whether she would tereinat
her search if she did not find products with the attribute alpec-
ified in the query; and 2) if she decided not to terminate harcie
then selectup to5 similar attribute values (from the provided 10)
that she would look for in the search results. An overwhegmin
98% of the judges answered in the negative to question 1-hir ot
words users preferred to continue with their search and fook
alternatives. This highlights the importance of resulti@dmment

in product search since users are happy with substituteasa c
the exact product they were looking for is not present in ttoelp

uct catalog/index. Next, we ordered the alternative aftélvalues
provided to the user based on how many users selected tieitzttr
value. We then computed the averaged normalized distB(epe
between this ordering and the ordering produced by our itgor

for all the products in our test set. We averaged the norexhliis-
tance over all queries in a given category and report theageer
normalizedR(q) for each category in Table 4. The results show
that the distance between the two orderings is indeed smalia-
derscore the effectiveness of our algorithm in computinglarity
scores.

Shttps://www.mturk. com/

[category [attribute [avg normalizedR(q) |
desktop computers manufacturer 0.045
cabinet & drawer hardware hardware material 0.063
mattresses manufacturer 0.060
mowers & tractors manufacturer 0.064
door hardware & locks hardware material 0.070
cooktops manufacturer 0.075
rings stone 0.082
pants bottom style 0.055
laptop computers color 0.057
gardening tools manufacturer 0.070
sweaters apparel material 0.064
home theater systems manufacturer 0.068
amplifiers manufacturer 0.054
action figures character 0.071
generators manufacturer 0.051
vehicle playsets manufacturer 0.065
vacuums manufacturer 0.063
printers manufacturer 0.055
radio controlled toys manufacturer 0.079
cell phones product line 0.065
cell phones manufacturer 0.063
shirts apparel material 0.066

Table 4: The frequency weighted normalized distance between
thelist of nearest neighbors produced by our algorithm and an
ideal list of neighborsobtained from the user study for p = 1.

0.5

\

BN

0.6

0.4

0.3

0.2

0.1

Average Normalized Distance

0.4 0.5 0.7 0.8 0.9 1

Decay Parameter (p)

Figure 4: Effect of the parameter p on the average normalized
distance for the sub-category televisions

Effect of the decay parameter p. To verify the significance of
considering clicks beyond the first click, we compare thenad#
ized distance values computed using the full browse trpils (1)
with the first click cased = 0). Table 3 shows significant improve-
ment in the similarity values when using browse trails coragdo
using just the first click. Further, Figure 4 illustrates thexrrease
in the average normalized distance as the valyziotreases.
Importance parameter. Though we concentrated on similarity
scores so far, we also computed the importance parameter of a
tribute values asqq. Table 5 shows the importance of top attribute
values for selected attributes.

6.3 Multiple Attributes

Till now, we have computed similarity scores for values afiin
vidual attributes. However, a typical product category magtiple
attributes; therefore, to make our techniques useful feulteen-
richment, we need to extend it to computing the similaritgres

[category [attributes [‘avg normalizedR(q) |
Laptops Manufacturer & Product Line] 0.0893
Digital Cameras| Manufacturer & Product Line 0.0975

Table 6: The frequency weighted normalized distance between
thelist of nearest neighbors produced by our algorithm and an
ideal list of neighbors obtained from TESTSET-1 for multiple
attributes.

same as the total number of product lines. As an examplehéor t
digital camera category, the product linRowershot is exclu-
sive to the manufacturéanon and therefor&€anon Powershot
can be considered to be a single attribute value. We ran gor al
rithm for finding similarity and importance scores for sucmbi-
nations of attributes. Table 6 shows that the combinatioraaf
ufacturer andProduct Line attributes fordigital cameras
and laptops does indeed produce a list of related products that
overlaps significantly with the corresponding lists obegirfrom
TESTSET-I. Also, Table 7 shows some anecdotal results for the
same attribute combination and categories used in the iexget:
However, consider the attribute valugsiufacturer andColor
for any product category. These attribute values are natedj in
fact, most manufacturers are likely to have products in rooktrs.
In this case, combining these two attributes into one migbate
a prohibitively large number of attribute values, thus hésg in
sparsity of data and also making the algorithm inefficientthiis
case, we estimate the similarity of products using a wedybten
of the similarity of individual (or combinations of) attribe values.
The weight of an attribute is usually the normalized avem@igbe
importance parameter of the different values of the atteib@This
gives us a scalable technigue for measuring the similagtywéen
pairs of products, thereby offering a solution to the resultich-
ment problem.

7. RELATED WORK

There is prior work on incorporating browsing along withreéa
to improve the relevance of search results [12, 5, 6]. Biteakd
White [5] show that user’s post-search browsing activitg &rong
signal for computing relevance of the visited pages. Spediyi
they show empirically that features extracted from browsdst
(e.g., dwell times and visitation count) improves the ragkof
search results compared to alternatives like clickthrdagb. Bilenko
et. al. [6] propose computing a user profile using the fretiden
mains visited by the user. Each domain in turn maintainstafis
query terms issued by users to visit the domain. Our idea wfco
puting a list of annotated query terms for each page (or domai
is similar to theirs. However, the model we use to compute the
lists admits efficient streaming algorithms that can scaltatge
data sets. Moreover, the list of annotations are attribpézific
and these lists are used to compute the similarity betweghuae
values and their relative importance.

There is a lot of research on finding related queries [3, 26, 8,
2, 13, 22] and query reformulation [15, 9, 19]. Jones et &] [1
propose a technique to compute query substitutions basgedeen
computed query and phrase similarity using statisticdinepes

between two products in the same category, each having & set oon query logs. A large section of the work on this problem can b

values for different attributes. We propose two solutiomisthis
problem. If the number of distinct combinations of attriwal-
ues is small, then we can consider the combination of these at
tribute as a single attribute. For example, in any produtsgmay,
we can typically considefManufacturer, Product Line) as
a single attribute since each product line is usually exadu a
particular manufacturer. Thus, the total number of suctspaithe

classified into two categories—those that exploit only tinecsure

of the query-click graph [3, 8, 22] and others that considesrg
terms as well as the content of the clicked URLs [15, 2]. Irhbot
categories, the underlying model is the query-click bipadraph
and the relationship between queries is computed indjrectia
function of their shared associations with entities suchurds or
some important features thereof (such as terms).

Laptops [HardDrives] Kitchen Appliances Beds | Action Figures]
[Manufacturer] ModelLine [Manufacturer | Manufacturer] Color [Bed Type [Character |
sony (0.32) thinkpad (0.38) dell (0.23) ge (0.23) stainless steel (0.23) Platform (0.23) transformers (0.28)
toshiba (0.25) vaio (0.31) seagate (0.22) lg (0.12) black (0.06) Bunk (0.19) wwe (0.17)
hp (0.23) macbhook (0.27) hitachi (0.19) samsung (0.12) white (0.04) Teen (0.17) godzilla (0.14)
acer (0.21) toughbook (0.24)| toshiba (0.17) sharp (0.12) steel (0.02) Toddler (0.11) rescue heroes (0.11)
lenovo (0.19) pavilion (0.22) | simpletech (0.16)] maytag (0.10) silver (0.02) Loft (0.11) spawn (0.09)
apple (0.12) satellite (0.19) w. digital (0.15) | whirlpool (0.06) gold (0.02) Trundle (0.07) star wars (0.05)
asus (0.10) eee pc (0.14) samsung (0.12) | panasonic (0.05) orange (0.01) Kids (0.04) halo (0.04)
dell (0.07) inspiron (0.11) lenovo (0.06) electrolux (0.04)| clean steel (0.01) Sleigh (0.03) superman (0.02)
samsung (0.05) aspire (0.11) ibm (0.04) siemens (0.03) graphite (0.01) Canopy (0.03) gundam (0.02)
ibm (0.04) ncl10 (0.09) maxtor (0.03) frigidaire (0.03) blue (0.01) Adjustable (0.01)| lord of the rings (0.01)

Table 5: Important attribute values along with their syq values.

[Product Query |

Related Products]

sony vaio(0.550)
lenovo thinkpad (0.157)
panasonic lumix (0.219)
canon powershot (0.359

apple macbook (0.050)
ibm thinkpad (0.130)
pentax optio (0.162)

panasonic lumix (0.160

sony vaio
lenovo thinkpad
pentax optio
canon powersho

hp pavilion (0.034)
apple macbook (0.060)
canon powershot (0.151]
nikon coolpix (0.115)

acer aspire (0.031) asus eee pc (0.040)
dell inspiron (0.050) asus eee pc (0.049)
nikon coolpix (0.119) | kodak easyshare (0.079

kodak easyshare (0.08d) fujifilm finepix (0.044)

~

Table 7: Anecdotal examples of top-5 related products for queriesin laptops and digital cameras using attribute values in
Manufacturer and Product Line.

A related problem is that of associating important querynter

to a web page. Again, some of the graph-theoretic technigsed

for finding related queries can be employed here as well [8]. A [10]
recent work of Gupta, Bilenko, and Richardson [18] studiee t

problem of associating keywords to web pages in the confexi-o
line advertising. They propose a learner that can effelgtagggest

the best query terms that are most likely related to the didees
terms (and thus increase the likelihood of a click on the ad).

8.

CONCLUSION

[11]

[12]

[13]

We proposed atechnigue for result enrichment in commesarelse

In order to quantify the replaceability of products, we aatuced
the notions of similarity and importance of attribute vaueNe
then designed techniques for estimating these parambe&tisvter-
age browse trails of users on the web graph. Finally, we eefrifi

the scalability and accuracy of these techniques via exerx-
periments on very large real-life data sets.

!

(2]
(3]
[4]
(5]

(6]

[7]

(8]
9]

&Eﬂi%&:g%,c&cswll, and Susan T. Dumais. Impng web

search ranking by incorporating user behavior informatinrSIGIR
pages 19-26, 2006.

Ricardo A. Baeza-Yates, Carlos A. Hurtado, and Marcekniibza.
Improving search engines by query clusteridgySIST
58(12):1793-1804, 2007.

Doug Beeferman and Adam Berger. Agglomerative clustedf a
search engine query log. Rroceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Dataid
(KDD), pages 407-416, 2000.

Paul N. Bennett and Nam Nguyen. Refined experts: impgpvin
classification in large taxonomies. 81GIR pages 11-18, 2009.
Mikhail Bilenko and Ryen W. White. Mining the search tsaof
surfing crowds: identifying relevant websites from useivigt In
WWW pages 51-60, 2008.

Mikhail Bilenko, Ryen W. White, Matthew Richardson, a@d Craig
Murray. Talking the talk vs. walking the walk: salience of
information needs in querying vs. browsing.SIGIR pages
705-706, 2008.

Chris Buckley, Gerard Salton, and James Allan. The effiéadding
relevance information in a relevance feedback environment
SIGIR pages 292-300, 1994.

Nick Craswell and Martin Szummer. Random walks on thekcli
graph. InSIGIR pages 239-246, 2007.

Hang Cui, Ji-Rong Wen, Jian-Yun Nie, and Wei-Ying Ma.
Probabilistic query expansion using query logsPmceedings of

[14]
[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]
(23]
[24]

[25]

[26]

[27]

International World Wide Web Conferences (W\WJéges 325-332,
2002.

Erika F. de Lima and Jan O. Pedersen. Phrase recoguitidn
expansion for short, precision-biased queries based oerg tpg. In
SIGIR pages 145-152, 1999.

Erik D. Demaine, Alejandro L6pez-Ortiz, and J. lan Manr
Frequency estimation of internet packet streams with éichgpace.
In ESA pages 348-360, 2002.

Doug Downey, Susan T. Dumais, and Eric Horvitz. Modédls o
searching and browsing: Languages, studies, and apphicati
IJCAI, pages 2740-2747, 2007.

Doug Downey, Susan T. Dumais, Daniel J. Liebling, anid Er
Horvitz. Understanding the relationship between seagtlugreries
and information goals. ICIKM, pages 449-458, 2008.

Susan T. Dumais, Edward Cutrell, and Hao Chen. Optimgizearch
by showing results in context. I@HI, pages 277-284, 2001.
Efthimis Efthimiadis. Query expansioAnnual Review of
Information Systems and Technology (ART)ST)121-187, 1996.
Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Slamity search
in high dimensions via hashing. VLDB, pages 518-529, 1999.
Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. Named entit
recognition in query. 'SIGIR pages 267-274, 2009.

Sonal Gupta, Mikhail Bilenko, and Matthew Richards@atching
the drift: learning broad matches from clickthrough dateKDD,
pages 1165-1174, 2009.

Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Gaein
Generating query substitutions. WWW pages 387-396, 2006.
Richard M. Karp, Scott Shenker, and Christos H. Papédon. A
simple algorithm for finding frequent elements in streant laags.
TODS 28:51-55, 2003.

Xiao Li, Ye-Yi Wang, and Alex Acero. Extracting struced
information from user queries with semi-supervised cooal
random fields. I'BIGIR pages 572-579, 2009.

Qiaozhu Mei, Dengyong Zhou, and Kenneth Ward Churcter@u
suggestion using hitting time. I@IKM, pages 469478, 2008.

J. Misra and D. Gries. Finding repeated elemeg@tience of
Computer Programming2:142)-152, 1982.

Nikos Sarkas, Stelios Paparizos, and Panayiotis Taap8&tructured
annotations of web queries. 8iIGMOD, pages 771-782, 2010.
Dou Shen, Rong Pan, Jian-Tao Sun, Jeffrey Junfeng Pamgieng
Wu, Jie Yin, and Qiang Yang. Query enrichment for web-query
classification ACM Trans. Inf. Syst24(3):320-352, 2006.
Ji-Rong Wen, Jian-Yun Nie, and Hong-Jiang Zhang. @lisg user
queries of a search engine.Pnoceedings of International World
Wide Web Conferences (WWWages 162-168, 2001.

Ryen W. White and Steven M. Drucker. Investigating hedwal
variability in web search. IRWWW pages 21-30, 2007.

