
Result Enrichment in Commerce Search
using Browse Trails

Debmalya Panigrahi∗
Computer Science and Artificial Intelligence

Laboratory, MIT
debmalya@mit.edu

Sreenivas Gollapudi
Microsoft Search Labs

Microsoft Research Silicon Valley
sreenig@microsoft.com

ABSTRACT
Commerce search engines have become popular in recent years,
as users increasingly search for (and buy) products on the web. In
response to an user query, they surface links to products in their cat-
alog (or index) that match the requirements specified in the query.
Often, few or no product in the catalog matches the user queryex-
actly, and the search engine is forced to return a set of products
thatpartially match the query. This paper considers the problem of
choosing a set of products in response to an user query, so as to en-
sure maximum user satisfaction. We call this theresult enrichment
problem in commerce search.

The challenge in result enrichment is two-fold: the search en-
gine needs to estimate the extent to which a user genuinely cares
about an attribute that she has specified in a query; then, it must dis-
play products in the catalog that match the user requirementon the
importantattributes, but have asimilar but possibly non-identical
value on the less important ones. To this end, we propose a tech-
nique for measuring the importance of individual attributevalues
and the similarity between different values of an attribute. A nov-
elty of our approach is that we use entire browse trails, rather than
just clickthrough rates, in this estimation algorithm. We develop a
model for this problem, propose an algorithm to solve it, andsup-
port our theoretical findings via experiments conducted on actual
user data.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]

General Terms
Algorithm, Performance

Keywords
Streaming Algorithms, Structured Search

∗Work done while the author was an intern at Microsoft Search
Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’11,February 9–12, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0493-1/11/02 ...$10.00.

1. INTRODUCTION
In recent years, commerce search has become an integral as-

pect of search engines, as users spend increasing amounts oftime
searching for (and buying) products online. The quality of the
search results surfaced by a search engine in response to a product
query is critical to improving user satisfaction and enriching the
search experience. In fact, the importance of effectively handling
commercial queries can be inferred from the plethora of web por-
tals that are dedicated to commerce search. Typically, these portals
maintain a catalog (or index) of products, and surface a set of prod-
ucts from the catalog that best match the user query. In many ways,
commerce search is different from traditional web search. Unlike
in web search, the search results are a set of products, and not a
set of web links. These products are stored in a well-structured
catalog maintained by the commerce search engine, and boastrich
metadata. For example, each product has acategory (e.g., lap-
top, digital camera, etc) and within a category, product data is or-
ganized into multiple fields (e.g.,manufacturer, model). The
queries themselves are partially structured as well, in that a set of
attribute values relevant to the product being searched forcan typ-
ically be extracted from the query string. For example, if a user is
looking for digital cameras, it is likely that her query willinclude (a
subset of) values for attributes like manufacturer, model,color, res-
olution, zoom, etc. Further, the goal of commerce search is to help
users make a transaction, which is different from the goals of web
search. This necessitates the development of techniques dedicated
to solving problems in commerce search. In this paper, we design
such a technique for solving the problem of resultenrichment(that
we describe below) in commerce search.

Let us introduce our problem through an example. Suppose a
user is searching for aPink Pentax Optio Camera. It is quite
possible that such a product is not available in the catalog.Suppose,
instead the catalog contains aSilver Pentax Optio Camera, a
Pink Canon Powershot Camera, aPurple Pentax Optio Cam-

era, and aPink Vivitar ViviCam Camera. In the absence of
the exact product in the catalog (or if the number of productsin the
catalog that exactly match the query specifications is small), the
search engine needs to surface a set of related products. This is
calledresult enrichment. Typically, user data is used to solve this
problem. Suppose that, in the example above, users who searched
for pink Pentax cameras earlier often settled for a Pentax camera of
a different color, but never for a camera of a different manufacturer.
If the search engine has only two result slots, prior user behavior
indicates that the two Pentax cameras in the catalog should be sur-
faced, rather than the Canon or Vivitar cameras. What if onlya
single result slot is available? Then, we might need to use addi-
tional information—say, users who searched for pink cameras in
the past often bought purple cameras but rarely silver ones.In that

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27

F
ra

c
ti

o
n

 o
f

b
ro

w
se

 t
ra

il
s

Browse trail length

Figure 1: A histogram of length of browsetrails

case, the purple Pentax camera should be surfaced rather than the
silver one.

To substantiate our point, we introduce the notions ofimportance
of attribute values andsimilarity between them.

• The importanceof an attribute valuev is a measure of the
likelihood of users who queried for products with attribute
valuev to actually end up buying products having attribute
value v. In the previous example, Pentax has high impor-
tance.

• Thesimilarity between attribute valuesv andv′ is a measure
of the likelihood of users who queried for products with at-
tribute valuev to actually end up buying a product having
attribute valuev′. In the previous example, purple is more
similar to pink than silver.

These notions are central to what a commerce search engine does in
response to a query; clearly, it will try to surface productsthat retain
high importance attribute values in the query, while possibly replac-
ing the low importance ones with other similar attribute values. In
this paper, we define the importance and similarity parameters of
an attribute value, and then present a technique for estimating these
parameters that can be used by commerce search engines for the
purposes of result enrichment.

Some of the above aspects have been studied in the context of
general web search. Query and document classification has been
studied to taxonomize information in web search [14, 25, 4].Stud-
ies have also looked at entity extraction from queries in order to
improve classification [17], query alterations [10], and extracting
structured information from a query [21]. The problems of com-
puting proximity in terms of related queries and similaritybetween
documents has also been well-studied in the literature [16,3, 26, 8,
2]. Further to these studies, there has been a considerable amount
of research directed toward incorporating user feedback into related
problems [7, 1]. An important outcome of this area of research is
that clicks offer one of the most important signals of user feedback.
However, often the first click is not representative of user behavior
in our context. For example, a user looking for a certain product on
the web might choose to click on a product page and then decide
to look for another product, often following links on the product
page itself, e.g. recommendations. In fact, the toolbar browse logs
of a commercial search engine confirm our hypothesis that theuser
spends a considerable amount of time beyond the first click brows-
ing the web. Figure 1 shows the distribution of the length ofbrowse
trails in a browsing session of a user over a six-month period. We
define a browse trail to begin with a user query to a search engine
followed by a sequence of web pages that are visited by the user.
Query reformulation or a new query to the search engine marksthe
beginning of a new browse trail.

Browse trails have many advantages over clicks. One of the ma-
jor disadvantages of using first click data is that it is extremely

sparse since most web domains do not receive a statisticallysig-
nificant number of first clicks. For example, web domains thatare
important for specific attribute values that are infrequentin queries
often have comparatively low page rank values, and therefore rarely
appear in the list of urls displayed by a search engine. As a result,
these domains do not have significant presence in first click data.
However, users often navigate to such domains in the course of a
long browsing session if they are interested in the attribute values
for which these domains are relevant. Therefore, such domains ap-
pear more frequently in browse trails data. Another major problem
with clickthrough data is that it usually has a large fraction of noisy
clicks, i.e. urls that the user clicked on simply because they showed
up in the list returned by a search engine in response to her query,
though the domains are not actually relevant to her query. Toallevi-
ate this problem of noisy clicks, researchers have proposedvarious
techniques, e.g. use thedwell timeof users on these pages to sep-
arate between spurious and genuine clicks. Using browse trails in-
stead of first clicks automatically solves this problem since genuine
clicks usually lead to longer browse trails and therefore contribute
significantly more to the browse trail data corpus than shortspuri-
ous browse trails.
Our Contributions. In this study, we propose to use the browse
trails of users performing web search for products to estimate sim-
ilarity and importance parameters of attribute values, andthereby
aid in enriching the results returned for a query submitted to a com-
merce search engine. It is important to note that while the brows-
ing data we use comes from commercial search queries in general
web search engines, we aim to apply the user behavior knowl-
edge gained from this data in commerce search engines. We as-
sume that queries are annotated with<attribute, attribute

value> pairs (e.g., by [24]). Our main contribution isa technique
that uses these annotated queries and their corresponding browse
trails to estimate the importance and similarity of attribute val-
ues. As a key step in these computations, we proposean efficient
streaming algorithm that computes a list of important attribute val-
ues for every domain visited in the browse trails.Given that it can
be implemented in the streaming model, our algorithm very eas-
ily scales to large data sets such as browse trails from toolbar logs.
Another key feature of our algorithm is that it does not work on the
content of a page, thereby avoiding the common pitfalls of data ex-
traction on the web (crawling issues, handling multiple languages)
and performance bottlenecks that come with it. Finally,we perform
extensive experiments on a large corpus of browse data, and the ex-
perimental results confirm that our technique and algorithms work
well in practice.

2. MODEL AND PROBLEM DEFINITION
We will now set up the model for interpreting the browse trail

data that we obtain from web search engines. This model will lead
us to the definition of similarity and importance parametersof at-
tribute values; our concrete problem will then be to estimate these
parameters for the various attribute values. We will show that the
key step in this estimation involves annotating each web domain
with a list of attribute values that are related to it. For example,
a website that only sellsSony cameras should be annotated only
with the keywordSony, while one that contains reviews of various
cameras of different brands should be annotated with a list of mul-
tiple manufacturers. Our next step is to give an algorithm for such
annotation; however, along the way, we will need to strengthen our
model with a set of well-motivated and practical assumptions. We
will return to these assumptions in section 6 when we validate them
via experimental data. Finally, we will show that we can use the an-
notated list of web domains produced by the above algorithm and

Query black dell laptop

Urls http://www.bizrate.com/laptop-computers/dell/

http://www.bizrate.com/laptop-computers/dell-c610-laptop/

http://www.amazon.com/s/?ie=UTF8&keywords=d610...

Figure 2: A typical browse trail

our original browse trail data to compute similarity and importance
parameters of attribute values.

From this point onward, we will focus on attribute values cor-
responding to a single attribute. The algorithms that we aregoing
to describe have to be run for each attribute separately to obtain
similarity and importance estimates. We will refer to attribute val-
ues (for the attribute that we have fixed) that appear in at least one
query in our browse trail data askeywords. Let P denote the set of
web domains andQ the set of keywords. Letm andn respectively
denote the size of the setsP andQ. Typically, each domain contains
relevant information for a set of keywords. However, for simplicity
of presentation, we will assume, for the time being, that there is a
single keyword associated with each domain. We will show later
that our techniques extend to the more realistic scenario ofdomains
being relevant for multiple keywords. The mapping from a domain
to its relevant keyword is given by an unknown functionI : P→ Q.
FunctionI produces a partition ofP into sets of domainsPq, where
Pq = I−1(q) is the set of domains relevant to keywordq. The num-
ber of domains inPq is denoted bymq.

The input to the algorithm is a set of browse trails, each corre-
sponding to a particular query. Queries not containing any keyword
in Q do not contain any information about the attribute we are in-
terested in—hence such queries are discarded. For example,if we
are interested in themanufacturer attribute of queries for digi-
tal cameras, then a queryRed 10 MegaPixel Camera is useless
for our purpose. Further, queries containing multiple keywords in
Q are also discarded since they are ambiguous. We are therefore
left with a set of browse trails corresponding to queries containing
exactly one keyword inQ. A browse trail comprises a sequence
of urls, and each url can be mapped to a particular web domain.
Figure 2 depicts a typical browse trail. We convert such a browse
trail into a set of (keyword, domain) pairs, where each pair con-
tains the keyword in the query and the domain corresponding to a
particular url in the browse trail. The number of pairs, therefore,
is equal to the length of the browse trail. However, all domains in
a browse trail are not likely to be equally relevant to the original
query. For example, web domains visited by a user towards the
end of a long browse trail are unlikely to be relevant to her original
query. Therefore, each (keyword, domain) pair is associated with
a weight, where the weight of a particular pair is aρ-fraction of
the weight of the previous pair on the browse trail. The parameter
ρ is a fixed constant less than 1 (typically 0.9 in our experiments).
Thus, the pair containing the first domain in the browse trailhas
weight 1, the second has weightρ, the third has weightρ2, and
so on. Note that a very small value ofρ is undesirable since it
would imply that we are practically ignoring the entire browse trail
other than the first click. As an example, consider the browsetrail
in Figure 2. For the attributeManufacturer, we get two copies of
(dell,bizrate) (with weights 1 andρ) and one(dell,amazon) (with
weightρ2) from this browse trail.

Let us now collect all the pairs formed by all the browse trails
in the input data. Thefrequencyof a particular (keyword, domain)
pair is the sum of weights of all its appearances in the input data.
We denote this frequency by the functionf : Q×P→R

+
0 .1 We will

1
R

+
0 is the set of non-negative reals.

often use the shorthandfqp for f (q, p). The marginal frequencies
of keywords is denoted bynq, i.e. nq = ∑p∈P fqp. Also, let

F = ∑
q∈Q

nq = ∑
q∈Q

∑
p∈P

fqp.

Similarity and Importance. Recall that the similarity of two at-
tribute values(q,q′) is the likelihood that a user searching for a
product withq settles for one withq′. It is important to note that
similarity is not symmetric, i.e. the similarity of(q,q′) might be
very different from that of(q′,q). For example, a user searching for
a magenta camera might settle for ared one, but not vice-versa.
The importance of an attribute valueq is therefore its similarity
with itself, i.e. the likelihood that a user searching for a product
with q settles for one withq itself and does not opt for one with a
different attribute value.

In defining similarity in our model, we assert that if a large frac-
tion of queries containingq visit domains inPq′ (i.e. domains rel-
evant toq′) early on in their browse trails, then the similarity of
the(q,q′) pair is high; else, their similarity value is low. Formally,
similarity is defined as therelative frequencyof queries containing
keywordq visiting domains relevant to keywordq′ (whereq′ may
or may not beq itself), and is denoted by

sqq′ =
∑p∈Pq′

fqp

nq
.

Then, the importance of keywordq is its similarity with itself, i.e.
sqq.

We will now focus on presenting a technique for estimatingsqq′ .
The definition above implies that this requires findingnq and fqp
for all p∈ Pq′ . Of these,nq is available from the input. However,
though we know the values offqp for each domainp, we do not
know which domains are inPq′ . This constitutes our primary algo-
rithmic challenge:annotate each domain p with the keyword it is
relevant to, i.e. I(p).

2.1 Assumptions
It turns out that it is impossible to achieve our algorithmicgoal,

that of inferring the functionI , without additional assumptions (proof
omitted due to lack of space).

LEMMA 1. Without additional assumptions, the function I can-
not be inferred completely.

Our aim, in this section, will be to come up with a set of well-
motivated assumptions that make our goal feasible, while retaining
practicality of our model.
Positive Bias. In general, it is unlikely that queries containing a
particular keywordq visit domains containing information about
another keywordq′(6= q) more frequently than domains contain-
ing information aboutq. Our first assumption formalizes this:a
browse trail for a query containing keyword q is more likely to visit
domains in Pq than domains in Pq′ , where q′ 6= q. Mathematically,
this is expressed as

sqq ≥ sqq′ , ∀q,q′ ∈ Q,q 6= q′. (1)

We call this thepositive biasproperty. In section 6, we will empir-
ically demonstrate that this property is typically true.
Uniformity. For statistically significant data, it is unlikely that dif-
ferent domains inPq (for some keywordq) will display significantly
different distribution of queries visiting them. We formalize this
as the(α,δ)-uniformity property: different domains in Pq (where
q∈ Q) have similar distribution of queries visiting them, up tofac-

tors ofα andδ . Mathematically,

α
(

sqq′nq

mq′

)

≤ fqp ≤ δ
(

sqq′nq

mq′

)

, ∀p∈ Pq′ ,

whereα ≤ 1 andδ ≥ 1. Typically, we will assume that the pa-
rametersα andδ are close to 1. As earlier, we will validate this
assumption further via experiments in section 6.
Proportionality. In practice, keywords that appear frequently in
queries also appear frequently in web domains, and vice-versa.
Thus, there is a proportionality between the relative frequency of
a keyword in queries, and the fraction of domains for which itis
relevant. We formalize this as the(β ,γ)-proportionality property,
which states thatfor any keyword q, its relative frequency in queries
and domains are similar, up to factors ofβ andγ . Mathematically,

β
(mq

m

)

≤
nq

F
≤ γ

(mq

m

)

,

whereβ ≤ 1 andγ ≥ 1. As with the other assumptions, we will
provide experimental evidence to support our conjecture that the
proportionality property approximately holds in typical situations.

Unfortunately, we show below that in spite of the above assump-
tions, the problem of learning the mappingI continues to be un-
solvable.

THEOREM 1. For any α < 1, β < 1 and γ > 1, there exists a
δ > 1 such that the function I cannot be inferred completely, even
if the positive bias,(α,δ)-uniformity and(β ,γ)-proportionality
properties hold.

PROOF. We create two different functionsI having identical
browse trails. LetQ = {q1,q2} andP = {p1, p2, . . . , p2k}; we will
determine the value ofk later. Instead of describing browse trails,
let us define the frequency distributionf ; any set of browse trails
that realizes this distribution serves our purpose.

• fq1pi = fq2pj = xa, ∀1≤ i ≤ k,k+1≤ j ≤ 2k, and

• fq2pi = fq1pj = a, ∀1≤ i ≤ k,k+1≤ j ≤ 2k,

wherea,x andk are determined as follows. First, let us ensure that
the following two scenarios both satisfy the(α,δ)-uniformity and
positive bias properties:

• Pq1 = {P1,P2, . . . ,Pk}; Pq2 = {Pk+1,Pk+2, . . . ,P2k}, and

• Pq1 = {P1,P2, . . . ,Pk−1}; Pq2 = {Pk,Pk+1, . . . ,P2k}.

In the first situation, both properties are trivially true for any values
of α andδ . So, we focus on the second scenario. First, consider
the positive bias property. Clearly, it holds forq2. Forq1, we need

(k−1)xa > ka+xa

⇒ x >
k

k−2
. (2)

Now, consider the(α,δ)-uniformity property. This clearly holds
over Pq1 for bothq1 andq2. For this property to hold over the set
Pq2 for q1, we need

α
(

ka+xa
k+1

)

≤ a < ax≤ δ
(

ka+xa
k+1

)

,

and forq2, we need

α
(

kxa+a
k+1

)

≤ a < ax≤ δ
(

kxa+a
k+1

)

.

Since

(kxa+a)− (ka+xa) = (k−1)(x−1)a > 0,

we need to satisfy only the following conditions:

α
(

kxa+a
k+1

)

≤ a < ax≤ δ
(

ka+xa
k+1

)

,

i.e., α(kx+1) ≤ k+1 < (k+1)x≤ δ (k+x). (3)

Given values ofk andx, there always exist values ofδ that satisfy

(k+1)x≤ δ (k+x)

sinceδ is not bounded above. So, it is sufficient to ensure that

k
k−2

< x≤
k+1−α

kα
. (4)

For Eq. 4 to hold, we need

(1−α)k2− (1+α)k−2(1−α) > 0.

For 0< α < 1 andk > 0, this is ensured if

k >
(1+α)+

√

(1+α)2 +8(1−α)2

2(1−α)
.

k can be made large enough to ensure this. Then, we can choose
any x satisfying Eqn. 4. Finally, we choose a large enougha to
ensure thatxa is an integer.

Now, the(β ,γ)-proportionality property holds if

β
(

k+1
2k

)

≤
1
2
≤ γ

(

k−1
2k

)

,

i.e., β ≤
k

k+1
≤

k
k−1

γ .

Sincek is not bounded above in satisfying the positive bias and
(α,δ)-uniformity properties, we can choosek to be large enough
to satisfy the(β ,γ)-proportionality property as well.

2.2 The List Annotation Problem
Recall that we started out to estimate similarity and importance

parameters of attribute values, identified that the key intermediate
step was to annotate web domains with relevant attribute values and
then saw that this problem remains unsolvable even after strength-
ening our model with three well-motivated assumptions. To make
the annotation problem solvable, we now slightly relax our require-
ment. Instead of annotating each domain with a single keyword, we
now allow a domain to be annotated by asmall list of keywords as
long as it satisfies the following two requirements.
Completeness. Ideally, the listLp for domainp must contain the
correct annotationI(p). In most situations however, we are inter-
ested only inimportantkeywordsq, i.e. those that havesqq > θ for
some thresholdθ . Thus, ourcompleteness requirementasserts that
if q = I(p) andsqq > θ for some thresholdθ , thenq must be in the
list Lp that domainp is annotated with.
Soundness. In practice, ifq = I(p) and sqq > θ , we would not
only wantq to be inLp, but would also like to ensure that all other
keywordsq′ in Lp are also relevant to domainp, in that queries
containingq′ frequently visit pages inPq. Mathematically, for each
q′ ∈ Lp, we need thatsq′q > T, for some thresholdT. We call this
thesoundness requirement. Clearly,T ≤ θ ; the larger the value of
T attained by an algorithm, the better it is.

For practicality, it is also critical that the lists be kept as small as
possible. We can show a lower bound of 1/θ on theaverage sizeof
the lists (proof omitted due to lack of space), and thereforewe aim
for this size bound in our algorithm. In summary, given a parameter

θ ≤ 1, we want to construct lists of average size 1/θ for each do-
main p, which satisfy the completeness requirement with parame-
terθ , and the soundness requirement with parameterT < θ , where
T is as close toθ as possible. (We will assume that the positive
bias,(α,δ)-uniformity and(β ,γ)-proportionality properties hold,
for some parametersα,β ≤ 1 andγ ,δ ≥ 1.)

3. ALGORITHM
We will now present an algorithm for computing similarity and

importance parameters of attribute values. As discussed previously,
the principal algorithmic challenge lies in solving the list annota-
tion problem described above. Therefore, we first present two al-
gorithms for constructing the lists required by the list annotation
problem. The first algorithm produces a listL1

p for each domain
p that satisfies the completeness requirement. It has the additional
property that each liston an averagecontains at most γ

αβθ (≃ 1/θ
sinceα,β ,γ ≃ 1) keywords. The second algorithm produces a list
L2

p for each domainp that satisfies both the completeness require-

ment and the soundness requirement with parameterT =
(

αβθ
γδ

)2

(≃ θ 2 sinceα,β ,γ ,δ ≃ 1). The final listLp for each domainp is
computed as the intersection of the two lists,L1

p andL2
p. Clearly,

this list satisfies the completeness requirement, the soundness re-
quirement (due toL2

p) and also the size bound (due toL1
p). In de-

scribing these algorithms, we will assume that the values ofα,β ,γ
and δ are known. Typical values of these parameters can be es-
timated using training data. We will also assume that the input
is presented in the form of the frequency distributionf , which is
easily computable from the browse trails data. In some practical
situations however, the browse trails data might be very large, and
therefore exact computation off might be too expensive. We will
show later how to adapt our algorithm to the streaming data model,
where the browse trails appear as elements in a data stream.
Construction of L1

p. This algorithm is particularly simple; we
computegqp = fqp

(

m
F

)

for each keywordq and domainp, and
addq to Lp iff gqp > αβθ .

THEOREM 2. The lists L1p satisfy the completeness requirement.

PROOF. For any domainp, let q = I(p) andsqq > θ . Then,

fqp ≥ α
(

sqqnq

mq

)

⇒ fqp ≥ αβsqq

(

F
m

)

⇒ fqp

(m
F

)

≥ αβsqq

⇒ gqp

(m
F

)

> αβθ .

The first equation follows from the(α,δ)-uniformity property, the
second step from the(β ,γ)-proportionality property and the final
step from the fact thatsqq > θ .

As promised, we now prove a bound on the size of the listsL1
p.

THEOREM 3. Theaverage sizeof a list L1
p is at most γ

αβθ .

PROOF. For any keywordq,

∑
p∈P

gqp =
(m

F

)

∑
p∈P

fqp =
(m

F

)

nq ≤ γmq,

where the last inequality uses the(β ,γ)-proportionality property.
Thus, a keywordq can feature in at mostγmq

αβθ lists, and the average

length of a list is at most
(

1
m

)

∑
q∈Q

γmq

αβθ
=

γ
αβθ

.

Construction of L2
p. For each keywordq and domainp, we first

computehqp =
gqp
nq

. Let H = maxq∈Qhqp. For each domainp, we

computeh′qp =
hqp
H and addq to the listL2

p iff h′qp ≥
αβθ
γδ .

THEOREM 4. The lists L2p satisfy the completeness requirement.

PROOF. For any domainp, let q = I(p) andsqq > θ . Now, for
any keywordq′,

hq′p =
gq′p

nq′
=

fq′pm

nq′F
.

By the(α,δ)-uniformity property,

α
(

sq′qm

mqF

)

≤ hq′p ≤ δ
(

sq′qm

mqF

)

.

By the(β ,γ)-proportionality property,

αβ
(

sq′q

nq

)

≤ hq′p ≤ γδ
(

sq′q

nq

)

. (5)

Sincesqq ≥ θ , we havehqp ≥
αβθ
nq

; and sincesq′q ≤ 1 for any key-

wordq′, H = maxq′ hq′p ≤ γδ
(

1
nq

)

. Hence,h′qp =
hqp
H ≥ αβθ

γδ .

We now prove that the listsL2
p satisfy the soundness requirement.

THEOREM 5. If q′ ∈ L2
p and I(p) = q, then sq′q ≥

(

αβθ
γδ

)2
.

PROOF. Sincesqq ≥ θ , we haveH ≥ αβ
(

θ
nq

)

. From Eqn. 5, it

follows thath′q′p ≤
(

γδ
αβθ

)

sq′q. Sinceq′ ∈ L2
p, we haveh′q′p ≥

αβθ
γδ ;

hence,sq′q ≥
(

αβθ
γδ

)2
.

Algorithm for computing importance and similarity values. Typ-
ically, sqq >> sq′q for any keywordsq andq′ since browse trails for
queries with keywordq most often visit domains relevant toq. The
soundness and completeness properties of our algorithm then en-
sure that the listsLp contain onlyI(p). In fact, in our experiments,
most domains had very short lists, and many of them had a single
keyword. In this case, we annotate the domain with the keyword
in the list, and compute importance and similarity values using this
annotation of domains.

4. MIXED CONTENT OF DOMAINS
In practice, often a web domain has relevant content for mul-

tiple keywords pertaining to a single attribute. For example, a
website offering reviews of digital cameras will typicallynot re-
strict itself to a single model line, or even a single manufacturer.
Hence, our assumption that the functionI maps each domain to a
single keyword is over simplistic. In reality,I(p) (henceforth, we
use the shorthandIp) is a set of weights over the set of keywords,
where the weight of a keywordq represents the amount of con-
tent in domainp that relates toq. Mathematically, for eachp∈ P,
Ip : Q → R

+
0 is a non-negative real-valued function. The relative

amount of content in domainp that is relevant to keywordq is de-

noted byrp(q) =
Ip(q)

∑q′∈Q Ip(q′)
. We assume thatrp(q′) fraction of the

queries with keywordq that visit a domainp are searching for in-
formation onq′ in p. Then, the similaritysqq′ for a pair of keywords
q,q′ is redefined as

sqq′ =
∑p∈P fqprp(q′)

nq
.

To interpret this definition, note thatfqprp(q′) represents the to-
tal weight of queries containing keywordq that visit domainp for
information relevant to keywordq′.

Our goal now is to create a listLp for each domainp that sat-
isfies the following strongcorrectnessrequirement (this combines
the completeness and soundness requirements): a keywordq∈ Lp
iff sqq ≥ θ and rp(q) ≥ ε, for some parameterε > 0. We also give
strong guarantees on the size of the lists constructed—we show that
each listLp contains at most1ε keywords.
Assumptions. In this model, we assume a slightly stronger version
of the positive bias property that a user visits a domainp on a query
containing keywordq usually if she is interested in information
about the keywordq itself. Mathematically, this implies that

fqp ≃

(

Ip(q)

Mq

)

sqqnq,

whereMq = ∑p∈P Ip(q). The uniformity property needs to be rede-
fined in the new model. It now states that the relative frequency of
any domainp is proportional to the amount of information it con-
tains, i.e.Mp

M =
mp
F , whereMp = ∑q∈Q Ip(q) andM = ∑p∈P Mp(=

∑q∈QMq). We also assume the proportionality property which

states thatnq
F =

Mq
M for any keywordq.

Algorithm for computing Lp. We computegqp =
fqp
mp

for each
keywordq and domainp. We will show that we can computesqq
for each keywordq using the values ofgqp. We now computehqp =
gqp

sqq
, and add a keywordq to list Lp iff sqq ≥ θ and hqp ≥ ε.

THEOREM 6. The algorithm satisfies the correctness require-
ment.

PROOF. Using proportionality and the stronger positive bias prop-
erty, we have

hqp ≃
nqIp(q)

Mqmp
= rp(q)

(

nqM

MqF

)(

MpF

Mmp

)

= rp(q).

THEOREM 7. The size of a list Lp produced by the above algo-
rithm is at most1ε .

PROOF. For any domainp, ∑q∈Q hqp = ∑q∈Q rqp = 1. Thus,

each list contains at most1
ε keywords.

Algorithm for computing importance and similarity values. We
first computesqq for all keywordsq.

sqq =
∑p∈P fqprp(q)

nq
=

∑p∈P fqpgp(q)

sqqnq
=

√

∑p∈P g2
qpmp

nq
.

We will show that we can computegqp if it is large enough, even
in a streaming model. It follows that we can computesqq for all
keywordsq, provided it is large enough. Now,

sqq′ =
∑p∈P fqprp(q′)

nq
=

∑p∈P gq′pgqpmp

sq′q′nq
.

Again, we will show that we can computegqp if it is large enough,
and also that we can computesqq. It follows that we can compute
sqq′ for keyword pairs(q,q′).

5. EXTENSION: STREAMING MODEL
In reality, often the size of the data is too large to allow com-

putation of functionf for each (keyword, domain) pair. Thus, we
need to modify the list annotation algorithm so that it worksin
the data streaming model, where browse trails appear sequentially
in a stream, and the overall space used by the algorithm is signifi-
cantly less than the total space required to store functionf (which is
Θ(nm) ignoring numerical factors). We will describe the streaming
version of the list annotation algorithm for domains with a single
relevant keyword; similar extensions can be done if domainsthat
mixed content as well.

The key observation is that the algorithm only uses (possibly
scaled) frequency counts. Let us first consider the construction of
the listsL1

p. Recall that the algorithm seeks to populate listL1
p for

a domainp with keywordsq such thatfqp ≥
αβθF

m . For this pur-
pose, we use a standard heavy hitters algorithm [23, 11, 20].We
maintain a listL of m

Sαβθ (keyword, domain) pairs(q, p) and their

frequenciesf ′(q, p), for some parameterS< 1. When a new (key-
word, domain) pair(q, p) appears on the data stream, we updateL

as follows:

• if (q, p) ∈ L , increasef ′(q, p) by 1,

• otherwise, ifL is not full (i.e. contains< m
Sαβθ pairs), insert

(q, p) into L and setf ′(q, p) = 1,

• otherwise, decreasef (q′, p′) for each pair(q′, p′) ∈ L by 1,
and remove all pairs whose frequency becomes 0.

After all the browse trails have been considered, we remove all

the (query, keyword) pairs(q, p) with f ′(q, p) < (1−S)
(

αβθF
m

)

from L . L1
p for any particular domainp is now precisely the set of

keywordsq such that(q, p) ∈ L .
The following theorem, which is standard in the streaming liter-

ature (for e.g., in [23, 11, 20]), asserts that the algorithmsatisfies
the completeness requirement.

THEOREM 8. At the termination of the above algorithm, all

(q, p) pairs with fqp ≥
αβθF

m are retained inL , and have

f ′(q, p) ≥ (1−S)

(

αβθF
m

)

.

Extending the proof of Theorem 3, we also get a bound on the
average size of the lists produced by this algorithm .

THEOREM 9. The average size of a list L1
p produced by the

above algorithm is at mostmin
(

1
Sαβθ , γ

(1−S)αβθ

)

.

We now need to construct the listsL2
p. We use the algorithm

described in section 3, substitutingf ′(q, p) for fqp. We include a
keywordq in L2

p iff

h′qp ≥
(1−S)αβθ

γδ
.

This algorithm continues to satisfy the completeness requirement
(proof omitted due to lack of space). However, the parameterin
the soundness requirement has to be modified to give the following
theorem (proof omitted due to lack of space).

THEOREM 10. If q′ ∈ L2
p and I(p) = q, then

sq′q ≥

(

(1−S)αβθ
γδ

)2

.

6. EXPERIMENTS
In this section, we do an empirical evaluation of our model and

algorithms described in the earlier sections. All our experiments
are conducted on data extracted from Windows Live toolbar logs.
So, we first describe the methodology for extracting browse trails
from toolbar logs that we used in this work.
Data source and methodology. With functionality such as directly
searching the web without accessing the web page of any search en-
gine, web browser toolbars are finding increasing use in initiating
searches. Thus, they are a rich source of useful signals of user be-
havior. We generate the user browse trails using the methodology
described in White and Drucker [27], and Bilenko and White [5].
We summarize the method here for completeness. Typically, Win-
dows Live toolbar logs comprise a sequence of records, each con-
taining an anonymous session identifier, a timestamp, and the URL
of the visited webpage. For each user, her interaction was extracted
in the form of a browse trail (i.e. a sequence of visited URLs)with
an associated session identifier. This identifier helps in dealing with
concurrent writes to the backend toolbar log. Each trail originates
with a query submission to a search engine, and contains the se-
quence of webpages visited by the user after receiving the results
of her search query until a point of termination where it is assumed
that the user’s information need has been satisfied. We note that a
session started from a new browser or a new browser tab has itsown
browse trail. Further, note that toolbars log the history ofbrowsing
behavior only for those users who consented to such logging.

Next, we describe our processing of user queries. Using a Naïve
Bayes classifier, we first classify a user query into a productcate-
gory. For example, this creates a set of queries all pertaining to dig-
ital cameras, or to laptops, and so on. The classifier was trained on
around 2.0 million product and offer titles in 26 top-level categories
(with 609 leaf-level categories). Our dataset provided us around
420 million browse trails for queries in these categories with an av-
erage length of 6.84 hops. Each leaf category is characterized by a
set of attributes—e.g.Manufacturer, Product Line, Resolu-
tion, etc. for digital cameras—and each query contains particular
values for a subset of these attributes. To extract these attribute val-
ues from a given query, we used the attribute extraction technique
described in [24].

We perform two categories of experiments. The first category
aims at verifying the correctness of the assumptions used inour
model. The second category computes similarity and importance
measures of attribute values using our algorithm, and evaluates
the quality of the solution produced by comparing with a)ground
truth similarity and importance values obtained from restrictedpre-
classified web domains; and b) corresponding values obtained from
a user study.

6.1 Validating our assumptions
The Ground Truth Dataset. We need browsetrails involving al-
ready annotated pages to carry out our validation. To this end,
we generated a set of browsetrails restricted to the domainama-

zon.com. The Amazon browsetrails begin with a search onama-

zon.com and contain all product pages visited by the user after
issuing the query. As before, a new query marks the beginning
of a new trail. The Amazon test data consists of 145,680 trails
across the three top-level categories—computing, digital cam-

eras, andelectronics. We annotated each page with the prod-
uct information from the page. For example, a page describing
the Nikon Coolpix L20 10MP Digital Camera (Red) is an-
notated with the attribute valuesManufacturer = Nikon, Model
line = Coolpix, Model = L20, Color = Red, andResolution
= 10. We similarly annotated the query too. For every attribute

0

0.1

0.2

0.3

0.4

0.5

0.6

E
n

tr
o

p
y

/M
a

x
 E

n
tr

o
p

y

0

0.1

0.2

0.3

0.4

0.5

0.6

E
n

tr
o

p
y

/M
a

x
 E

n
tr

o
p

y

Important Digital Camera Manufacturer

Figure 3: The entropy of the important attribute values in dig-

ital cameras. A small value of entropy validates the positive
bias assumption.

valueq, we used the query and product page annotations to com-
pute the frequencies of the different attribute valuesq′ on web-
pages visited by queries containingq. For example, if over all
queries containing the attribute valueCanon, the users visitedama-
zonproduct pages containing someNikon product 10,000 times,
then the above frequency for the(Canon, Nikon) pair is 10,000.
We will refer to this frequency data as TESTSET-I.We use the same
amazon dataset as ground truth in all our experiments.
Positive Bias. Thepositive biasassumption states that queries con-
taining a particular attribute value visit pages annotatedwith that
attribute value more frequently than pages annotated with other at-
tribute values. From TESTSET-I, we computed the normalized fre-
quency distribution of product attribute values for a givenquery
attribute value. The entropy of this frequency distribution2 is an in-
dicator of its dispersion; therefore, a low entropy value would imply
that these queries tend to mostly end up on pages having the same
attribute value, thus validating our assumption. Figure 3 reports
the entropy of this frequency distribution (scaled by the maximum
possible entropy logn, wheren is the number of different attribute
values) for different values of the attributeManufacturer in the
categorydigital cameras. This ratio is small for almost all the
attribute values, i.e. most of the queries ended up on product pages
relevant to their corresponding attribute values. We repeated this
experiment for other categories as well and the results weresimi-
lar. We will report the entire set of results in a full versionof the
paper.
Uniformity. Theuniformityassumption states that queries contain-
ing a particular attribute valueq visit different pages annotated with
attribute valueq′ (q may or may not be equal toq′) with roughly
equal frequency. We compute the entropy of the frequency distribu-
tion of all visited product pages that contain keywordq′. The higher
this value, the more uniform is the distribution. Table 1 reports
the entropy of this frequency distribution (scaled by the maximum
entropy logn, as earlier) for several values of the attributeMan-
ufacturer in the categorydigital cameras. We repeated the
experiment for different values of the attributeManufacturer in
the other product categories and saw very similar results. Clearly,
all the values are close to 1 suggesting that the(α,δ)-uniformity
assumption holds withα andδ close to 1.
Proportionality. The proportionality assumption states that the
relative frequency of an attribute value in queries is approximately
equal to the relative frequency of that attribute value in product
page annotations. Table 2 shows the frequency distributionof the
different values of theManufacturer attribute in the categorydig-
ital cameras in queries and in product page annotations. As the
table shows, the relative frequency of the attribute valuesin the

2Entropy of a discrete random variableX is H(X) =
−∑n

i=1 p(xi) log p(xi).

manufacturer sony panasonic nikon casio samsung canon fujifilm olympus kodak pentax

sony 0.862 0.952 0.975 0.968 0.949 0.974 0.775 0.949 0.919 1.000
panasonic 0.970 0.885 0.922 1.000 0.970 0.947 0.920 0.931 1.000 1.000

nikon 0.911 0.946 0.921 0.775 0.961 0.985 0.932 0.963 1.000 1.000
casio 0.960 0.971 1.000 0.851 0.909 0.915 1.000 1.000 1.000 1.000

samsung 1.000 1.000 1.000 1.000 0.956 1.000 0.963 1.000 1.000 1.000
canon 0.885 0.953 0.960 0.921 0.885 0.855 0.929 0.883 1.000 1.000

fujifilm 0.833 1.000 0.811 1.000 1.000 0.975 0.897 1.000 1.000 1.000
olympus 1.000 0.570 0.960 1.000 1.000 0.915 1.000 0.922 0.845 1.000
kodak 1.000 1.000 1.000 1.000 1.000 0.960 1.000 0.919 0.882 1.000
pentax 1.000 0.919 1.000 1.000 1.000 0.970 1.000 1.000 1.000 0.883

Table 1: The ratio of the entropy to the maximum entropy for the important attribute values in digital cameras. A value close to
1.0 validates the uniformity assumption.

manufacturer relative frequency relative frequency
in queries in products

olympus 0.076 0.062
casio 0.107 0.089
canon 0.242 0.224

fujifilm 0.031 0.039
samsung 0.024 0.037
pentax 0.020 0.013
nikon 0.069 0.064
kodak 0.049 0.038

panasonic 0.185 0.253
sony 0.197 0.179

Table 2: The relative frequency of manufacturer values (for
digital cameras) in the queries and product pages.

queries is correlated to the relative frequency in the product pages.
This implies that the(β ,γ)-proportionality assumption holds with
values ofβ andγ close to 1.

6.2 Similarity and Importance
In this set of experiments, we run our algorithm to compute the

similarity and importance parameters using general browsetrails on
the web (i.e. we do not restrict ourselves toamazon browsetrails
any more). As stated earlier, these browsetrails are also generated
from Windows Live toolbar data.

Using our algorithm for similarity computation, we computed a
list of top-k (k = 20)most similarattribute values for each attribute
value q. We also ranked these similar attribute values according
to their similarity (sqq′) to q. To verify the accuracy of the order-
ing, we compare it with the corresponding orderings obtained from
two different sources—the ground truth set TESTSET-I and a user
study. In both cases, we compute an ordered list of similar values
for each attribute valueq using techniques we describe later. Thus,
we have two ranked lists (in each case)—one desired and the other
computed by our algorithm. We measure the accuracy of the sim-
ilarity computation as the distance between these two ranked lists.
Given the ranked list of similar attribute valuesSq computed by our
algorithm, and the ideal ranked list of similar attribute valuesS′q,
we compute the distance as

R(q) = ∑
s∈Sq∩S′q

∣

∣

∣

∣

∣

1
rsq

−
1

r ′sq

∣

∣

∣

∣

∣

wherersq is the rank of attribute values in Sq andr ′sq
is the rank of

s in S′q. We use a simple rank function which is the position of an
attribute value in each list after removing the entries not common
to both lists. We note that the functionR(q) penalizes mismatches
in the higher ranked attribute values more than the lower ranked
attribute values. A small value ofR(q) indicates two similar lists
and hence a closer agreement of the list produced by our algorithm
with the ideal list of similar values for a particular attribute value

category attribute avg normalizedR(q)
ρ = 1 ρ = 0

Laptops Manufacturer 0.102 0.204
Digital Camera Manufacturer 0.126 0.167

Product Line 0.045 0.111
Hard Drives Manufacturer 0.098 0.227
LCD TVs Manufacturer 0.072 0.147

Table 3: The frequency weighted normalized distance between
the list of nearest neighbors produced by our algorithm and an
ideal list of neighbors obtained from TESTSET-I for rho= 0 and
rho = 1.

q. We normalized the distance values by the maximum distance
(which comes from a completely inverted list).
Using TESTSET-I . For TESTSET-I, we compute the desired order-
ing from the most frequent attribute values in the product pages vis-
ited for queries containing attribute valueq. Table 3 shows the av-
erage normalized distance computed for selected attributes in each
category. The results in Table 3 suggest there is a significant over-
lap in the list produced by our algorithm and the ground truth.
User study. We carried out a user study using the Amazon Me-
chanical Turk3. We used 120 randomly sampled queries consisting
of 〈product, attribute, attribute value〉 triples along with
a set of 10 similar attribute values for the chosen attributevalue
in the triple. These queries came from a diverse set of 21 leaf
categories such assinks, mattresses, cooktops, andgarden-
ing tools with each category contributing around 4 queries to
the test set. Each query was presented to 11 human judges. Every
judge was asked two questions—1) whether she would terminate
her search if she did not find products with the attribute value spec-
ified in the query; and 2) if she decided not to terminate her search,
then selectup to5 similar attribute values (from the provided 10)
that she would look for in the search results. An overwhelming
98% of the judges answered in the negative to question 1—in other
words users preferred to continue with their search and lookfor
alternatives. This highlights the importance of result enrichment
in product search since users are happy with substitutes in case
the exact product they were looking for is not present in the prod-
uct catalog/index. Next, we ordered the alternative attribute values
provided to the user based on how many users selected the attribute
value. We then computed the averaged normalized distanceR(q)
between this ordering and the ordering produced by our algorithm
for all the products in our test set. We averaged the normalized dis-
tance over all queries in a given category and report the averaged
normalizedR(q) for each category in Table 4. The results show
that the distance between the two orderings is indeed small and un-
derscore the effectiveness of our algorithm in computing similarity
scores.

3https://www.mturk.com/

category attribute avg normalizedR(q)

desktop computers manufacturer 0.045
cabinet & drawer hardware hardware material 0.063
mattresses manufacturer 0.060
mowers & tractors manufacturer 0.064
door hardware & locks hardware material 0.070
cooktops manufacturer 0.075
rings stone 0.082
pants bottom style 0.055
laptop computers color 0.057
gardening tools manufacturer 0.070
sweaters apparel material 0.064
home theater systems manufacturer 0.068
amplifiers manufacturer 0.054
action figures character 0.071
generators manufacturer 0.051
vehicle playsets manufacturer 0.065
vacuums manufacturer 0.063
printers manufacturer 0.055
radio controlled toys manufacturer 0.079
cell phones product line 0.065
cell phones manufacturer 0.063
shirts apparel material 0.066

Table 4: The frequency weighted normalized distance between
the list of nearest neighbors produced by our algorithm and an
ideal list of neighbors obtained from the user study for ρ = 1.

0.1

0.2

0.3

0.4

0.5

A
v

e
ra

g
e

 N
o

rm
a

li
ze

d
 D

is
ta

n
ce

0

0.1

0.2

0.3

0.4

0.5

0.4 0.5 0.6 0.7 0.8 0.9 1

A
v

e
ra

g
e

 N
o

rm
a

li
ze

d
 D

is
ta

n
ce

Decay Parameter (ρ)

Figure 4: Effect of the parameter ρ on the average normalized
distance for the sub-category televisions

Effect of the decay parameter ρ . To verify the significance of
considering clicks beyond the first click, we compare the normal-
ized distance values computed using the full browse trails (ρ = 1)
with the first click case (ρ = 0). Table 3 shows significant improve-
ment in the similarity values when using browse trails compared to
using just the first click. Further, Figure 4 illustrates thedecrease
in the average normalized distance as the value ofρ increases.
Importance parameter. Though we concentrated on similarity
scores so far, we also computed the importance parameter of at-
tribute values assqq. Table 5 shows the importance of top attribute
values for selected attributes.

6.3 Multiple Attributes
Till now, we have computed similarity scores for values of indi-

vidual attributes. However, a typical product category hasmultiple
attributes; therefore, to make our techniques useful for result en-
richment, we need to extend it to computing the similarity scores
between two products in the same category, each having a set of
values for different attributes. We propose two solutions for this
problem. If the number of distinct combinations of attribute val-
ues is small, then we can consider the combination of these at-
tribute as a single attribute. For example, in any product category,
we can typically consider(Manufacturer, Product Line) as
a single attribute since each product line is usually exclusive to a
particular manufacturer. Thus, the total number of such pairs is the

category attributes avg normalizedR(q)

Laptops Manufacturer & Product Line 0.0893
Digital Cameras Manufacturer & Product Line 0.0975

Table 6: The frequency weighted normalized distance between
the list of nearest neighbors produced by our algorithm and an
ideal list of neighbors obtained from TESTSET-I for multiple
attributes.

same as the total number of product lines. As an example, for the
digital camera category, the product linePowershot is exclu-
sive to the manufacturerCanon and thereforeCanon Powershot

can be considered to be a single attribute value. We ran our algo-
rithm for finding similarity and importance scores for such combi-
nations of attributes. Table 6 shows that the combination ofMan-

ufacturer andProduct Line attributes fordigital cameras

andlaptops does indeed produce a list of related products that
overlaps significantly with the corresponding lists obtained from
TESTSET-I. Also, Table 7 shows some anecdotal results for the
same attribute combination and categories used in the experiment.

However, consider the attribute valuesManufacturer andColor
for any product category. These attribute values are not related; in
fact, most manufacturers are likely to have products in mostcolors.
In this case, combining these two attributes into one might create
a prohibitively large number of attribute values, thus resulting in
sparsity of data and also making the algorithm inefficient. In this
case, we estimate the similarity of products using a weighted sum
of the similarity of individual (or combinations of) attribute values.
The weight of an attribute is usually the normalized averageof the
importance parameter of the different values of the attribute. This
gives us a scalable technique for measuring the similarity between
pairs of products, thereby offering a solution to the resultenrich-
ment problem.

7. RELATED WORK
There is prior work on incorporating browsing along with search

to improve the relevance of search results [12, 5, 6]. Bilenko and
White [5] show that user’s post-search browsing activity isa strong
signal for computing relevance of the visited pages. Specifically,
they show empirically that features extracted from browse trails
(e.g., dwell times and visitation count) improves the ranking of
search results compared to alternatives like clickthroughlogs. Bilenko
et. al. [6] propose computing a user profile using the frequent do-
mains visited by the user. Each domain in turn maintains a list of
query terms issued by users to visit the domain. Our idea of com-
puting a list of annotated query terms for each page (or domain)
is similar to theirs. However, the model we use to compute the
lists admits efficient streaming algorithms that can scale to large
data sets. Moreover, the list of annotations are attribute specific
and these lists are used to compute the similarity between attribute
values and their relative importance.

There is a lot of research on finding related queries [3, 26, 8,
2, 13, 22] and query reformulation [15, 9, 19]. Jones et al. [19]
propose a technique to compute query substitutions based onpre-
computed query and phrase similarity using statistical techniques
on query logs. A large section of the work on this problem can be
classified into two categories—those that exploit only the structure
of the query-click graph [3, 8, 22] and others that consider query
terms as well as the content of the clicked URLs [15, 2]. In both
categories, the underlying model is the query-click bipartite graph
and the relationship between queries is computed indirectly as a
function of their shared associations with entities such asurls or
some important features thereof (such as terms).

Laptops Hard Drives Kitchen Appliances Beds Action Figures
Manufacturer ModelLine Manufacturer Manufacturer Color Bed Type Character

sony (0.32) thinkpad (0.38) dell (0.23) ge (0.23) stainless steel (0.23) Platform (0.23) transformers (0.28)
toshiba (0.25) vaio (0.31) seagate (0.22) lg (0.12) black (0.06) Bunk (0.19) wwe (0.17)

hp (0.23) macbook (0.27) hitachi (0.19) samsung (0.12) white (0.04) Teen (0.17) godzilla (0.14)
acer (0.21) toughbook (0.24) toshiba (0.17) sharp (0.12) steel (0.02) Toddler (0.11) rescue heroes (0.11)

lenovo (0.19) pavilion (0.22) simpletech (0.16) maytag (0.10) silver (0.02) Loft (0.11) spawn (0.09)
apple (0.12) satellite (0.19) w. digital (0.15) whirlpool (0.06) gold (0.02) Trundle (0.07) star wars (0.05)
asus (0.10) eee pc (0.14) samsung (0.12) panasonic (0.05) orange (0.01) Kids (0.04) halo (0.04)
dell (0.07) inspiron (0.11) lenovo (0.06) electrolux (0.04) clean steel (0.01) Sleigh (0.03) superman (0.02)

samsung (0.05) aspire (0.11) ibm (0.04) siemens (0.03) graphite (0.01) Canopy (0.03) gundam (0.02)
ibm (0.04) nc10 (0.09) maxtor (0.03) frigidaire (0.03) blue (0.01) Adjustable (0.01) lord of the rings (0.01)

Table 5: Important attribute values along with their sqq values.

Product Query Related Products

sony vaio sony vaio(0.550) apple macbook (0.050) hp pavilion (0.034) acer aspire (0.031) asus eee pc (0.040)
lenovo thinkpad lenovo thinkpad (0.157) ibm thinkpad (0.130) apple macbook (0.060) dell inspiron (0.050) asus eee pc (0.049)

pentax optio panasonic lumix (0.219) pentax optio (0.162) canon powershot (0.151) nikon coolpix (0.119) kodak easyshare (0.079)
canon powershot canon powershot (0.359) panasonic lumix (0.160) nikon coolpix (0.115) kodak easyshare (0.088) fujifilm finepix (0.044)

Table 7: Anecdotal examples of top-5 related products for queries in laptops and digital cameras using attribute values in
Manufacturer and Product Line.

A related problem is that of associating important query terms
to a web page. Again, some of the graph-theoretic techniquesused
for finding related queries can be employed here as well [8]. A
recent work of Gupta, Bilenko, and Richardson [18] studied the
problem of associating keywords to web pages in the context of on-
line advertising. They propose a learner that can effectively suggest
the best query terms that are most likely related to the advertiser’s
terms (and thus increase the likelihood of a click on the ad).

8. CONCLUSION
We proposed a technique for result enrichment in commerce search.

In order to quantify the replaceability of products, we introduced
the notions of similarity and importance of attribute values. We
then designed techniques for estimating these parameters that lever-
age browse trails of users on the web graph. Finally, we verified
the scalability and accuracy of these techniques via extensive ex-
periments on very large real-life data sets.

9. REFERENCES
[1] Eugene Agichtein, Eric Brill, and Susan T. Dumais. Improving web

search ranking by incorporating user behavior information. In SIGIR,
pages 19–26, 2006.

[2] Ricardo A. Baeza-Yates, Carlos A. Hurtado, and Marcelo Mendoza.
Improving search engines by query clustering.JASIST,
58(12):1793–1804, 2007.

[3] Doug Beeferman and Adam Berger. Agglomerative clustering of a
search engine query log. InProceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD), pages 407–416, 2000.

[4] Paul N. Bennett and Nam Nguyen. Refined experts: improving
classification in large taxonomies. InSIGIR, pages 11–18, 2009.

[5] Mikhail Bilenko and Ryen W. White. Mining the search trails of
surfing crowds: identifying relevant websites from user activity. In
WWW, pages 51–60, 2008.

[6] Mikhail Bilenko, Ryen W. White, Matthew Richardson, andG. Craig
Murray. Talking the talk vs. walking the walk: salience of
information needs in querying vs. browsing. InSIGIR, pages
705–706, 2008.

[7] Chris Buckley, Gerard Salton, and James Allan. The effect of adding
relevance information in a relevance feedback environment. In
SIGIR, pages 292–300, 1994.

[8] Nick Craswell and Martin Szummer. Random walks on the click
graph. InSIGIR, pages 239–246, 2007.

[9] Hang Cui, Ji-Rong Wen, Jian-Yun Nie, and Wei-Ying Ma.
Probabilistic query expansion using query logs. InProceedings of

International World Wide Web Conferences (WWW), pages 325–332,
2002.

[10] Erika F. de Lima and Jan O. Pedersen. Phrase recognitionand
expansion for short, precision-biased queries based on a query log. In
SIGIR, pages 145–152, 1999.

[11] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro.
Frequency estimation of internet packet streams with limited space.
In ESA, pages 348–360, 2002.

[12] Doug Downey, Susan T. Dumais, and Eric Horvitz. Models of
searching and browsing: Languages, studies, and application. In
IJCAI, pages 2740–2747, 2007.

[13] Doug Downey, Susan T. Dumais, Daniel J. Liebling, and Eric
Horvitz. Understanding the relationship between searchers’ queries
and information goals. InCIKM, pages 449–458, 2008.

[14] Susan T. Dumais, Edward Cutrell, and Hao Chen. Optimizing search
by showing results in context. InCHI, pages 277–284, 2001.

[15] Efthimis Efthimiadis. Query expansion.Annual Review of
Information Systems and Technology (ARTIST), 31:121–187, 1996.

[16] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search
in high dimensions via hashing. InVLDB, pages 518–529, 1999.

[17] Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. Named entity
recognition in query. InSIGIR, pages 267–274, 2009.

[18] Sonal Gupta, Mikhail Bilenko, and Matthew Richardson.Catching
the drift: learning broad matches from clickthrough data. In KDD,
pages 1165–1174, 2009.

[19] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner.
Generating query substitutions. InWWW, pages 387–396, 2006.

[20] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A
simple algorithm for finding frequent elements in streams and bags.
TODS, 28:51–55, 2003.

[21] Xiao Li, Ye-Yi Wang, and Alex Acero. Extracting structured
information from user queries with semi-supervised conditional
random fields. InSIGIR, pages 572–579, 2009.

[22] Qiaozhu Mei, Dengyong Zhou, and Kenneth Ward Church. Query
suggestion using hitting time. InCIKM, pages 469–478, 2008.

[23] J. Misra and D. Gries. Finding repeated elements.Science of
Computer Programming, 2:142Ű–152, 1982.

[24] Nikos Sarkas, Stelios Paparizos, and Panayiotis Tsaparas. Structured
annotations of web queries. InSIGMOD, pages 771–782, 2010.

[25] Dou Shen, Rong Pan, Jian-Tao Sun, Jeffrey Junfeng Pan, Kangheng
Wu, Jie Yin, and Qiang Yang. Query enrichment for web-query
classification.ACM Trans. Inf. Syst., 24(3):320–352, 2006.

[26] Ji-Rong Wen, Jian-Yun Nie, and Hong-Jiang Zhang. Clustering user
queries of a search engine. InProceedings of International World
Wide Web Conferences (WWW), pages 162–168, 2001.

[27] Ryen W. White and Steven M. Drucker. Investigating behavioral
variability in web search. InWWW, pages 21–30, 2007.

